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SPECTRAL TRIPLES FOR FINITELY PRESENTED GROUPS
INDEX 1
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ABSTRACT. Using generalized Cayley graphs and Clifford algebras, we are
able to give, for a large class of finitely presented groups, a uniform con-
struction of spectral triples with D of index 1.
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1. INTRODUCTION

In this paper, we define even #-summable spectral triples for a large class
of finitely presented groups such that D, is index 1. We just generalize the
unbounded version of the construction of the Fredholm module for the free
group given by Connes [I] and M. Pimsner-Voiculescu [5]. For so, we use the
Clifford algebra in the same spirit that Julg-Valette do in [4]. We also use
topics in geometric group theory as a generalized Cayley graph.
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2. BASIC DEFINITIONS

Definition 2.1. A spectral triple (A, H, D) is given by a unital x-algebra A
representated on the Hilbert space H, and an unbounded operator D, called the
Dirac operator, such that:

(1) D is self-adjoint.

(2) (D*+ I)~! is compact.

(3) {a € A | [D,a) € B(H)} is dense in A.
See the article [6] of G. Skandalis, dedicated to A. Connes and spectral triple.

Definition 2.2. A group I is finitely presented if it exists a finite generating
set S and a finite set of relations R such that I' = (S| R). We always take S
equals to S™' and the identity element e € S (see [3] for more details).

3. GEOMETRIC CONSTRUCTION

Definition 3.1. Let I, be the set of irreducible n-blocks, defined by induction:
oIy =1T.
e I'i:={{g,9s}|geT seS}
An (n + 2)-block is a finite set a of (n+ 1)-blocks such that:
Vb € a,Vc € b, € a such that bNb = {c}.
Let a,a’ be n-blocks then the commutative and associative composition:
a.d :==ald = (aUd)\and
gives also an n-block if it’s non empty (we take n #0).
Let n > 1, an n-block a” is called irreducible if Va,a' n-blocks:
(1) a" = a.a’ = card(a) or card(a’) > card(a”)
(2) Vb € a”, b is a irreducible (n — 1)-block.
o ', o is the set of irreducible (n + 2)-blocks.
Note that if b € I',,, we call n the dimension of b.

Definition 3.2. An n-block is called admaissible if it decomposes into irre-
ducibles.

Example 3.3. Let Z = (sT'|) then a = {e,s'°} is an admissible 1-block
because a = {e, s}.{s,s*}...{s%,s'%}; but, b = {{e,s},{e,s7'},{s7t, s}} is a
non-admissible 2-block, because there is no irreducible 2-block in this case.

Remark 3.4. The graph with vertices I'y and edges I'y is the Cayley graph G.

Remark 3.5. Let a be an n-block then a.a = () and if a = {by,..,b,} then
bi = bl.bg...bi_l.bi+1...br and bl.bg...br = @

Remark 3.6. ', # 0 iff Ir > 1;a4,...,a, € ', all distincts with a,...a, = 0.
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Remark 3.7. Let I' = (S| R) be a finitely presented group,
then AN such that Ty # 0 and ¥n > N, T, = 0. In fact N < card(S)

Examples 3.8. For F, = (s{', ..., s |), we have N = 1.
For 7" = (st ..., s | s,-sjsi_lsj_l,i,j =1,...,7), we have N =r.

Here an n-block (n < r) is just an n-dimensional hypercube.

Definition 3.9. We define the action of I' on T'), recursively:

o [' acts on Ty =T as: Ug:h — g.h with g,h €T

e Action on T, q: ug:a—ga={gblbea}l withgel,ael,;.
Note that the action is well-defined: g.I', =T, Vg € T

Definition 3.10. Let a and b be blocks, then we say that b€a if b = a or if
b € a orif Ic € a such that b€ c (recursive definition).

Definition 3.11. Let n > 1 then an n-block ¢ is connected if Vb C c:
‘b is an n-block’ = b = c.

Definition 3.12. An n-block b is called maximal if there is no (n+ 1)-block
c with b € c. We note I'max the set of mazimal irreducible blocks.

Example 3.13. Let I' = Z?x7Z = (si', s5', 53" | sys957's5 1), then {e,s3} is a
mazximal 1-block, {{e, s1},{s1, s152}, {5152, s2}, {s2,€}} is a mazimal 2-block.

Definition 3.14. We define the block lenght ((.) as follows: let b be a block,
then £(b) is the minimal number of irreducible blocks decomposing a connected
admissible block ¢ with e €c and, b€c orbNc # 0.

Definition 3.15. Let b be a block, then a sequence (ci, ..., cop)) with b€cy,
e € ¢y, ¢ wrreducible and c; M ey # () is called a geodesic block-path, from
b to e beginning with c;.

Lemma 3.16. There is a unique irreducible block B(b) of minimal dimension,
beginning a geodesic block-path from b to e.

Proof. We prove by contradiction: let 5(b) and '(b) be two differents such
blocks, then they are the same dimension n. But then there is an admissible
connected block d of dimension n+ 1, with 5(b), 5'(b) € d and e € d, such that
d decomposes into strictly less than ¢(b) irreducible blocks, contradiction. [

Remark 3.17. Consider the group I and its finite presentation (S | R), then
we can complete the presentation as follows: let T be a finite subset of I' with
TNS=0,T=T" ande g T, let S"=TUS an amplified generating set and
R = RU{t=1t|} wheret ist considered as a generator. Then T = (S"| R').
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Lemma 3.18. We can choose T' such that if we build the blocks with the com-
pleted presentation (S’ | R'), then every irreducible blocks are triangular, i.e.
Vb e, card(b) =n+1. We call (S| R') a triangularized presentation.

Example 3.19. The complete triangularization: let I' = (S| R) be a finitely
presented group, then I' acts on Uy, (def. [3.9, [3.12); there are only finitely
many orbits Oq,...,O,; choose b; € O;; let E; = {g € T'|g€b;}; let T, =
{gh™Y|g,h € E;,gh™* & SU{e}}. Then amplifying the generating set with
T = UT;, we obtain obviously a triangularization called the complete trian-
gularization. Note that this process increases the maximal dimension of the
blocks. Note that card(T) is finite because the group is finitely presented.

4. CLIFFORD ALGEBRA

We first quickly recall here the notion of Clifford algebra, for a more detailed
exposition, see the course of A. Wassermann [7].

Definition 4.1. For V' a n-dimensional Hilbert space, define the exterior al-
gebra A(V) equals to &p_,A*(V) with A°(V) = CQ. We called Q) the vacuum
vector. Recall that vy A veg = —v9 A vy so that v Av = 0.
Note that dim(A*(V)) = C* and dim(A(V)) = 2".
Definition 4.2. Let «, be the creation operator on A(V') defined by:

(V1 Ao Av) =v A A Ao and a,(2) = v

Reminder 4.3. The dual o is called the annihilation operator, then:

(v A Av) =D (1) (v, 0) v A v Aviga Ao A and ag5(Q2) = 0
Reminder 4.4. Let vy, = v, + o, then v, = 75 and vy Yw + VYo = 2(v, w)1.

Definition 4.5. The operators v, generate the Clifford algebra CUff(V').
Note that the operators 7y, are bounded and that CUf(V).QQ = A(V).

Remark 4.6. V' admits the orthonormal basis (vg)aer-
We will write 7y, instead of vy,, so that [Ya, Yar|+ = 204,01

Let I' be a finitely presented group, with a triangularized presentation (S | R).

Definition 4.7. For any irreducible block ¢, let A. = {b € JI',, | B(b) = ¢},
with B(b) defined on lemma [T 10,

Definition 4.8. Let b, ¢ be blocks such that b€ c € f(b) then we write b o c.
In this case, we see that f(b) = B(c), so that o is an order relation.

Lemma 4.9. For any irreducible block ¢ with A, # 0, A. admits a unique
minimal element i, with respect to oc. Let m be the dimension of Cpin;
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denote by I. the set of blocks of dimension m + 1 in A.; then A. is in one-to-
one correspondence with the power set P(I.); in particular, the cardinality of
A, is 2%m©=m (see section 3 of Julg-Valette paper [4]).

Definition 4.10. We naturally identify (*(A.) with the exterior algebra A(¢*(1..))
on which operates the Clifford algebra ClLiff(¢*(1.)) generated by 7a, a € I..

5. DIRAC OPERATOR

Definition 5.1. We define the n-block lenght 0,(.) as follows: let b be a
block, then £,(b) is the minimal number of irreducible blocks decomposing a
connected admissible n-dimensional block ¢ with e € c and, b€c or bNc # (.

Definition 5.2. Let b be a block, then a sequence (ci,...,cq, 1)) with b€cy,
e€cypy, ¢; €Iy and ¢; N ey # () is called a geodesic n-block-path, from b
to e beginning with c;.

Definition 5.3. For any irreducible block ¢ with A. # 0, let n = dim(Cpin)+1;
for any a € 1. define p,(c) the number of geodesic n-block path from ¢y, to e
beginning with a; let p(c) = Y ,c; Palc); let g = p;((cc)) Lo (Coin) -

Definition 5.4. On (?(A.) = A(¢*(1.)), define the Dirac operator D, by:
De=> Xaa
acl,
Remark 5.5. A, = {e}, (*(A.) = Cey, I, =0 and D, = 0.
Definition 5.6. Consider then the Hilbert space:

H=EPrr.) =P =Pacew)

Zo-graded by the decomposition into even and odd dimensional blocks:
H=H"OH"
Define the unbounded selfadjoint operators D = @, D..

Lemma 5.7. D*=@_D? =" (> .c; A2).p. with p., projection on (*(A,).

a€l.
Proposition 5.8. D, : HT — H~ is a Fredholm operator of index 1.

Proposition 5.9. (D? 4+ I)~! is compact.
Fort > 0, the operator e~P? s trass-class.

Definition 5.10. For any g € I' and for any s € S define ps(g) the number of
geodesic 1-block path from g to e beginning with {g, gs}; let p(9) = > e Ps(g)-
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Definition 5.11. Let C be the class of finitely presented groups I' admitting
a triangularized finite presentation (S| R) such that Vg € ', 3K, € R, such
that Vs € S and Vh € T (with h,gh # e):

|ps(gh> _ps(h) < Kg
plgh)  p(h) "~ Gi(h)
Examples 5.12. The class C is stable by direct or free product, it contains

7", F,, the finite groups, and probably every amenable or automatic groups
(containing the hyperbolic groups, see [2]).

Proposition 5.13. Let I' of class C, A= C*(I') and D as previously then:
{a € A | [D,a] € B(H)} is dense in A.

Theorem 5.14. (A, H,D) is an even §-summable spectral triple and D is
index 1. It then gives a non-trivial element for the K-homology of A.
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