SPECTRAL TRIPLES FOR FINITELY PRESENTED GROUPS INDEX 1

SÉBASTIEN PALCOUX

ABSTRACT. Using generalized Cayley graphs and Clifford algebras, we are able to give, for a large class of finitely presented groups, a uniform construction of spectral triples with D_+ of index 1.

CONTENTS

1.	Introduction	1
2.	Basic definitions	2
3.	Geometric construction	2
4.	Clifford algebra	4
5.	Dirac operator	5
References		6

1. INTRODUCTION

In this paper, we define even θ -summable spectral triples for a large class of finitely presented groups such that D_+ is index 1. We just generalize the unbounded version of the construction of the Fredholm module for the free group given by Connes [1] and M. Pimsner-Voiculescu [5]. For so, we use the Clifford algebra in the same spirit that Julg-Valette do in [4]. We also use topics in geometric group theory as a generalized Cayley graph.

2000 Mathematics Subject Classification. Primary 46L87. Secondary 20F65.

Key words and phrases. non-commutative geometry; spectral triple; geometric group theory; Clifford algebra; Cayley graph; Dirac operator; finitely presented groups.

S. PALCOUX

2. Basic definitions

Definition 2.1. A spectral triple (\mathcal{A}, H, D) is given by a unital *-algebra \mathcal{A} representated on the Hilbert space H, and an unbounded operator D, called the Dirac operator, such that:

- (1) D is self-adjoint.
- (2) $(D^2 + I)^{-1}$ is compact.
- (3) $\{a \in \mathcal{A} \mid [D, a] \in B(H)\}$ is dense in \mathcal{A} .

See the article [6] of G. Skandalis, dedicated to A. Connes and spectral triple.

Definition 2.2. A group Γ is finitely presented if it exists a finite generating set S and a finite set of relations R such that $\Gamma = \langle S | R \rangle$. We always take Sequals to S^{-1} and the identity element $e \notin S$ (see [3] for more details).

3. Geometric construction

Definition 3.1. Let Γ_n be the set of irreducible n-blocks, defined by induction:

- $\Gamma_0 = \Gamma$.
- $\Gamma_1 := \{\{g, gs\} \mid g \in \Gamma, s \in S\}$

An (n+2)-block is a finite set a of (n+1)-blocks such that:

$$\forall b \in a, \forall c \in b, \exists ! b' \in a \text{ such that } b \cap b' = \{c\}.$$

Let a, a' be n-blocks then the commutative and associative composition:

 $a.a' := a \triangle a' = (a \cup a') \backslash a \cap a'$

gives also an n-block if it's non empty (we take $n \neq 0$).

Let n > 1, an n-block a'' is called **irreducible** if $\forall a, a'$ n-blocks:

(1) $a'' = a.a' \Rightarrow card(a) \text{ or } card(a') \ge card(a'')$

(2) $\forall b \in a''$, b is a irreducible (n-1)-block.

• Γ_{n+2} is the set of irreducible (n+2)-blocks.

Note that if $b \in \Gamma_n$, we call n the **dimension** of b.

Definition 3.2. An *n*-block is called **admissible** if it decomposes into irreducibles.

Example 3.3. Let $\mathbb{Z} = \langle s^{\pm 1} | \rangle$ then $a = \{e, s^{10}\}$ is an admissible 1-block because $a = \{e, s\}, \{s, s^2\}, ..., \{s^9, s^{10}\}$; but, $b = \{\{e, s\}, \{e, s^{-1}\}, \{s^{-1}, s\}\}$ is a non-admissible 2-block, because there is no irreducible 2-block in this case.

Remark 3.4. The graph with vertices Γ_0 and edges Γ_1 is the Cayley graph \mathcal{G} .

Remark 3.5. Let *a* be an *n*-block then $a.a = \emptyset$ and if $a = \{b_1, ..., b_r\}$ then $b_i = b_1.b_2...b_{i-1}.b_{i+1}...b_r$ and $b_1.b_2...b_r = \emptyset$.

Remark 3.6. $\Gamma_{n+1} \neq \emptyset$ iff $\exists r > 1; a_1, ..., a_r \in \Gamma_n$ all distincts with $a_1...a_r = \emptyset$.

Remark 3.7. Let $\Gamma = \langle S \mid R \rangle$ be a finitely presented group, then $\exists N \text{ such that } \Gamma_N \neq \emptyset \text{ and } \forall n > N, \ \Gamma_n = \emptyset. \text{ In fact } N \leq card(S)$

Examples 3.8. For $\mathbb{F}_r = \langle s_1^{\pm 1}, ..., s_r^{\pm 1} | \rangle$, we have N = 1. For $\mathbb{Z}^r = \langle s_1^{\pm 1}, ..., s_r^{\pm 1} | s_i s_j s_i^{-1} s_j^{-1}, i, j = 1, ..., r \rangle$, we have N = r. Here an n-block $(n \leq r)$ is just an n-dimensional hypercube.

Definition 3.9. We define the action of Γ on Γ_n recursively:

- Γ acts on Γ₀ = Γ as: u_g : h → g.h with g, h ∈ Γ.
 Action on Γ_{n+1}: u_g : a → g.a = {g.b | b ∈ a} with g ∈ Γ, a ∈ Γ_{n+1}.

Note that the action is well-defined: $g.\Gamma_n = \Gamma_n, \forall g \in \Gamma$.

Definition 3.10. Let a and b be blocks, then we say that $b \in a$ if b = a or if $b \in a \text{ or if } \exists c \in a \text{ such that } b \in c \text{ (recursive definition).}$

Definition 3.11. Let n > 1 then an n-block c is connected if $\forall b \subset c$: 'b is an n-block' $\Rightarrow b = c$.

Definition 3.12. An *n*-block *b* is called **maximal** if there is no (n + 1)-block c with $b \in c$. We note Γ_{\max} the set of maximal irreducible blocks.

Example 3.13. Let $\Gamma = \mathbb{Z}^2 \star \mathbb{Z} = \langle s_1^{\pm 1}, s_2^{\pm 1}, s_3^{\pm 1} | s_1 s_2 s_1^{-1} s_2^{-1} \rangle$, then $\{e, s_3\}$ is a maximal 1-block, $\{\{e, s_1\}, \{s_1, s_1 s_2\}, \{s_1 s_2, s_2\}, \{s_2, e\}\}$ is a maximal 2-block.

Definition 3.14. We define the **block lenght** $\ell(.)$ as follows: let b be a block, then $\ell(b)$ is the minimal number of irreducible blocks decomposing a connected admissible block c with $e \in c$ and, $b \in c$ or $b \cap c \neq \emptyset$.

Definition 3.15. Let b be a block, then a sequence $(c_1, ..., c_{\ell(b)})$ with $b \in c_1$, $e \in c_{\ell(b)}, c_i \text{ irreducible and } c_i \cap c_{i+1} \neq \emptyset \text{ is called a geodesic block-path, from}$ b to e beginning with c_1 .

Lemma 3.16. There is a unique irreducible block $\beta(b)$ of minimal dimension, beginning a geodesic block-path from b to e.

Proof. We prove by contradiction: let $\beta(b)$ and $\beta'(b)$ be two differents such blocks, then they are the same dimension n. But then there is an admissible connected block d of dimension n+1, with $\beta(b), \beta'(b) \in d$ and $e \in d$, such that d decomposes into strictly less than $\ell(b)$ irreducible blocks, contradiction.

Remark 3.17. Consider the group Γ and its finite presentation $\langle S \mid R \rangle$, then we can complete the presentation as follows: let T be a finite subset of Γ with $T \cap S = \emptyset$, $T = T^{-1}$ and $e \notin T$, let $S' = T \cup S$ an amplified generating set and $R' = R \cup \{t = \overline{t} \mid \}$ where \overline{t} is t considered as a generator. Then $\Gamma = \langle S' \mid R' \rangle$.

INDEX 1

S. PALCOUX

Lemma 3.18. We can choose T such that if we build the blocks with the completed presentation $\langle S' | R' \rangle$, then every irreducible blocks are triangular, i.e. $\forall b \in \Gamma_n$, card(b) = n + 1. We call $\langle S' | R' \rangle$ a **triangularized presentation**.

Example 3.19. The complete triangularization: let $\Gamma = \langle S | R \rangle$ be a finitely presented group, then Γ acts on Γ_{max} (def. 3.9, 3.12); there are only finitely many orbits $O_1, ..., O_r$; choose $b_i \in O_i$; let $E_i = \{g \in \Gamma | g \in b_i\}$; let $T_i = \{gh^{-1} | g, h \in E_i, gh^{-1} \notin S \cup \{e\}\}$. Then amplifying the generating set with $T = \bigcup T_i$, we obtain obviously a triangularization called the complete triangularization. Note that this process increases the maximal dimension of the blocks. Note that card(T) is finite because the group is finitely presented.

4. Clifford Algebra

We first quickly recall here the notion of Clifford algebra, for a more detailed exposition, see the course of A. Wassermann [7].

Definition 4.1. For V a n-dimensional Hilbert space, define the exterior algebra $\Lambda(V)$ equals to $\bigoplus_{k=0}^{n} \Lambda^{k}(V)$ with $\Lambda^{0}(V) = \mathbb{C}\Omega$. We called Ω the vacuum vector. Recall that $v_{1} \wedge v_{2} = -v_{2} \wedge v_{1}$ so that $v \wedge v = 0$. Note that $\dim(\Lambda^{k}(V)) = C_{n}^{k}$ and $\dim(\Lambda(V)) = 2^{n}$.

Definition 4.2. Let α_v be the creation operator on $\Lambda(V)$ defined by: $\alpha_v(v_1 \wedge ... \wedge v_r) = v \wedge v_1 \wedge ... \wedge v_r$ and $\alpha_v(\Omega) = v$

Reminder 4.3. The dual α_v^{\star} is called the annihilation operator, then: $\alpha_v^{\star}(v_1 \wedge \ldots \wedge v_r) = \sum_{i=0}^r (-1)^{i+1}(v, v_i)v_1 \wedge \ldots v_{i-1} \wedge v_{i+1} \wedge \ldots \wedge v_r$ and $\alpha_v^{\star}(\Omega) = 0$ **Reminder 4.4.** Let $\gamma_v = \alpha_v + \alpha_v^{\star}$, then $\gamma_v = \gamma_v^{\star}$ and $\gamma_v \gamma_w + \gamma_w \gamma_v = 2(v, w)I$.

Definition 4.5. The operators γ_v generate the Clifford algebra Cliff(V). Note that the operators γ_v are bounded and that $Cliff(V).\Omega = \Lambda(V)$.

Remark 4.6. V admits the orthonormal basis $(v_a)_{a \in I}$. We will write γ_a instead of γ_{v_a} , so that $[\gamma_a, \gamma_{a'}]_+ = 2\delta_{a,a'}I$.

Let Γ be a finitely presented group, with a triangularized presentation $\langle S \mid R \rangle$.

Definition 4.7. For any irreducible block c, let $\Delta_c = \{b \in \bigcup \Gamma_n \mid \beta(b) = c\}$, with $\beta(b)$ defined on lemma 3.16.

Definition 4.8. Let b, c be blocks such that $b \in c \in \beta(b)$ then we write $b \propto c$. In this case, we see that $\beta(b) = \beta(c)$, so that α is an order relation.

Lemma 4.9. For any irreducible block c with $\Delta_c \neq \emptyset$, Δ_c admits a unique minimal element c_{min} with respect to α . Let m be the dimension of c_{min} ;

denote by I_c the set of blocks of dimension m + 1 in Δ_c ; then Δ_c is in one-toone correspondence with the power set $\mathcal{P}(I_c)$; in particular, the cardinality of Δ_c is $2^{\dim(c)-m}$ (see section 3 of Julg-Valette paper [4]).

Definition 4.10. We naturally identify $\ell^2(\Delta_c)$ with the exterior algebra $\Lambda(\ell^2(I_c))$ on which operates the Clifford algebra $Cliff(\ell^2(I_c))$ generated by γ_a , $a \in I_c$.

5. DIRAC OPERATOR

Definition 5.1. We define the *n*-block lenght $\ell_n(.)$ as follows: let *b* be a block, then $\ell_n(b)$ is the minimal number of irreducible blocks decomposing a connected admissible *n*-dimensional block *c* with $e \in c$ and, $b \in c$ or $b \cap c \neq \emptyset$.

Definition 5.2. Let b be a block, then a sequence $(c_1, ..., c_{\ell_n(b)})$ with $b \in c_1$, $e \in c_{\ell(b)}, c_i \in \Gamma_n$ and $c_i \cap c_{i+1} \neq \emptyset$ is called a **geodesic n-block-path**, from b to e beginning with c_1 .

Definition 5.3. For any irreducible block c with $\Delta_c \neq \emptyset$, let $n = dim(c_{min}) + 1$; for any $a \in I_c$ define $p_a(c)$ the number of geodesic n-block path from c_{min} to ebeginning with a; let $p(c) = \sum_{a \in I_c} p_a(c)$; let $\lambda_a = \frac{p_a(c)}{p(c)} \ell_n(c_{min})$.

Definition 5.4. On $\ell^2(\Delta_c) = \Lambda(\ell^2(I_c))$, define the Dirac operator D_c by:

$$D_c = \sum_{a \in I_c} \lambda_a . \gamma_a$$

Remark 5.5. $\Delta_e = \{e\}, \ \ell^2(\Delta_c) = \mathbb{C}e_1, \ I_e = \emptyset \ and \ D_e = 0.$

Definition 5.6. Consider then the Hilbert space:

$$\mathcal{H} = \bigoplus_{n} \ell^{2}(\Gamma_{n}) = \bigoplus_{c} \ell^{2}(\Delta_{c}) = \bigoplus_{c} \Lambda(\ell^{2}(I_{c}))$$

 \mathbb{Z}_2 -graded by the decomposition into even and odd dimensional blocks:

$$\mathcal{H}=\mathcal{H}^+\oplus\mathcal{H}^-$$

Define the unbounded selfadjoint operators $\mathcal{D} = \bigoplus_c D_c$.

Lemma 5.7. $D^2 = \bigoplus_c D_c^2 = \sum_c (\sum_{a \in I_c} \lambda_a^2) p_c$ with p_c , projection on $\ell^2(\Delta_c)$. **Proposition 5.8.** $\mathcal{D}_+ : \mathcal{H}^+ \to \mathcal{H}^-$ is a Fredholm operator of index 1.

Proposition 5.9. $(\mathcal{D}^2 + I)^{-1}$ is compact. For t > 0, the operator $e^{-t\mathcal{D}^2}$ is trass-class.

Definition 5.10. For any $g \in \Gamma$ and for any $s \in S$ define $p_s(g)$ the number of geodesic 1-block path from g to e beginning with $\{g, gs\}$; let $p(g) = \sum_{s \in S} p_s(g)$.

S. PALCOUX

Definition 5.11. Let C be the class of finitely presented groups Γ admitting a triangularized finite presentation $\langle S | R \rangle$ such that $\forall g \in \Gamma$, $\exists K_g \in \mathbb{R}_+$ such that $\forall s \in S$ and $\forall h \in \Gamma$ (with $h, gh \neq e$):

$$\left|\frac{p_s(gh)}{p(gh)} - \frac{p_s(h)}{p(h)}\right| \le \frac{K_g}{\ell_1(h)}$$

Examples 5.12. The class C is stable by direct or free product, it contains \mathbb{Z}^n , \mathbb{F}_n , the finite groups, and probably every amenable or automatic groups (containing the hyperbolic groups, see [2]).

Proposition 5.13. Let Γ of class C, $\mathcal{A} = C_r^{\star}(\Gamma)$ and \mathcal{D} as previously then: $\{a \in \mathcal{A} \mid [\mathcal{D}, a] \in B(\mathcal{H})\}$ is dense in \mathcal{A} .

Theorem 5.14. $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ is an even θ -summable spectral triple and \mathcal{D}_+ is index 1. It then gives a non-trivial element for the K-homology of \mathcal{A} .

References

- A. Connes, Noncommutative differential geometry. Inst. Hautes tudes Sci. Publ. Math. No. 62 (1985), 257360.
- [2] D. Epstein, J. Cannon, D. Holt, S. Levy, M. Paterson, W. Thurston, Word processing in groups. Jones and Bartlett Publishers, Boston, MA, 1992.
- [3] P. de la Harpe, *Topics in geometric group theory*. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000.
- [4] P. Julg, A. Valette, Fredholm modules associated to Bruhat-Tits buildings. Miniconferences on harmonic analysis and operator algebras (Canberra, 1987), 143155, Proc. Centre Math. Anal. Austral. Nat. Univ., 16, Austral. Nat. Univ., Canberra, 1988.
- [5] M. Pimsner, D. Voiculescu, KK-groups of reduced crossed products by free groups. J. Operator Theory 8 (1982), no. 1, 131156.
- [6] G. Skandalis Géométrie non commutative d'après Alain Connes: la notion de triplet spectral. Gaz. Math. No. 94 (2002), 4451.
- [7] A. Wassermann, Lecture notes on Atiyah-Singer index theorem, Lent 2010 course, http://www.dpmms.cam.ac.uk/~ajw/AS10.pdf

INSTITUT DE MATHÉMATIQUES DE LUMINY, MARSEILLE, FRANCE. *E-mail address*: palcoux@iml.univ-mrs.fr, http://iml.univ-mrs.fr/~palcoux

 $\mathbf{6}$