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SPECTRAL TRIPLES FOR FINITELY PRESENTED GROUPS

INDEX 1

SÉBASTIEN PALCOUX

Abstract. Using generalized Cayley graphs and Clifford algebras, we are
able to give, for a large class of finitely presented groups, a uniform con-
struction of spectral triples with D+ of index 1.
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1. Introduction

In this paper, we define even θ-summable spectral triples for a large class
of finitely presented groups such that D+ is index 1. We just generalize the
unbounded version of the construction of the Fredholm module for the free
group given by Connes [1] and M. Pimsner-Voiculescu [5]. For so, we use the
Clifford algebra in the same spirit that Julg-Valette do in [4]. We also use
topics in geometric group theory as a generalized Cayley graph.
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2. Basic definitions

Definition 2.1. A spectral triple (A, H,D) is given by a unital ⋆-algebra A
representated on the Hilbert space H, and an unbounded operator D, called the
Dirac operator, such that:

(1) D is self-adjoint.
(2) (D2 + I)−1 is compact.
(3) {a ∈ A | [D, a] ∈ B(H)} is dense in A.

See the article [6] of G. Skandalis, dedicated to A. Connes and spectral triple.

Definition 2.2. A group Γ is finitely presented if it exists a finite generating
set S and a finite set of relations R such that Γ = 〈S | R〉. We always take S

equals to S−1 and the identity element e 6∈ S (see [3] for more details).

3. Geometric construction

Definition 3.1. Let Γn be the set of irreducible n-blocks, defined by induction:

• Γ0 = Γ.
• Γ1 := {{g, gs} | g ∈ Γ, s ∈ S}

An (n + 2)-block is a finite set a of (n+ 1)-blocks such that:

∀b ∈ a, ∀c ∈ b, ∃!b′ ∈ a such that b ∩ b′ = {c}.

Let a, a′ be n-blocks then the commutative and associative composition:

a.a′ := a△a′ = (a ∪ a′)\a ∩ a′

gives also an n-block if it’s non empty (we take n 6= 0).
Let n > 1, an n-block a′′ is called irreducible if ∀a, a′ n-blocks:

(1) a′′ = a.a′ ⇒ card(a) or card(a′) ≥ card(a′′)

(2) ∀b ∈ a′′, b is a irreducible (n− 1)-block.

• Γn+2 is the set of irreducible (n + 2)-blocks.

Note that if b ∈ Γn, we call n the dimension of b.

Definition 3.2. An n-block is called admissible if it decomposes into irre-
ducibles.

Example 3.3. Let Z = 〈s±1 | 〉 then a = {e, s10} is an admissible 1-block
because a = {e, s}.{s, s2}...{s9, s10}; but, b = {{e, s}, {e, s−1}, {s−1, s}} is a
non-admissible 2-block, because there is no irreducible 2-block in this case.

Remark 3.4. The graph with vertices Γ0 and edges Γ1 is the Cayley graph G.

Remark 3.5. Let a be an n-block then a.a = ∅ and if a = {b1, .., br} then
bi = b1.b2...bi−1.bi+1...br and b1.b2...br = ∅.

Remark 3.6. Γn+1 6= ∅ iff ∃r > 1; a1, ..., ar ∈ Γn all distincts with a1...ar = ∅.
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Remark 3.7. Let Γ = 〈S | R〉 be a finitely presented group,
then ∃N such that ΓN 6= ∅ and ∀n > N , Γn = ∅. In fact N ≤ card(S)

Examples 3.8. For Fr = 〈s±1
1 , ..., s±1

r | 〉, we have N = 1.
For Zr = 〈s±1

1 , ..., s±1
r | sisjs

−1
i s−1

j , i, j = 1, ..., r〉, we have N = r.
Here an n-block (n ≤ r) is just an n-dimensional hypercube.

Definition 3.9. We define the action of Γ on Γn recursively:

• Γ acts on Γ0 = Γ as: ug : h → g.h with g, h ∈ Γ.
• Action on Γn+1: ug : a → g.a = {g.b | b ∈ a} with g ∈ Γ, a ∈ Γn+1.

Note that the action is well-defined: g.Γn = Γn, ∀g ∈ Γ.

Definition 3.10. Let a and b be blocks, then we say that b e a if b = a or if
b ∈ a or if ∃c ∈ a such that b e c (recursive definition).

Definition 3.11. Let n > 1 then an n-block c is connected if ∀b ⊂ c:
‘b is an n-block’ ⇒ b = c.

Definition 3.12. An n-block b is called maximal if there is no (n+ 1)-block
c with b ∈ c. We note Γmax the set of maximal irreducible blocks.

Example 3.13. Let Γ = Z2 ⋆Z = 〈s±1
1 , s±1

2 , s±1
3 | s1s2s

−1
1 s−1

2 〉, then {e, s3} is a
maximal 1-block, {{e, s1}, {s1, s1s2}, {s1s2, s2}, {s2, e}} is a maximal 2-block.

Definition 3.14. We define the block lenght ℓ(.) as follows: let b be a block,
then ℓ(b) is the minimal number of irreducible blocks decomposing a connected
admissible block c with e e c and, b e c or b ∩ c 6= ∅.

Definition 3.15. Let b be a block, then a sequence (c1, ..., cℓ(b)) with b e c1,
e e cℓ(b), ci irreducible and ci∩ ci+1 6= ∅ is called a geodesic block-path, from
b to e beginning with c1.

Lemma 3.16. There is a unique irreducible block β(b) of minimal dimension,
beginning a geodesic block-path from b to e.

Proof. We prove by contradiction: let β(b) and β ′(b) be two differents such
blocks, then they are the same dimension n. But then there is an admissible
connected block d of dimension n+1, with β(b), β ′(b) ∈ d and e e d, such that
d decomposes into strictly less than ℓ(b) irreducible blocks, contradiction. �

Remark 3.17. Consider the group Γ and its finite presentation 〈S | R〉, then
we can complete the presentation as follows: let T be a finite subset of Γ with
T ∩S = ∅, T = T−1 and e 6∈ T , let S ′ = T ∪S an amplified generating set and
R′ = R ∪ {t = t̄ | } where t̄ is t considered as a generator. Then Γ = 〈S ′ | R′〉.
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Lemma 3.18. We can choose T such that if we build the blocks with the com-
pleted presentation 〈S ′ | R′〉, then every irreducible blocks are triangular, i.e.
∀b ∈ Γn, card(b) = n+ 1. We call 〈S ′ | R′〉 a triangularized presentation.

Example 3.19. The complete triangularization: let Γ = 〈S | R〉 be a finitely
presented group, then Γ acts on Γmax (def. 3.9, 3.12); there are only finitely
many orbits O1, ..., Or; choose bi ∈ Oi; let Ei = {g ∈ Γ | g e bi}; let Ti =
{gh−1 | g, h ∈ Ei, gh

−1 6∈ S ∪ {e}}. Then amplifying the generating set with
T =

⋃
Ti, we obtain obviously a triangularization called the complete trian-

gularization. Note that this process increases the maximal dimension of the
blocks. Note that card(T ) is finite because the group is finitely presented.

4. Clifford algebra

We first quickly recall here the notion of Clifford algebra, for a more detailed
exposition, see the course of A. Wassermann [7].

Definition 4.1. For V a n-dimensional Hilbert space, define the exterior al-
gebra Λ(V ) equals to ⊕n

k=0Λ
k(V ) with Λ0(V ) = CΩ. We called Ω the vacuum

vector. Recall that v1 ∧ v2 = −v2 ∧ v1 so that v ∧ v = 0.
Note that dim(Λk(V )) = Ck

n and dim(Λ(V )) = 2n.

Definition 4.2. Let αv be the creation operator on Λ(V ) defined by:

αv(v1 ∧ ... ∧ vr) = v ∧ v1 ∧ ... ∧ vr and αv(Ω) = v

Reminder 4.3. The dual α⋆
v is called the annihilation operator, then:

α⋆
v(v1 ∧ ... ∧ vr) =

∑r

i=0(−1)i+1(v, vi)v1 ∧ ...vi−1 ∧ vi+1 ∧ ... ∧ vr and α⋆
v(Ω) = 0

Reminder 4.4. Let γv = αv + α⋆
v, then γv = γ⋆

v and γvγw + γwγv = 2(v, w)I.

Definition 4.5. The operators γv generate the Clifford algebra Cliff(V ).
Note that the operators γv are bounded and that Cliff(V ).Ω = Λ(V ).

Remark 4.6. V admits the orthonormal basis (va)a∈I .
We will write γa instead of γva, so that [γa, γa′ ]+ = 2δa,a′I.

Let Γ be a finitely presented group, with a triangularized presentation 〈S | R〉.

Definition 4.7. For any irreducible block c, let ∆c = {b ∈
⋃

Γn | β(b) = c},
with β(b) defined on lemma 3.16.

Definition 4.8. Let b, c be blocks such that b e c e β(b) then we write b ∝ c.
In this case, we see that β(b) = β(c), so that ∝ is an order relation.

Lemma 4.9. For any irreducible block c with ∆c 6= ∅, ∆c admits a unique
minimal element cmin with respect to ∝. Let m be the dimension of cmin;
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denote by Ic the set of blocks of dimension m+ 1 in ∆c; then ∆c is in one-to-
one correspondence with the power set P(Ic); in particular, the cardinality of
∆c is 2

dim(c)−m (see section 3 of Julg-Valette paper [4]).

Definition 4.10. We naturally identify ℓ2(∆c) with the exterior algebra Λ(ℓ2(Ic))
on which operates the Clifford algebra Cliff(ℓ2(Ic)) generated by γa, a ∈ Ic.

5. Dirac operator

Definition 5.1. We define the n-block lenght ℓn(.) as follows: let b be a
block, then ℓn(b) is the minimal number of irreducible blocks decomposing a
connected admissible n-dimensional block c with e e c and, b e c or b ∩ c 6= ∅.

Definition 5.2. Let b be a block, then a sequence (c1, ..., cℓn(b)) with b e c1,
e e cℓ(b), ci ∈ Γn and ci ∩ ci+1 6= ∅ is called a geodesic n-block-path, from b

to e beginning with c1.

Definition 5.3. For any irreducible block c with ∆c 6= ∅, let n = dim(cmin)+1;
for any a ∈ Ic define pa(c) the number of geodesic n-block path from cmin to e

beginning with a; let p(c) =
∑

a∈Ic
pa(c); let λa =

pa(c)
p(c)

ℓn(cmin).

Definition 5.4. On ℓ2(∆c) = Λ(ℓ2(Ic)), define the Dirac operator Dc by:

Dc =
∑

a∈Ic

λa.γa

Remark 5.5. ∆e = {e}, ℓ2(∆c) = Ce1, Ie = ∅ and De = 0.

Definition 5.6. Consider then the Hilbert space:

H =
⊕

n

ℓ2(Γn) =
⊕

c

ℓ2(∆c) =
⊕

c

Λ(ℓ2(Ic))

Z2-graded by the decomposition into even and odd dimensional blocks:

H = H+ ⊕H−

Define the unbounded selfadjoint operators D =
⊕

cDc.

Lemma 5.7. D2 =
⊕

cD
2
c =

∑
c(
∑

a∈Ic
λ2
a).pc with pc, projection on ℓ2(∆c).

Proposition 5.8. D+ : H+ → H− is a Fredholm operator of index 1.

Proposition 5.9. (D2 + I)−1 is compact.

For t > 0, the operator e−tD2

is trass-class.

Definition 5.10. For any g ∈ Γ and for any s ∈ S define ps(g) the number of
geodesic 1-block path from g to e beginning with {g, gs}; let p(g) =

∑
s∈S ps(g).
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Definition 5.11. Let C be the class of finitely presented groups Γ admitting
a triangularized finite presentation 〈S | R〉 such that ∀g ∈ Γ, ∃Kg ∈ R+ such
that ∀s ∈ S and ∀h ∈ Γ (with h, gh 6= e):

|
ps(gh)

p(gh)
−

ps(h)

p(h)
| ≤

Kg

ℓ1(h)

Examples 5.12. The class C is stable by direct or free product, it contains
Zn, Fn, the finite groups, and probably every amenable or automatic groups
(containing the hyperbolic groups, see [2]).

Proposition 5.13. Let Γ of class C, A = C⋆
r (Γ) and D as previously then:

{a ∈ A | [D, a] ∈ B(H)} is dense in A.

Theorem 5.14. (A,H,D) is an even θ-summable spectral triple and D+ is
index 1. It then gives a non-trivial element for the K-homology of A.
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