SPECTRAL TRIPLES FOR FINITELY PRESENTED GROUPS INDEX 1

SÉBASTIEN PALCOUX

Abstract

Using generalized Cayley graphs and Clifford algebras, we are able to give, for a large class of finitely presented groups, a uniform construction of spectral triples with D_{+}of index 1.

Contents

1. Introduction 1
2. Basic definitions 2
3. Geometric construction 2
4. Clifford algebra 4
5. Dirac operator

References

1. Introduction

In this paper, we define even θ-summable spectral triples for a large class of finitely presented groups such that D_{+}is index 1 . We just generalize the unbounded version of the construction of the Fredholm module for the free group given by Connes [1] and M. Pimsner-Voiculescu [5]. For so, we use the Clifford algebra in the same spirit that Julg-Valette do in [4]. We also use topics in geometric group theory as a generalized Cayley graph.

[^0]
2. Basic definitions

Definition 2.1. A spectral triple (\mathcal{A}, H, D) is given by a unital \star-algebra \mathcal{A} representated on the Hilbert space H, and an unbounded operator D, called the Dirac operator, such that:
(1) D is self-adjoint.
(2) $\left(D^{2}+I\right)^{-1}$ is compact.
(3) $\{a \in \mathcal{A} \mid[D, a] \in B(H)\}$ is dense in \mathcal{A}.

See the article [6] of G. Skandalis, dedicated to A. Connes and spectral triple.
Definition 2.2. A group Γ is finitely presented if it exists a finite generating set S and a finite set of relations R such that $\Gamma=\langle S \mid R\rangle$. We always take S equals to S^{-1} and the identity element $e \notin S$ (see [3] for more details).

3. Geometric construction

Definition 3.1. Let Γ_{n} be the set of irreducible n-blocks, defined by induction:

- $\Gamma_{0}=\Gamma$.
- $\Gamma_{1}:=\{\{g, g s\} \mid g \in \Gamma, s \in S\}$

An $(n+2)$-block is a finite set a of $(n+1)$-blocks such that:
$\forall b \in a, \forall c \in b, \exists!b^{\prime} \in a$ such that $b \cap b^{\prime}=\{c\}$.
Let a, a^{\prime} be n-blocks then the commutative and associative composition:

$$
a \cdot a^{\prime}:=a \triangle a^{\prime}=\left(a \cup a^{\prime}\right) \backslash a \cap a^{\prime}
$$

gives also an n-block if it's non empty (we take $n \neq 0$).
Let $n>1$, an n-block $a^{\prime \prime}$ is called irreducible if $\forall a, a^{\prime} n$-blocks:
(1) $a^{\prime \prime}=a \cdot a^{\prime} \Rightarrow \operatorname{card}(a)$ or $\operatorname{card}\left(a^{\prime}\right) \geq \operatorname{card}\left(a^{\prime \prime}\right)$
(2) $\forall b \in a^{\prime \prime}, b$ is a irreducible $(n-1)$-block.

- Γ_{n+2} is the set of irreducible $(n+2)$-blocks.

Note that if $b \in \Gamma_{n}$, we call n the dimension of b.
Definition 3.2. An n-block is called admissible if it decomposes into irreducibles.
Example 3.3. Let $\mathbb{Z}=\left\langle s^{ \pm 1} \mid\right\rangle$ then $a=\left\{e, s^{10}\right\}$ is an admissible 1-block because $a=\{e, s\} .\left\{s, s^{2}\right\} \ldots\left\{s^{9}, s^{10}\right\}$; but, $b=\left\{\{e, s\},\left\{e, s^{-1}\right\},\left\{s^{-1}, s\right\}\right\}$ is a non-admissible 2-block, because there is no irreducible 2-block in this case.
Remark 3.4. The graph with vertices Γ_{0} and edges Γ_{1} is the Cayley graph \mathcal{G}.
Remark 3.5. Let a be an n-block then $a . a=\emptyset$ and if $a=\left\{b_{1}, . ., b_{r}\right\}$ then $b_{i}=b_{1} . b_{2} \ldots b_{i-1} . b_{i+1} \ldots b_{r}$ and $b_{1} . b_{2} \ldots b_{r}=\emptyset$.
Remark 3.6. $\Gamma_{n+1} \neq \emptyset$ iff $\exists r>1 ; a_{1}, \ldots, a_{r} \in \Gamma_{n}$ all distincts with $a_{1} \ldots a_{r}=\emptyset$.

SPECTRAL TRIPLES FOR FINITELY PRESENTED GROUPS
Remark 3.7. Let $\Gamma=\langle S \mid R\rangle$ be a finitely presented group, then $\exists N$ such that $\Gamma_{N} \neq \emptyset$ and $\forall n>N, \Gamma_{n}=\emptyset$. In fact $N \leq \operatorname{card}(S)$

Examples 3.8. For $\mathbb{F}_{r}=\left\langle s_{1}^{ \pm 1}, \ldots, s_{r}^{ \pm 1} \mid\right\rangle$, we have $N=1$.
For $\mathbb{Z}^{r}=\left\langle s_{1}^{ \pm 1}, \ldots, s_{r}^{ \pm 1} \mid s_{i} s_{j} s_{i}^{-1} s_{j}^{-1}, i, j=1, \ldots, r\right\rangle$, we have $N=r$.
Here an n-block $(n \leq r)$ is just an n-dimensional hypercube.
Definition 3.9. We define the action of Γ on Γ_{n} recursively:

- Γ acts on $\Gamma_{0}=\Gamma$ as: $\quad u_{g}: h \rightarrow g . h$ with $g, h \in \Gamma$.
- Action on $\Gamma_{n+1}: \quad u_{g}: a \rightarrow g \cdot a=\{g . b \mid b \in a\}$ with $g \in \Gamma, a \in \Gamma_{n+1}$.

Note that the action is well-defined: $g \cdot \Gamma_{n}=\Gamma_{n}, \forall g \in \Gamma$.
Definition 3.10. Let a and b be blocks, then we say that $b € a$ if $b=a$ or if $b \in a$ or if $\exists c \in a$ such that $b € c$ (recursive definition).

Definition 3.11. Let $n>1$ then an n-block c is connected if $\forall b \subset c$:
' b is an n-block' $\Rightarrow b=c$.
Definition 3.12. An n-block b is called maximal if there is no $(n+1)$-block c with $b \in c$. We note $\boldsymbol{\Gamma}_{\max }$ the set of maximal irreducible blocks.

Example 3.13. Let $\Gamma=\mathbb{Z}^{2} \star \mathbb{Z}=\left\langle s_{1}^{ \pm 1}, s_{2}^{ \pm 1}, s_{3}^{ \pm 1} \mid s_{1} s_{2} s_{1}^{-1} s_{2}^{-1}\right\rangle$, then $\left\{e, s_{3}\right\}$ is a maximal 1-block, $\left\{\left\{e, s_{1}\right\},\left\{s_{1}, s_{1} s_{2}\right\},\left\{s_{1} s_{2}, s_{2}\right\},\left\{s_{2}, e\right\}\right\}$ is a maximal 2-block.

Definition 3.14. We define the block lenght $\ell($.$) as follows: let b$ be a block, then $\ell(b)$ is the minimal number of irreducible blocks decomposing a connected admissible block c with $e € c$ and, $b € c$ or $b \cap c \neq \emptyset$.

Definition 3.15. Let b be a block, then a sequence $\left(c_{1}, \ldots, c_{\ell(b)}\right)$ with $b € c_{1}$, $e € c_{\ell(b)}$, c_{i} irreducible and $c_{i} \cap c_{i+1} \neq \emptyset$ is called a geodesic block-path, from b to e beginning with c_{1}.

Lemma 3.16. There is a unique irreducible block $\beta(b)$ of minimal dimension, beginning a geodesic block-path from b to e.

Proof. We prove by contradiction: let $\beta(b)$ and $\beta^{\prime}(b)$ be two differents such blocks, then they are the same dimension n. But then there is an admissible connected block d of dimension $n+1$, with $\beta(b), \beta^{\prime}(b) \in d$ and $e € d$, such that d decomposes into strictly less than $\ell(b)$ irreducible blocks, contradiction.

Remark 3.17. Consider the group Γ and its finite presentation $\langle S \mid R\rangle$, then we can complete the presentation as follows: let T be a finite subset of Γ with $T \cap S=\emptyset, T=T^{-1}$ and $e \notin T$, let $S^{\prime}=T \cup S$ an amplified generating set and $R^{\prime}=R \cup\{t=\bar{t} \mid\}$ where \bar{t} is t considered as a generator. Then $\Gamma=\left\langle S^{\prime} \mid R^{\prime}\right\rangle$.

Lemma 3.18. We can choose T such that if we build the blocks with the completed presentation $\left\langle S^{\prime} \mid R^{\prime}\right\rangle$, then every irreducible blocks are triangular, i.e. $\forall b \in \Gamma_{n}, \operatorname{card}(b)=n+1$. We call $\left\langle S^{\prime} \mid R^{\prime}\right\rangle$ a triangularized presentation.

Example 3.19. The complete triangularization: let $\Gamma=\langle S \mid R\rangle$ be a finitely presented group, then Γ acts on $\Gamma_{\max }$ (def. 3.9, 3.12); there are only finitely many orbits O_{1}, \ldots, O_{r}; choose $b_{i} \in O_{i}$; let $E_{i}=\left\{g \in \Gamma \mid g € b_{i}\right\}$; let $T_{i}=$ $\left\{g h^{-1} \mid g, h \in E_{i}, g h^{-1} \notin S \cup\{e\}\right\}$. Then amplifying the generating set with $T=\bigcup T_{i}$, we obtain obviously a triangularization called the complete triangularization. Note that this process increases the maximal dimension of the blocks. Note that card (T) is finite because the group is finitely presented.

4. Clifford algebra

We first quickly recall here the notion of Clifford algebra, for a more detailed exposition, see the course of A. Wassermann [7].

Definition 4.1. For V a n-dimensional Hilbert space, define the exterior algebra $\Lambda(V)$ equals to $\oplus_{k=0}^{n} \Lambda^{k}(V)$ with $\Lambda^{0}(V)=\mathbb{C} \Omega$. We called Ω the vacuum vector. Recall that $v_{1} \wedge v_{2}=-v_{2} \wedge v_{1}$ so that $v \wedge v=0$.
Note that $\operatorname{dim}\left(\Lambda^{k}(V)\right)=C_{n}^{k}$ and $\operatorname{dim}(\Lambda(V))=2^{n}$.
Definition 4.2. Let α_{v} be the creation operator on $\Lambda(V)$ defined by:

$$
\alpha_{v}\left(v_{1} \wedge \ldots \wedge v_{r}\right)=v \wedge v_{1} \wedge \ldots \wedge v_{r} \text { and } \alpha_{v}(\Omega)=v
$$

Reminder 4.3. The dual α_{v}^{\star} is called the annihilation operator, then:
$\alpha_{v}^{\star}\left(v_{1} \wedge \ldots \wedge v_{r}\right)=\sum_{i=0}^{r}(-1)^{i+1}\left(v, v_{i}\right) v_{1} \wedge \ldots v_{i-1} \wedge v_{i+1} \wedge \ldots \wedge v_{r}$ and $\alpha_{v}^{\star}(\Omega)=0$
Reminder 4.4. Let $\gamma_{v}=\alpha_{v}+\alpha_{v}^{\star}$, then $\gamma_{v}=\gamma_{v}^{\star}$ and $\gamma_{v} \gamma_{w}+\gamma_{w} \gamma_{v}=2(v, w) I$.
Definition 4.5. The operators γ_{v} generate the Clifford algebra Cliff(V).
Note that the operators γ_{v} are bounded and that Cliff $(V) . \Omega=\Lambda(V)$.
Remark 4.6. V admits the orthonormal basis $\left(v_{a}\right)_{a \in I}$.
We will write γ_{a} instead of $\gamma_{v_{a}}$, so that $\left[\gamma_{a}, \gamma_{a^{\prime}}\right]_{+}=2 \delta_{a, a^{\prime}} I$.
Let Γ be a finitely presented group, with a triangularized presentation $\langle S \mid R\rangle$.
Definition 4.7. For any irreducible block c, let $\Delta_{c}=\left\{b \in \bigcup \Gamma_{n} \mid \beta(b)=c\right\}$, with $\beta(b)$ defined on lemma 3.16.

Definition 4.8. Let b, c be blocks such that $b € c € \beta(b)$ then we write $b \propto c$. In this case, we see that $\beta(b)=\beta(c)$, so that \propto is an order relation.

Lemma 4.9. For any irreducible block c with $\Delta_{c} \neq \emptyset, \Delta_{c}$ admits a unique minimal element $c_{\text {min }}$ with respect to \propto. Let m be the dimension of $c_{\text {min }}$;
denote by I_{c} the set of blocks of dimension $m+1$ in Δ_{c}; then Δ_{c} is in one-toone correspondence with the power set $\mathcal{P}\left(I_{c}\right)$; in particular, the cardinality of Δ_{c} is $2^{\text {dim(c)-m }}$ (see section 3 of Julg-Valette paper [4]).

Definition 4.10. We naturally identify $\ell^{2}\left(\Delta_{c}\right)$ with the exterior algebra $\Lambda\left(\ell^{2}\left(I_{c}\right)\right)$ on which operates the Clifford algebra Cliff $\left(\ell^{2}\left(I_{c}\right)\right)$ generated by γ_{a}, $a \in I_{c}$.

5. Dirac operator

Definition 5.1. We define the n-block lenght $\ell_{n}($.$) as follows: let be a$ block, then $\ell_{n}(b)$ is the minimal number of irreducible blocks decomposing a connected admissible n-dimensional block c with $e € c$ and, $b € c$ or $b \cap c \neq \emptyset$.

Definition 5.2. Let b be a block, then a sequence $\left(c_{1}, \ldots, c_{\ell_{n}(b)}\right)$ with $b € c_{1}$, $e € c_{\ell(b)}, c_{i} \in \Gamma_{n}$ and $c_{i} \cap c_{i+1} \neq \emptyset$ is called a geodesic \boldsymbol{n}-block-path, from b to e beginning with c_{1}.

Definition 5.3. For any irreducible block c with $\Delta_{c} \neq \emptyset$, let $n=\operatorname{dim}\left(c_{m i n}\right)+1$; for any $a \in I_{c}$ define $p_{a}(c)$ the number of geodesic n-block path from $c_{\text {min }}$ to e beginning with a; let $p(c)=\sum_{a \in I_{c}} p_{a}(c)$; let $\lambda_{a}=\frac{p_{a}(c)}{p(c)} \ell_{n}\left(c_{m i n}\right)$.

Definition 5.4. On $\ell^{2}\left(\Delta_{c}\right)=\Lambda\left(\ell^{2}\left(I_{c}\right)\right)$, define the Dirac operator D_{c} by:

$$
D_{c}=\sum_{a \in I_{c}} \lambda_{a} \cdot \gamma_{a}
$$

Remark 5.5. $\Delta_{e}=\{e\}, \ell^{2}\left(\Delta_{c}\right)=\mathbb{C} e_{1}, I_{e}=\emptyset$ and $D_{e}=0$.
Definition 5.6. Consider then the Hilbert space:

$$
\mathcal{H}=\bigoplus_{n} \ell^{2}\left(\Gamma_{n}\right)=\bigoplus_{c} \ell^{2}\left(\Delta_{c}\right)=\bigoplus_{c} \Lambda\left(\ell^{2}\left(I_{c}\right)\right)
$$

\mathbb{Z}_{2}-graded by the decomposition into even and odd dimensional blocks:

$$
\mathcal{H}=\mathcal{H}^{+} \oplus \mathcal{H}^{-}
$$

Define the unbounded selfadjoint operators $\mathcal{D}=\bigoplus_{c} D_{c}$.
Lemma 5.7. $D^{2}=\bigoplus_{c} D_{c}^{2}=\sum_{c}\left(\sum_{a \in I_{c}} \lambda_{a}^{2}\right) . p_{c}$ with p_{c}, projection on $\ell^{2}\left(\Delta_{c}\right)$.
Proposition 5.8. $\mathcal{D}_{+}: \mathcal{H}^{+} \rightarrow \mathcal{H}^{-}$is a Fredholm operator of index 1.
Proposition 5.9. $\left(\mathcal{D}^{2}+I\right)^{-1}$ is compact.
For $t>0$, the operator $e^{-t \mathcal{D}^{2}}$ is trass-class.
Definition 5.10. For any $g \in \Gamma$ and for any $s \in S$ define $p_{s}(g)$ the number of geodesic 1-block path from g to e beginning with $\{g, g s\}$; let $p(g)=\sum_{s \in S} p_{s}(g)$.

Definition 5.11. Let \mathcal{C} be the class of finitely presented groups Γ admitting a triangularized finite presentation $\langle S \mid R\rangle$ such that $\forall g \in \Gamma, \exists K_{g} \in \mathbb{R}_{+}$such that $\forall s \in S$ and $\forall h \in \Gamma$ (with $h, g h \neq e$):

$$
\left|\frac{p_{s}(g h)}{p(g h)}-\frac{p_{s}(h)}{p(h)}\right| \leq \frac{K_{g}}{\ell_{1}(h)}
$$

Examples 5.12. The class \mathcal{C} is stable by direct or free product, it contains $\mathbb{Z}^{n}, \mathbb{F}_{n}$, the finite groups, and probably every amenable or automatic groups (containing the hyperbolic groups, see [2]).

Proposition 5.13. Let Γ of class $\mathcal{C}, \mathcal{A}=C_{r}^{\star}(\Gamma)$ and \mathcal{D} as previously then: $\{a \in \mathcal{A} \mid[\mathcal{D}, a] \in B(\mathcal{H})\}$ is dense in \mathcal{A}.

Theorem 5.14. $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ is an even θ-summable spectral triple and \mathcal{D}_{+}is index 1. It then gives a non-trivial element for the K-homology of \mathcal{A}.

References

[1] A. Connes, Noncommutative differential geometry. Inst. Hautes tudes Sci. Publ. Math. No. 62 (1985), 257360.
[2] D. Epstein, J. Cannon, D. Holt, S. Levy, M. Paterson, W. Thurston, Word processing in groups. Jones and Bartlett Publishers, Boston, MA, 1992.
[3] P. de la Harpe, Topics in geometric group theory. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000.
[4] P. Julg, A. Valette, Fredholm modules associated to Bruhat-Tits buildings. Miniconferences on harmonic analysis and operator algebras (Canberra, 1987), 143155, Proc. Centre Math. Anal. Austral. Nat. Univ., 16, Austral. Nat. Univ., Canberra, 1988.
[5] M. Pimsner, D. Voiculescu, K K-groups of reduced crossed products by free groups. J. Operator Theory 8 (1982), no. 1, 131156.
[6] G. Skandalis Géométrie non commutative d'après Alain Connes: la notion de triplet spectral. Gaz. Math. No. 94 (2002), 4451.
[7] A. Wassermann, Lecture notes on Atiyah-Singer index theorem, Lent 2010 course, http://www.dpmms.cam.ac.uk/~ajw/AS10.pdf

Institut de Mathématiques de Luminy, Marseille, France.
E-mail address: palcoux@iml.univ-mrs.fr, http://iml.univ-mrs.fr/~palcoux

[^0]: 2000 Mathematics Subject Classification. Primary 46L87. Secondary 20F65.
 Key words and phrases. non-commutative geometry; spectral triple; geometric group theory; Clifford algebra; Cayley graph; Dirac operator; finitely presented groups.

