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SIMPLE RELATIONS IN THE CREMONA GROUP

JEREMY BLANC

Let k be any fixed algebraically closed field. The Cremona group Bir(P?) is the
group of birational transformations of the projective plane P? = P2

The classical Noether-Castelnuovo Theorem says that Bir(P?) is generated by
the group Aut(P?) = PGL(3,k), that we will denote by A, and by the standard
quadratic transformation

o (X:Y:2)--»(YZ:XZ:XY).

For a proof which is valid over any algebraically closed field (in particular in any
characteristic), see for example [Shal Chapter V, §5, Theorem 2, page 100].

A presentation of Bir(IP?) was given in [Giz]. The generators are all the quadratic
transformations of the plane (among them, all elements of the form ajoas, where
ai,az € A), and the relations are all those of the form ¢1¢g2g3 = 1 where ¢; is
a quadratic map. The proof is quite long and uses many sophisticated tools of
algebraic geometry, such as cell complexes associated to rational surfaces.

Another presentation was given in [[sk2] (and announced in [Isk1]). The surface
taken here is P! x P!, and the generators used are the group Aut(P! x P') and the de
Jonquieres group J of birational maps of P! x P! which preserve the first projection
(see below). There is only one relation in the amalgamated product of these two
groups, which is (p7)% = o, where p = (2,y) — (z,2/y) and 7 = (z,y) — (y,2) in
local coordinates. The proof is much shorter than the one of [Giz], and the number
of relations is also much smaller, but everything is now on Bir(P! x P!). There
is also some gap in the proof (observed by S. Lamy): the author implicitly uses
relations of the form (p'7)? = ¢’ where p’ has base-points infinitely near, without
proving that they are generated by the first one (a fact not so hard to prove).

In this short note, we give a new presentation of the Cremona group, which are
as simple as the one of [[sk2], but stays on P2. The proof is also very short, and
is in fact strongly inspired from the one of [Isk2]. We take care of infinitely near
points, and translate the idea of Iskovskikh from P! x P! to P?, where it becomes
simpler. We only use classical tools of plane birational geometry (base-points and
blow-ups), as mathematicians of the X7 X*" century did, and as in [[sk2].

The de Jonquicres group, that we will denote by J, is the subgroup of Bir(P?)
consisting of elements which preserve the pencil of lines passing through p; = (1 :
0:0). This group can be viewed in local coordinates ¢ = X/Z and y = Y/Z as

( “ b ) € PGL(2,k),
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It is thus naturally isomorphic to PGL(2, k(z)) x PGL(2, k), where PGL(2,k) =
Aut(P!) acts on PGL(2, k(z)) via its action on k(x) = k(P!).

Since o € J, the group Bir(P?) is generated by A and J. The aim of this note is
to prove the following result:

Theorem 1. The Cremona group Bir(P?) is the amalgamated product of A =
Aut(P?) and J along their intersection, divided by one relation, which is

oT = TO,
where 7 € A is given byt = (X:Y: Z)—» (Y : X : 2).

Since o1 = 70 is easy to verify, it suffices to prove that no other relation holds.
We prove this after proving the following simple lemma.

Lemma 1. If0 € J is a quadratic map having py = (1 : 0: 0) and q as base-points,
where q is a proper point of P2\{p1}, and v € A exchanges p1 and q, the map
0’ = vOv~! belongs to I and the relation

vt = (0"t
is generated by the relation ot = 1o in the amalgamated product of A and J.

Proof of Lemma[d. The relations ¢ = vfr—! and v~ = (§")~'v are clearly equiv-
alent. In particular, the result is invariant under conjugation of both # and v
by an element of A N J. Choosing an element in A N J which sends g onto
p2 = (0 : 1 :0), we can assume that ¢ = ps. Then v is equal to ar, where
T=(X:Y:Z2)— (Y :X:Z)and a is an element of A NJ which fixes po. We can
thus assume that v = 7. We study two cases separately, depending on the number
of proper base-points of 6.

(a) Suppose that 6 has exactly three proper base-points, which means that 6§ =
ajoas for some a1, as € ANJ. This yields the following equality in the amalgamated
product:
= ray0a,m = (rarm V) (ror ) (TagT ).
1

TOT

This implies that 767" is equal to an element of J modulo the relation o7 = 70,
and yields the result.

(b) Suppose now that 6 has only two proper base-points, p1, p2, and that its third
base-point, is infinitely near to p; for some ¢ € {1,2}. This means that § = a1v;a9

for some a1,a2 € ANJ, where vy, v, are the following quadratic involutions:
vi: (X:Y:2)--» (XY :2%2:YZ),
vo: (X:Y:2Z)--» (Z%2:XY:X2).
Denoting by p1, p2 € AN J the maps
p: (X:Y:Z2)--» (X:Z-Y:2),
p2: (X:Y:Z)--» (Z-X:Y:2),
we have v; = p;op;op; in J. As above, this yields the following equality:

= (rarm Y (rpir D (ror ) (rpir ) (ror ) (rpim ) (TagT ).

TOT
Using o7 = 7o and the fact that 7p;77! = p; in A, with j = 3 — 4, we obtain
ror ! = (rayt N (pjopiop;)(Tath) = (rarm Vv (Tast ™).

So 797! is again equal to an element of J modulo the relation o7 = 70. O
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Proof of Theorem[d. Taking an element f in the amalgamated product A *angy J
which corresponds to the identity map of Bir(P?), we have to prove that f is the
identity in the amalgamated product, modulo the relation o7 = 70.
We write f = j.a,...j1a1 where a; € A, j; € Jfori=1,...,n (maybe trivial).
We denote by Ag the linear system of lines of the plane and for i =1,...,n, we
denote by A; the linear system j;a; . ..j1a1(Ag), and by d; its degree. We define

di = D} and k = zm: (deg(ji) - 1).

D = max {di

i=1,...,r},n=max{i

When D = 1, each j; belongs to A, and the word is equal to an element of A in the
amalgamated product; since A embeds into Bir(P?), this case is clear. We can thus
assume that D > 1 and prove the result by induction on the pairs (D, k), ordered
lexicographically.

If j,, belongs to A, we replace a,11jna, by its product in A; this does not
change the pair (D, k) but decreases n by 1. If j,11 belongs to A, a similar
replacement decreases r by 1 without changing the pair (D, k). We can thus assume
that jn, jn+1 € J\A and that a,4+1 € A\J, which means that a,11(p1) # p1 (recall
that p; = (1:0:0) is the base-point of the pencil associated to J).

The system A,y1 = jnt1ant1(Ay) has degree dpy1 < dp, = D, and A,y =
(@) (jn) "1 (Ay) has degree d,,—1 < d,,. The maps jni1,jn € J\A have degree Dy
and Dy, respectively, for some integers D, Dy, > 2. The points lg = (an41) " *(p1) #
p1 and 79 = p; are base-points of respectively j,1a,+1 and (a,)"t(j,) ! of mul-
tiplicity Dy, — 1 and Dg — 1. Writing l1,...,lap,—2 and 71,...,72p,—2 the other
base-points of these two maps, the linear systems A, 1 and A,,_; have respectively
degree

dnsr = Dp-dy—(Dp—1)-m(lo) = X" 2ml) > dn,

dn—l = DR . dn — (DR — 1) . m(ro) — Z?LR727’TL(T‘Z‘) Z dn,
where m(q) > 0 is the multiplicity of a point ¢ as a base-point of A,,. We order
the points l1,...,lap, —2 so that m(l;) > m(l;41) for each i > 1 and that if I; is
infinitely near to /; then ¢ > j, and we do the same for ry,...,72p,—2. With this
order and the above inequalities, we find
(1) m(lo) —l—m(ll) +m(12) > d,,

m(ro) +m(r1) + m(ra) > dp.

(a) Suppose that m(lp) > m(ly) and m(rg) > m(r1). We choose a point ¢ in
the set {l1, 12,71, 72}\{lo, 70} with the maximal multiplicity m(q), and so that ¢ is
a proper point of the plane or infinitely near to ly or ro (which are distinct proper
points of the plane). We now prove that

(2) m(lo) + m(ro) + m(q) > dy.

If I3 = ro, m(q) > m(l2) and m(lp) + m(ro) + m(q) > m(lo) + m(ly) + m(l2) > d,
by @). If Iy # 7o, m(q) > m(ly) > m(lz) so m(ly) + m(q) > 2d,/3. Since
m(rg) > m(r1) > m(re), we have m(rg) > d, /3, and the inequality (2] is clear.
Because of Inequality (2]), the points Iy, ¢ and ¢ are not aligned, and there exists
a quadratic map 6§ € J with base-points ly, 79, ¢ (recall that ro = pp is the point
associated to the pencil of J). Moreover, the degree of 6(Ay,) is 2d, —m(lg) —m(ro)—
m(q) < d,. Recall that a,41 € A sends ly onto g = p;. Choosing ¥ € ANJ which
sends an4+1(rp) onto lp and replacing respectively a,+1 and jn+1 by va,+1 and
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Jna1v ™Y, we can assume that a, 1 exchanges lp and 7 . Using Lemmal[ll we write
0 = any10(ani1)”t € J and obtain the following equality modulo the relation
oT =TO:

jn-i-la’n-i-ljn = jn+1an+1971(9jn) = (jn-i—l(e/)il)an-i-l(ejn)?

and both (j,41(6’)~%) and (0j,) belong to J, but a,,1 € A. Since §(A,) has
degree < d,,, this rewriting decreases the pair (D, k).

(b) Suppose now that we are in a ”bad case” where m(lp) < m(l1) or m(rg) <
m(r1). We now prove that it is possible to change the writing of f in the amal-
gamated product (modulo the relation) without changing (D, k) but reversing the
inequalities; we will thus be able to go back to the ”good case” already studied in
(a) to conclude.

Assume first that m(r1) > m(ro). This implies that 1 is a proper point of the
plane, and that there exists a quadratic map 6 € J with base-points p; = 7,71, 2.
Since these three points are base-points of (4, )™, the degree of 05, € J is equal to
the degree of j, € J minus 1.

Taking v € A which exchanges 7o and r;, and applying Lemma [I we write
0’ = vhv~! € J and obtain the following equality modulo the relation o7 = 70:

Un41Jn = (anJeril)Veil(ojn) = (an+1yil)(9/)7ly(9]‘n)a
and both ¢ and (j,) belong to J, but (a,.1v~!) and v belong to A. This
rewriting replaces

(jla"'ajnflvjnvjnJrla"'va) with (jlv"'ajnflvojnv(ol)ilajnﬂLla'"ajT)a
(AQ, e ,An_l,An, An+1, ce ,AT) with (AQ, ce ,An_l, H(An), V(An), An+1, e ,AT).

The degree of (A,,) is equal to 2d,, —m(rg) —m(r1) —m(r2) < d,, and the degree of
v(Ay,) is d,. The new sequence has thus the same D, n is replaced with n+1, and &
stays the same since deg((0’) ) —1+deg(0j,)—1 = 2—1+deg(6j,)—1 = deg(j,)—1.
The system A,, being replaced with v(A,,), where v € A exchanges ry and ry, the
multiplicity of 7y as a base-point of v(A,,) is now the biggest among the base-points
of #'. In the new sequence, we have m(ro) > m(r1) instead of m(r1) > m(ro).

If m(ly) > m(ly), the same kind of replacement exchanges the points Iy and .

We can thus go back to case (a) after having made one or two replacements.
This achieves the proof. O
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