SIMPLE RELATIONS IN THE CREMONA GROUP

JÉRÉMY BLANC

Let k be any fixed algebraically closed field. The Cremona group $\text{Bir}(\mathbb{P}^2)$ is the group of birational transformations of the projective plane $\mathbb{P}^2 = \mathbb{P}_k^2$.

The classical Noether-Castelnuovo Theorem says that $\text{Bir}(\mathbb{P}^2)$ is generated by the group $\text{Aut}(\mathbb{P}^2) \cong \text{PGL}(3,k)$, that we will denote by **A**, and by the *standard* quadratic transformation

$$
\sigma\colon (X:Y:Z)\dashrightarrow (YZ:XZ:XY).
$$

For a proof which is valid over any algebraically closed field (in particular in any characteristic), see for example [\[Sha,](#page-3-0) Chapter V, §5, Theorem 2, page 100].

A presentation of $\text{Bir}(\mathbb{P}^2)$ was given in [\[Giz\]](#page-3-1). The generators are all the quadratic transformations of the plane (among them, all elements of the form $a_1\sigma a_2$, where $a_1, a_2 \in \mathbf{A}$, and the relations are all those of the form $q_1q_2q_3 = 1$ where q_i is a quadratic map. The proof is quite long and uses many sophisticated tools of algebraic geometry, such as cell complexes associated to rational surfaces.

Another presentation was given in [\[Isk2\]](#page-3-2) (and announced in [\[Isk1\]](#page-3-3)). The surface taken here is $\mathbb{P}^1 \times \mathbb{P}^1$, and the generators used are the group $Aut(\mathbb{P}^1 \times \mathbb{P}^1)$ and the de Jonquières group **J** of birational maps of $\mathbb{P}^1 \times \mathbb{P}^1$ which preserve the first projection (see below). There is only one relation in the amalgamated product of these two groups, which is $(\rho \tau)^3 = \sigma$, where $\rho = (x, y) \mapsto (x, x/y)$ and $\tau = (x, y) \mapsto (y, x)$ in local coordinates. The proof is much shorter than the one of [\[Giz\]](#page-3-1), and the number of relations is also much smaller, but everything is now on $\text{Bir}(\mathbb{P}^1 \times \mathbb{P}^1)$. There is also some gap in the proof (observed by S. Lamy): the author implicitly uses relations of the form $(\rho' \tau)^3 = \sigma'$ where ρ' has base-points infinitely near, without proving that they are generated by the first one (a fact not so hard to prove).

In this short note, we give a new presentation of the Cremona group, which are as simple as the one of [\[Isk2\]](#page-3-2), but stays on \mathbb{P}^2 . The proof is also very short, and is in fact strongly inspired from the one of [\[Isk2\]](#page-3-2). We take care of infinitely near points, and translate the idea of Iskovskikh from $\mathbb{P}^1 \times \mathbb{P}^1$ to \mathbb{P}^2 , where it becomes simpler. We only use classical tools of plane birational geometry (base-points and blow-ups), as mathematicians of the XIX^{th} century did, and as in [\[Isk2\]](#page-3-2).

The de Jonquières group, that we will denote by **J**, is the subgroup of $\text{Bir}(\mathbb{P}^2)$ consisting of elements which preserve the pencil of lines passing through $p_1 = (1 :$ 0 : 0). This group can be viewed in local coordinates $x = X/Z$ and $y = Y/Z$ as

$$
\mathbf{J} = \left\{ (x, y) \dashrightarrow \left(\frac{ax + b}{cx + d}, \frac{\alpha(x)y + \beta(x)}{\gamma(x)y + \delta(x)} \right) \middle| \begin{array}{c} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{PGL}(2, k), \\ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \text{PGL}(2, k(x)) \end{array} \right\}.
$$

It is thus naturally isomorphic to $PGL(2, k(x)) \rtimes PGL(2, k)$, where $PGL(2, k)$ Aut (\mathbb{P}^1) acts on PGL $(2, k(x))$ via its action on $k(x) = k(\mathbb{P}^1)$.

Since $\sigma \in \mathbf{J}$, the group $\text{Bir}(\mathbb{P}^2)$ is generated by **A** and **J**. The aim of this note is to prove the following result:

Theorem 1. The Cremona group $\text{Bir}(\mathbb{P}^2)$ is the amalgamated product of $A =$ $\text{Aut}(\mathbb{P}^2)$ and **J** along their intersection, divided by one relation, which is

$$
\sigma\tau=\tau\sigma,
$$

where $\tau \in \mathbf{A}$ is given by $\tau = (X : Y : Z) \mapsto (Y : X : Z)$.

Since $\sigma\tau = \tau\sigma$ is easy to verify, it suffices to prove that no other relation holds. We prove this after proving the following simple lemma.

Lemma 1. If $\theta \in J$ is a quadratic map having $p_1 = (1:0:0)$ and q as base-points, where q is a proper point of $\mathbb{P}^2 \setminus \{p_1\}$, and $\nu \in \mathbf{A}$ exchanges p_1 and q, the map $\theta' = \nu \theta \nu^{-1}$ belongs to **J** and the relation

$$
\nu \theta^{-1} = (\theta')^{-1} \nu
$$

is generated by the relation $\sigma\tau = \tau\sigma$ in the amalgamated product of **A** and **J**.

Proof of Lemma [1.](#page-1-0) The relations $\theta' = \nu \theta \nu^{-1}$ and $\nu \theta^{-1} = (\theta')^{-1} \nu$ are clearly equivalent. In particular, the result is invariant under conjugation of both θ and ν by an element of $A \cap J$. Choosing an element in $A \cap J$ which sends q onto $p_2 = (0 : 1 : 0)$, we can assume that $q = p_2$. Then ν is equal to $a\tau$, where $\tau = (X : Y : Z) \mapsto (Y : X : Z)$ and a is an element of $\mathbf{A} \cap \mathbf{J}$ which fixes p_2 . We can thus assume that $\nu = \tau$. We study two cases separately, depending on the number of proper base-points of θ .

(a) Suppose that θ has exactly three proper base-points, which means that $\theta =$ $a_1 \sigma a_2$ for some $a_1, a_2 \in A \cap J$. This yields the following equality in the amalgamated product:

$$
\tau \theta \tau^{-1} = \tau a_1 \sigma a_2 \tau^{-1} = (\tau a_1 \tau^{-1})(\tau \sigma \tau^{-1})(\tau a_2 \tau^{-1}).
$$

This implies that $\tau \theta \tau^{-1}$ is equal to an element of **J** modulo the relation $\sigma \tau = \tau \sigma$, and yields the result.

(b) Suppose now that θ has only two proper base-points, p_1 , p_2 , and that its third base-point, is infinitely near to p_i for some $i \in \{1,2\}$. This means that $\theta = a_1 \nu_i a_2$ for some $a_1, a_2 \in A \cap J$, where ν_1, ν_2 are the following quadratic involutions:

$$
\nu_1: \quad (X:Y:Z) \dashrightarrow \quad (XY:Z^2:YZ), \n\nu_2: \quad (X:Y:Z) \dashrightarrow \quad (Z^2:XY:XZ).
$$

Denoting by $\rho_1, \rho_2 \in \mathbf{A} \cap \mathbf{J}$ the maps

$$
\rho_1: (X:Y:Z) \dashrightarrow (X:Z-Y:Z), \n\rho_2: (X:Y:Z) \dashrightarrow (Z-X:Y:Z),
$$

we have $\nu_i = \rho_i \sigma \rho_i \sigma \rho_i$ in **J**. As above, this yields the following equality:

$$
\tau \theta \tau^{-1} = (\tau a_1 \tau^{-1})(\tau \rho_i \tau^{-1})(\tau \sigma \tau^{-1})(\tau \rho_i \tau^{-1})(\tau \sigma \tau^{-1})(\tau \rho_i \tau^{-1})(\tau a_2 \tau^{-1}).
$$

Using $\sigma\tau = \tau\sigma$ and the fact that $\tau\rho_i\tau^{-1} = \rho_j$ in **A**, with $j = 3 - i$, we obtain

$$
\tau \sigma \tau^{-1} = (\tau a_1 \tau^{-1})(\rho_j \sigma \rho_j \sigma \rho_j)(\tau a_2 \tau^{-1}) = (\tau a_1 \tau^{-1}) \nu_j (\tau a_2 \tau^{-1}).
$$

So $\tau \theta \tau^{-1}$ is again equal to an element of **J** modulo the relation $\sigma \tau = \tau \sigma$. \Box

Proof of Theorem [1.](#page-1-1) Taking an element f in the amalgamated product $\mathbf{A} \star_{\mathbf{A} \cap \mathbf{J}} \mathbf{J}$ which corresponds to the identity map of $\text{Bir}(\mathbb{P}^2)$, we have to prove that f is the identity in the amalgamated product, modulo the relation $\sigma \tau = \tau \sigma$.

We write $f = j_r a_r \dots j_1 a_1$ where $a_i \in \mathbf{A}, j_i \in \mathbf{J}$ for $i = 1, \dots, n$ (maybe trivial). We denote by Λ_0 the linear system of lines of the plane and for $i = 1, \ldots, n$, we

denote by Λ_i the linear system $j_i a_i \dots j_1 a_1(\Lambda_0)$, and by d_i its degree. We define

$$
D = \max \Big\{ d_i \Big| i = 1, ..., r \Big\}, n = \max \Big\{ i \Big| d_i = D \Big\} \text{ and } k = \sum_{i=1}^{m} \Big(\deg(j_i) - 1 \Big).
$$

When $D = 1$, each j_i belongs to **A**, and the word is equal to an element of **A** in the amalgamated product; since **A** embeds into $\text{Bir}(\mathbb{P}^2)$, this case is clear. We can thus assume that $D > 1$ and prove the result by induction on the pairs (D, k) , ordered lexicographically.

If j_n belongs to **A**, we replace $a_{n+1}j_na_n$ by its product in **A**; this does not change the pair (D, k) but decreases n by 1. If j_{n+1} belongs to A, a similar replacement decreases r by 1 without changing the pair (D, k) . We can thus assume that $j_n, j_{n+1} \in \mathbf{J} \backslash \mathbf{A}$ and that $a_{n+1} \in \mathbf{A} \backslash \mathbf{J}$, which means that $a_{n+1}(p_1) \neq p_1$ (recall that $p_1 = (1:0:0)$ is the base-point of the pencil associated to **J**).

The system $\Lambda_{n+1} = j_{n+1}a_{n+1}(\Lambda_n)$ has degree $d_{n+1} < d_n = D$, and $\Lambda_{n-1} =$ $(a_n)^{-1}(j_n)^{-1}(\Lambda_n)$ has degree $d_{n-1} \leq d_n$. The maps $j_{n+1}, j_n \in J \setminus A$ have degree D_R and D_L respectively, for some integers D_R , $D_L \geq 2$. The points $l_0 = (a_{n+1})^{-1}(p_1) \neq$ p_1 and $r_0 = p_1$ are base-points of respectively $j_{n+1}a_{n+1}$ and $(a_n)^{-1}(j_n)^{-1}$ of multiplicity $D_L - 1$ and $D_R - 1$. Writing l_1, \ldots, l_{2D_L-2} and r_1, \ldots, r_{2D_R-2} the other base-points of these two maps, the linear systems Λ_{n+1} and Λ_{n-1} have respectively degree

$$
d_{n+1} = D_L \cdot d_n - (D_L - 1) \cdot m(l_0) - \sum_{i=1}^{2D_L - 2} m(l_i) > d_n,
$$

$$
d_{n-1} = D_R \cdot d_n - (D_R - 1) \cdot m(r_0) - \sum_{i=1}^{2D_L - 2} m(r_i) \geq d_n,
$$

where $m(q) \geq 0$ is the multiplicity of a point q as a base-point of Λ_n . We order the points l_1, \ldots, l_{2D_L-2} so that $m(l_i) \geq m(l_{i+1})$ for each $i \geq 1$ and that if l_i is infinitely near to l_j then $i > j$, and we do the same for r_1, \ldots, r_{2D_R-2} . With this order and the above inequalities, we find

(1)
$$
m(l_0) + m(l_1) + m(l_2) > d_n,
$$

$$
m(r_0) + m(r_1) + m(r_2) \geq d_n.
$$

(a) Suppose that $m(l_0) \geq m(l_1)$ and $m(r_0) \geq m(r_1)$. We choose a point q in the set $\{l_1, l_2, r_1, r_2\} \setminus \{l_0, r_0\}$ with the maximal multiplicity $m(q)$, and so that q is a proper point of the plane or infinitely near to l_0 or r_0 (which are distinct proper points of the plane). We now prove that

(2)
$$
m(l_0) + m(r_0) + m(q) > d_n.
$$

If $l_1 = r_0$, $m(q) \ge m(l_2)$ and $m(l_0) + m(r_0) + m(q) \ge m(l_0) + m(l_1) + m(l_2) > d_n$ by [\(1\)](#page-2-0). If $l_1 \neq r_0$, $m(q) \geq m(l_1) \geq m(l_2)$ so $m(l_0) + m(q) > 2d_n/3$. Since $m(r_0) \geq m(r_1) \geq m(r_2)$, we have $m(r_0) \geq d_n/3$, and the inequality [\(2\)](#page-2-1) is clear.

Because of Inequality [\(2\)](#page-2-1), the points l_0, r_0 and q are not aligned, and there exists a quadratic map $\theta \in \mathbf{J}$ with base-points l_0, r_0, q (recall that $r_0 = p_1$ is the point associated to the pencil of **J**). Moreover, the degree of $\theta(\Lambda_n)$ is $2d_n-m(l_0)-m(r_0)$ $m(q) < d_n$. Recall that $a_{n+1} \in \mathbf{A}$ sends l_0 onto $r_0 = p_1$. Choosing $\nu \in \mathbf{A} \cap \mathbf{J}$ which sends $a_{n+1}(r_0)$ onto l_0 and replacing respectively a_{n+1} and j_{n+1} by νa_{n+1} and

${\rm J\acute{E}R\acute{E}MY\,\, BLANC}$

 $j_{n+1}\nu^{-1}$, we can assume that a_{n+1} exchanges l_0 and r_0 . Using Lemma [1,](#page-1-0) we write $\theta' = a_{n+1}\theta(a_{n+1})^{-1} \in \mathbf{J}$ and obtain the following equality modulo the relation $\sigma\tau = \tau\sigma$:

$$
j_{n+1}a_{n+1}j_n = j_{n+1}a_{n+1}\theta^{-1}(\theta j_n) = (j_{n+1}(\theta')^{-1})a_{n+1}(\theta j_n),
$$

and both $(j_{n+1}(\theta')^{-1})$ and (θj_n) belong to **J**, but $a_{n+1} \in \mathbf{A}$. Since $\theta(\Lambda_n)$ has degree $\langle d_n,$ this rewriting decreases the pair (D, k) .

(b) Suppose now that we are in a "bad case" where $m(l_0) < m(l_1)$ or $m(r_0) <$ $m(r_1)$. We now prove that it is possible to change the writing of f in the amalgamated product (modulo the relation) without changing (D, k) but reversing the inequalities; we will thus be able to go back to the "good case" already studied in (a) to conclude.

Assume first that $m(r_1) > m(r_0)$. This implies that r_1 is a proper point of the plane, and that there exists a quadratic map $\theta \in \mathbf{J}$ with base-points $p_1 = r_0, r_1, r_2$. Since these three points are base-points of $(j_n)^{-1}$, the degree of $\theta j_n \in \mathbf{J}$ is equal to the degree of $j_n \in \mathbf{J}$ minus 1.

Taking $\nu \in A$ which exchanges r_0 and r_1 , and applying Lemma [1](#page-1-0) we write $\theta' = \nu \theta \nu^{-1} \in \mathbf{J}$ and obtain the following equality modulo the relation $\sigma \tau = \tau \sigma$:

$$
a_{n+1}j_n = (a_{n+1}\nu^{-1})\nu\theta^{-1}(\theta j_n) = (a_{n+1}\nu^{-1})(\theta')^{-1}\nu(\theta j_n),
$$

and both θ' and (θj_n) belong to **J**, but $(a_{n+1}\nu^{-1})$ and ν belong to **A**. This rewriting replaces

$$
(j_1,\ldots,j_{n-1},j_n,j_{n+1},\ldots,j_r)
$$
 with $(j_1,\ldots,j_{n-1},\theta j_n,(\theta')^{-1},j_{n+1},\ldots,j_r),$
 $(\Lambda_0,\ldots,\Lambda_{n-1},\Lambda_n,\Lambda_{n+1},\ldots,\Lambda_r)$ with $(\Lambda_0,\ldots,\Lambda_{n-1},\theta(\Lambda_n),\nu(\Lambda_n),\Lambda_{n+1},\ldots,\Lambda_r).$

The degree of $\theta(\Lambda_n)$ is equal to $2d_n-m(r_0)-m(r_1)-m(r_2) \leq d_n$, and the degree of $\nu(\Lambda_n)$ is d_n . The new sequence has thus the same D, n is replaced with $n+1$, and k stays the same since $\deg((\theta')^{-1})-1+\deg(\theta j_n)-1=2-1+\deg(\theta j_n)-1=\deg(j_n)-1.$ The system Λ_n being replaced with $\nu(\Lambda_n)$, where $\nu \in \mathbf{A}$ exchanges r_0 and r_1 , the multiplicity of r_0 as a base-point of $\nu(\Lambda_n)$ is now the biggest among the base-points of θ' . In the new sequence, we have $m(r_0) > m(r_1)$ instead of $m(r_1) > m(r_0)$.

If $m(l_1) > m(l_0)$, the same kind of replacement exchanges the points l_0 and l_1 .

We can thus go back to case (a) after having made one or two replacements. This achieves the proof.

REFERENCES

- [Giz] M. Kh. Gizatullin, Defining relations for the Cremona group of the plane, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), 909-970; English transl. in Math. USSR Izv. 21 (1983).
- [Isk1] V. A. Iskovskikh, Generators and relations in a two-dimensional Cremona group. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1983, no. 5, 43–48. English transl. in Moscow Univ. Math. Bull. 38 (1983), no. 5, 56–63.
- [Isk2] V. A. Iskovskikh, Proof of a theorem on relations in the two-dimensional Cremona group. Uspekhi Mat. Nauk 40 (1985), no. 5 (245), 255–256. English transl. in Russian Math. Surveys 40 (1985), no. 5, 231–232

[Sha] I.R. Shafarevich, Algebraic surfaces, Proc. Steklov Inst. Math. 75 (1967).

E-mail address: Jeremy.Blanc@unibas.ch