ELLIPTIC CURVES IN MODULI SPACE OF STABLE BUNDLES

XIAOTAO SUN

Dedicated to the memory of Eckart Viehweg

Abstract

Let M be the moduli space of rank 2 stable bundles with fixed determinant of degree 1 on a smooth projective curve C of genus $g \geq 2$. When C is generic, we show that any elliptic curve on M has degree (respect to anti-canonical divisor $-K_{M}$) at least 6 , and we give a complete classification for elliptic curves of degree 6 . Moreover, if $g>4$, we show that any elliptic curve passing through the generic point of M has degree at least 12 . We also formulate a conjecture for higher rank.

1. Introduction

Let C be a smooth projective curve of genus $g \geq 2$ and \mathcal{L} be a line bundle of degree d on C. Let $M:=\mathcal{S U}_{C}(r, \mathcal{L})^{s}$ be the moduli space of stable vector bundles on C of rank r and with fixed determinant \mathcal{L}, which is a smooth qusi-projective Fano variety with $\operatorname{Pic}(M)=\mathbb{Z} \cdot \Theta$ and $-K_{M}=2(r, d) \Theta$, where Θ is an ample divisor. Let B be a smooth projective curve of genus b. The degree of a curve $\phi: B \rightarrow M$ is defined to be $\operatorname{deg} \phi^{*}\left(-K_{M}\right)$. It seems quite natural to ask what is the lower bound of degree and to classify the curves of lowest degree.

When $B=\mathbb{P}^{1}$, we have determined all $\phi: \mathbb{P}^{1} \rightarrow M$ with lowest degree in [6] and all $\phi: \mathbb{P}^{1} \rightarrow M$ passing through the generic point of M with lowest degree in 9 . In fact, one can construct $\phi: \mathbb{P} \rightarrow M$ for various projective spaces \mathbb{P} such that $\phi^{*}\left(-K_{M}\right)=\mathcal{O}_{\mathbb{P}}(2(r, d))$, and $\phi: \mathbb{P}^{r-1} \rightarrow M$ passing through the generic point of M such that $\phi^{*}\left(-K_{M}\right)=\mathcal{O}_{\mathbb{P}^{r-1}}(2 r)$. Then it was proved in [6] and [9] that the images of lines in these projective spaces exhaust all minimal rational curves on M (resp. minimal rational curves passing through generic point of M). Some applications of the results were also pointed out in [6] and [9]. Thus it is natural to ask what are the situation when $b>0$. This note is a start to study the case of $b=1$. It may happen that the normalization of $\phi(B)$ is \mathbb{P}^{1}. To avoid this case, we call $\phi: B \rightarrow M$

[^0]an essential elliptic curve of M if the normalization of $\phi(B)$ is an elliptic curve.

It is easy to construct essential elliptic curves of degree $6(r, d)$ on M, and essential elliptic curves of degree $6 r$ that pass through the generic point of M. For example, for smooth elliptic curves $B \subset \mathbb{P}$ of degree 3, the morphism $\phi: \mathbb{P} \rightarrow M$ defines essential elliptic curves $\left.\phi\right|_{B}: B \rightarrow M$ of degree $6(r, d)$ (See Example (3.6), which are called elliptic curves of split type. For smooth elliptic curves $B \subset \mathbb{P}^{r-1}$ of degree 3, the morphism $\phi: \mathbb{P}^{r-1} \rightarrow M$ defines essential elliptic curves $\left.\phi\right|_{B}: B \rightarrow M$ of degree $6 r$ passing through the generic point of M (See Example (3.5), which are called elliptic curves of Hecke type. Are they minimal elliptic curves of M (resp. minimal elliptic curves passing through generic point of M)? Do they exhaust all minimal essential elliptic curves on M (See Conjecture 4.8 for detail)?

In this note, we consider the case that $r=2$ and $d=1$, then M is a smooth projective fano manifold of dimension $3 g-3$. When C is generic, we show that any essential elliptic curve $\phi: B \rightarrow M$ has degree at least 6 , and it must be an elliptic curve of split type if it has degree 6 (See Theorem 4.6). When $g>4$ and C is generic, we show that any essential elliptic curve $\phi: B \rightarrow M$ passing through the generic point of M have degree at least 12 (See Theorem4.7). When C is generic, there is no nontrivial morphism from C to an elliptic curve, which implies that $\operatorname{Pic}(C \times B)=\operatorname{Pic}(C) \times \operatorname{Pic}(B)$. It is the condition that we need through the whole paper.

We give a brief description of the article. In Section 2, we show a formula of degree for general case. In Section 3, we show how the general formula implies the known case $B=\mathbb{P}^{1}$ and construct the examples of essential elliptic curves of degree 6(r,d) and $6 r$. In Section 4, we prove the main theorems (Theorem 4.6 and Theorem 4.7), which is the special case $r=2, d=1$ of Conjecture 4.8. Although I believe the conjecture, I leave the case of $r>2$ to other occasion.

2. The degree formula of curves in moduli spaces

Let C be a smooth projective curve of genus $g \geq 2$ and \mathcal{L} a line bundle on C of degree d. Let $M=\mathcal{S U} \mathcal{U}_{C}(r, \mathcal{L})^{s}$ be the moduli spaces of stable bundles on C of rank r, with fixed determinant \mathcal{L}. It is wellknown that $\operatorname{Pic}(M)=\mathbb{Z} \cdot \Theta$, where Θ is an ample divisor.

Lemma 2.1. For any smooth projective curve B of genus b, if

$$
\phi: B \rightarrow M
$$

is defined by a vector bundle E on $C \times B$, then

$$
\operatorname{deg} \phi^{*}\left(-K_{M}\right)=c_{2}\left(\mathcal{E} n d^{0}(E)\right)=2 r c_{2}(E)-(r-1) c_{1}(E)^{2}:=\Delta(E)
$$

Proof. In general, there is no universal bundle on $C \times M$, but there exist vector bundle $\mathcal{E} n d^{0}$ and projective bundle \mathcal{P} on $C \times M$ such that $\left.\mathcal{E} n d^{0}\right|_{C \times\{[V]\}}=\mathcal{E} n d^{0}(V)$ and $\left.\mathcal{P}\right|_{C \times\{[V]\}}=\mathbb{P}(V)$ for any $[V] \in M$. Let $\pi: C \times M \rightarrow M$ be the projection, then $T_{M}=R^{1} \pi_{*}\left(\mathcal{E} n d^{0}\right)$, which commutes with base changes since $\pi_{*}\left(\mathcal{E} n d^{0}\right)=0$.

For any curve $\phi: B \rightarrow M$, let $X:=C \times B, \mathbb{E}=(i d \times \phi)^{*} \mathcal{E} n d^{0}$ and $\pi: X=C \times B \rightarrow B$ still denote the projection. Then $\phi^{*} T_{M}=R^{1} \pi_{*} \mathbb{E}$. By Riemann-Roch theorem, we have

$$
\operatorname{deg} \phi^{*}\left(-K_{M}\right)=\chi\left(R^{1} \pi_{*} \mathbb{E}\right)+\left(r^{2}-1\right)(g-1)(b-1)
$$

By using Leray spectral sequence and $\chi(\mathbb{E})=\operatorname{deg}\left(\operatorname{ch}(\mathbb{E}) \cdot t d\left(T_{X}\right)\right)_{2}$, we have $\chi\left(R^{1} \pi_{*} \mathbb{E}\right)=-\chi(\mathbb{E})=c_{2}(\mathbb{E})-\left(r^{2}-1\right)(g-1)(b-1)$, hence

$$
\operatorname{deg} \phi^{*}\left(-K_{M}\right)=c_{2}(\mathbb{E})
$$

If $\phi: B \rightarrow M$ is defined by a vector bundle E on $X=C \times B$, then $\mathbb{E}=\mathcal{E} n d^{0}(E)$ (cf. the proof of lemma 2.1 in [9]). Thus

$$
\operatorname{deg} \phi^{*}\left(-K_{M}\right)=c_{2}\left(\mathcal{E} n d^{0}(E)\right)=2 r c_{2}(E)-(r-1) c_{1}(E)^{2}
$$

Let $f: X \rightarrow C$ be the projection. Then, for any vector bundle E on X, there is a relative Harder-Narasimhan filtration (cf Theorem 2.3.2, page 45 in [5])

$$
0=E_{0} \subset E_{1} \subset \cdots \subset E_{n}=E
$$

such that $F_{i}=E_{i} / E_{i-1}(i=1, \ldots n)$ are flat over C and its restriction to general fiber $X_{p}=f^{-1}(p)$ is the Harder-Narasimhan filtration of $\left.E\right|_{X_{p}}$. Thus F_{i} are semi-stable of slop μ_{i} at generic fiber of $f: X \rightarrow B$ with $\mu_{1}>\mu_{2}>\cdots>\mu_{n}$. Then we have the following theorem

Theorem 2.2. For any vector bundle E of rank r on X, let

$$
0=E_{0} \subset E_{1} \subset \cdots \subset E_{n}=E
$$

be the relative Harder-Narasimhan filtration over C with $F_{i}=E_{i} / E_{i-1}$ and $\mu_{i}=\mu\left(\left.F_{i}\right|_{f^{-1}(x)}\right)$ for generic $x \in C$. Let $\mu(E)$ and $\mu\left(E_{i}\right)$ denote the slop of $\left.E\right|_{\pi^{-1}(b)}$ and $\left.E_{i}\right|_{\pi^{-1}(b)}$ for generic $b \in B$. Then, if

$$
\operatorname{Pic}(C \times B)=\operatorname{Pic}(C) \times \operatorname{Pic}(B),
$$

we have the following formula

$$
\begin{equation*}
\Delta(E)=2 r\binom{\sum_{i=1}^{n}\left(c_{2}\left(F_{i}\right)-\frac{\operatorname{rk}\left(F_{i}\right)-1}{2 \operatorname{rk}\left(F_{i}\right)} c_{1}\left(F_{i}\right)^{2}\right)}{+\sum_{i=1}^{n-1}\left(\mu(E)-\mu\left(E_{i}\right)\right) \operatorname{rk}\left(E_{i}\right)\left(\mu_{i}-\mu_{i+1}\right)} . \tag{2.1}
\end{equation*}
$$

Proof. It is easy to see that

$$
\begin{aligned}
2 c_{2}(E) & =2 \sum_{i=1}^{n} c_{2}\left(F_{i}\right)+2 \sum_{i=1}^{n} c_{1}\left(E_{i-1}\right) c_{1}\left(F_{i}\right) \\
& =2 \sum_{i=1}^{n} c_{2}\left(F_{i}\right)+c_{1}(E)^{2}-\sum_{i=1}^{n} c_{1}\left(F_{i}\right)^{2} .
\end{aligned}
$$

Thus

$$
\Delta(E)=2 r \sum_{i=1}^{n} c_{2}\left(F_{i}\right)+c_{1}(E)^{2}-r \sum_{i=1}^{n} c_{1}\left(F_{i}\right)^{2} .
$$

Let r_{i} be the rank of F_{i} and d_{i} be the degree of F_{i} on the generic fiber of $\pi: C \times B \rightarrow B$. Then we can write

$$
c_{1}\left(F_{i}\right)=f^{*} \mathcal{O}_{C}\left(d_{i}\right)+\pi^{*} \mathcal{O}_{B}\left(r_{i} \mu_{i}\right)
$$

where $\mathcal{O}_{C}\left(d_{i}\right)$ (resp. $\left.\mathcal{O}_{B}\left(r_{i} \mu_{i}\right)\right)$ denotes a divisor of degree d_{i} (resp. degree $r_{i} \mu_{i}$) of C (resp. B). Note that

$$
c_{1}\left(F_{i}\right)^{2}=2 d_{i} r_{i} \mu_{i}, \quad c_{1}(E)^{2}=2 d \sum_{i=1}^{n} r_{i} \mu_{i}
$$

we have

$$
\begin{aligned}
& \Delta(E)=2 r\left(\sum_{i=1}^{n} c_{2}\left(F_{i}\right)+\mu(E) \sum_{i=1}^{n} r_{i} \mu_{i}-\sum_{i=1}^{n} d_{i} r_{i} \mu_{i}\right) \\
& =2 r\left(\sum_{i=1}^{n}\left(c_{2}\left(F_{i}\right)-\left(r_{i}-1\right) d_{i} \mu_{i}\right)+\mu(E) \sum_{i=1}^{n} r_{i} \mu_{i}-\sum_{i=1}^{n} d_{i} \mu_{i}\right) .
\end{aligned}
$$

Let $\operatorname{deg}\left(E_{i}\right)$ denote the degree of E_{i} on the generic fiber of

$$
\pi: C \times B \rightarrow B
$$

Using $d_{i}=\operatorname{deg}\left(E_{i}\right)-\operatorname{deg}\left(E_{i-1}\right)$ and $r_{i}=\operatorname{rk}\left(E_{i}\right)-\operatorname{rk}\left(E_{i-1}\right)$, we have

$$
\mu(E) \sum_{i=1}^{n} r_{i} \mu_{i}-\sum_{i=1}^{n} d_{i} \mu_{i}=\sum_{i=1}^{n-1}\left(\mu(E)-\mu\left(E_{i}\right)\right) \operatorname{rk}\left(E_{i}\right)\left(\mu_{i}-\mu_{i+1}\right) .
$$

Since $d_{i} \mu_{i}=c_{1}\left(F_{i}\right)^{2} / 2 r_{i}$, we get the formula

$$
\Delta(E)=2 r\binom{\sum_{i=1}^{n}\left(c_{2}\left(F_{i}\right)-\frac{r_{i}-1}{2 r_{i}} c_{1}\left(F_{i}\right)^{2}\right)}{+\sum_{i=1}^{n-1}\left(\mu(E)-\mu\left(E_{i}\right)\right) \operatorname{rk}\left(E_{i}\right)\left(\mu_{i}-\mu_{i+1}\right)} .
$$

Remark 2.3. I do not know if the formula holds without the assumption that $\operatorname{Pic}(C \times B)=\operatorname{Pic}(C) \times \operatorname{Pic}(B)$. On the other hand, the assumption holds when B is an elliptic curve and C is generic.

Theorem 2.4. For any torsion free sheaf \mathcal{F} on $X=C \times B$, if its restriction to a fiber of $f: X=C \times B \rightarrow C$ is semi-stable, then

$$
\Delta(\mathcal{F})=2 \operatorname{rk}(\mathcal{F}) c_{2}(\mathcal{F})-(\operatorname{rk}(\mathcal{F})-1) c_{1}(\mathcal{F})^{2} \geq 0
$$

If the determinants $\left\{\operatorname{det}\left(\mathcal{F}^{* *}\right)_{x}\right\}_{x \in C}$ are isomorphic each other, then $\Delta(\mathcal{F})=0$ if and only if \mathcal{F} is locally free and satisfies

- All the bundles $\left\{\mathcal{F}_{x}:=\left.\mathcal{F}\right|_{\{x\} \times B}\right\}_{x \in C}$ are semi-stable and sequivalent each other.
- All the bundles $\left\{\mathcal{F}_{y}:=\left.\mathcal{F}\right|_{C \times\{y\}}\right\}_{y \in B}$ are isomorphic each other.

Proof. Since $\Delta(\mathcal{F}) \geq \Delta\left(\mathcal{F}^{* *}\right)$, we can assume that \mathcal{F} is a vector bundle. There is a $x \in C$ such that $\mathcal{F}_{x}=\left.\mathcal{F}\right|_{\{x\} \times B}$ is semi-stable, so is $\mathcal{E} n d^{0}(\mathcal{F})_{x}=\mathcal{E} n d^{0}\left(\mathcal{F}_{x}\right)$. Thus, by a theorem of Faltings (cf. Theorem I.2. of [1), there is a vector bundle V on B such that

$$
\mathrm{H}^{0}\left(\mathcal{E} n d^{0}(\mathcal{F})_{x} \otimes V\right)=\mathrm{H}^{1}\left(\mathcal{E} n d^{0}(\mathcal{F})_{x} \otimes V\right)=0
$$

which defines a global section $\vartheta(V)$ of the line bundle

$$
\Theta\left(\mathcal{E} n d^{0}(\mathcal{F}) \otimes \pi^{*} V\right)=\left(\operatorname{det} f_{!}\left(\mathcal{E} n d^{0}(\mathcal{F}) \otimes \pi^{*} V\right)\right)^{-1}
$$

such that $\vartheta(V)(x) \neq 0$. By Grothendieck-Riemann-Roch theorem,

$$
\begin{aligned}
c_{1}\left(\operatorname{det} f_{!}\left(\mathcal{E} n d^{0}(\mathcal{F}) \otimes \pi^{*} V\right)\right) & =f_{*}\left(\operatorname{ch}\left(\mathcal{E} n d^{0}(\mathcal{F}) \otimes \pi^{*} V\right) \operatorname{td}\left(\pi^{*} T_{B}\right)\right)_{2} \\
& =-c_{2}\left(\mathcal{E} n d^{0}(\mathcal{F}) \otimes \pi^{*} V\right)
\end{aligned}
$$

which means that the line bundle $\Theta\left(\mathcal{E} n d^{0}(\mathcal{F}) \otimes \pi^{*} V\right)$ has degree

$$
c_{2}\left(\mathcal{E} n d^{0}(\mathcal{F}) \otimes \pi^{*} V\right)=\operatorname{rk}(V) \cdot c_{2}\left(\mathcal{E} n d^{0}(\mathcal{F})\right)=\operatorname{rk}(V) \cdot \Delta(\mathcal{F})
$$

with a nonzero global section $\vartheta(V)$. Thus $\Delta(\mathcal{F}) \geq 0$.
If $\Delta(\mathcal{F})=0$, then $\mathcal{F}=\mathcal{F}^{* *}$ must be locally free and $\vartheta(V)(x) \neq 0$ for any $x \in C$, which means that for any $x \in C$, we have

$$
\mathrm{H}^{0}\left(\mathcal{E} n d^{0}(\mathcal{F})_{x} \otimes V\right)=\mathrm{H}^{1}\left(\mathcal{E} n d^{0}(\mathcal{F})_{x} \otimes V\right)=0
$$

Then, by the theorem of Faltings, the bundles

$$
\left\{\mathcal{E} n d^{0}(\mathcal{F})_{x}\right\}_{x \in C}
$$

are all semi-stable. Thus, for any $x \in C$, the bundle $\mathcal{F}_{x}:=\left.\mathcal{F}\right|_{\{x\} \times B}$ is semi-stable. The bundle \mathcal{F} defines a morphism $\phi_{\mathcal{F}}: C \rightarrow \mathcal{U}_{B}$ from C to the moduli space \mathcal{U}_{B} of semi-stable bundles on B, the line bundle $\Theta\left(\mathcal{E} n d^{0}(\mathcal{F}) \otimes \pi^{*} V\right)$ clearly descends to a line bundle on \mathcal{U}_{B}. If the determinants $\operatorname{det}\left(\mathcal{F}_{x}\right)(x \in C)$ are fixed, then

$$
\operatorname{deg}\left(\Theta\left(\mathcal{E} n d^{0}(\mathcal{F}) \otimes \pi^{*} V\right)\right)=0
$$

means that all $\left\{\mathcal{F}_{x}\right\}_{x \in C}$ are s-equivalence.
By using a technique of [4] (see Step 5 in the proof of Theorem 4.2 in [4], see also the proof of Theorem I. 4 in [1]), we will show

$$
\left.\left.\mathcal{F}\right|_{C \times\left\{y_{1}\right\}} \cong \mathcal{F}\right|_{C \times\left\{y_{2}\right\}}, \quad \forall y_{1}, y_{2} \in B .
$$

Choose a nontrivial extension $0 \rightarrow V \rightarrow V^{\prime} \xrightarrow{q_{1}} \mathcal{O}_{y_{1}} \rightarrow 0$ on B, let \mathfrak{Q} be the Quot-scheme of rank 0 and degree 1 quotients of V^{\prime}, and

$$
0 \rightarrow \mathcal{K} \rightarrow p_{B}^{*} V^{\prime} \rightarrow \mathfrak{T} \rightarrow 0
$$

be the tautological exact sequence on $B \times \mathfrak{Q}$. Fix a point $x_{1} \in C$, then the set $q \in \mathfrak{Q}$ such that $\mathrm{H}^{0}\left(\mathcal{F}_{x_{1}} \otimes \mathcal{K}_{q}\right)=\mathrm{H}^{1}\left(\mathcal{F}_{x_{1}} \otimes \mathcal{K}_{q}\right)=0$ is an open set $U \subset \mathfrak{Q}$ and $U \neq \emptyset$ since $q_{1}=\left(0 \rightarrow V \rightarrow V^{\prime} \xrightarrow{q_{1}} \mathcal{O}_{y_{1}} \rightarrow 0\right) \in U$.

Let $\Gamma \subset B \times \mathbb{P}\left(V^{\prime}\right)$ be the graph of $\mathbb{P}\left(V^{\prime}\right) \xrightarrow{p} B$, then

$$
\left.p_{B}^{*} V^{\prime} \rightarrow p_{B}^{*} V^{\prime}\right|_{\Gamma}=p^{*} V^{\prime} \rightarrow \mathcal{O}(1) \rightarrow 0
$$

induces a quotient $p_{B}^{*} V^{\prime} \rightarrow{ }_{\Gamma} \mathcal{O}(1) \rightarrow 0$ on $B \times \mathbb{P}\left(V^{\prime}\right)$, which defines a morphism $\mathbb{P}\left(V^{\prime}\right) \rightarrow \mathfrak{Q}$. It is easy to see that $\mathbb{P}\left(V^{\prime}\right) \rightarrow \mathfrak{Q}$ is surjective (in fact, it is a isomorphism). Thus there is an open $B_{1} \subset B$ with $y_{1} \in B_{1}$ such that for any $y \in B_{1}$ there exists an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{K}_{q} \rightarrow V^{\prime} \xrightarrow{q} \mathcal{O}_{y} \rightarrow 0 \tag{2.2}
\end{equation*}
$$

such that $\mathrm{H}^{0}\left(\mathcal{F}_{x_{1}} \otimes \mathcal{K}_{q}\right)=\mathrm{H}^{1}\left(\mathcal{F}_{x_{1}} \otimes \mathcal{K}_{q}\right)=0$, which implies

$$
\mathrm{H}^{0}\left(\mathcal{F}_{x} \otimes \mathcal{K}_{q}\right)=\mathrm{H}^{1}\left(\mathcal{F}_{x} \otimes \mathcal{K}_{q}\right)=0 \quad \forall x \in C
$$

since \mathcal{F}_{x} is s-equivalent to $\mathcal{F}_{x_{1}}$ for any $x \in C$. Pull back the exact sequence (2.2) by $\pi: C \times B \rightarrow B$ and tensor with \mathcal{F}, we have the exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{F} \otimes \pi^{*} \mathcal{K}_{q} \rightarrow \mathcal{F} \otimes \pi^{*} V^{\prime} \rightarrow \mathcal{F}_{y} \rightarrow 0 \tag{2.3}
\end{equation*}
$$

Take direct images of (2.2) under $f: C \times B \rightarrow C$, we have

$$
\mathcal{F}_{y} \cong f_{*}\left(\mathcal{F} \otimes \pi^{*} V^{\prime}\right), \quad \forall y \in B_{1}
$$

which implies that all $\left\{\mathcal{F}_{y}\right\}_{y \in B}$ are isomorphic each other.

We will need the following lemma in the later computation, whose proof are straightforward computations (see [2] for the case of rank 1).

Lemma 2.5. Let X be a smooth projective surface and $j: D \hookrightarrow X$ be an effective divisor. Then, for any vector bundle V on D, we have

$$
\begin{aligned}
& c_{1}\left(j_{*} V\right)=\operatorname{rk}(V) \cdot D \\
& c_{2}\left(j_{*} V\right)=\frac{\operatorname{rk}(V)(\operatorname{rk}(V)+1)}{2} D^{2}-j_{*} c_{1}(V) .
\end{aligned}
$$

Recall that $X_{t}=f^{-1}(t)$ denotes the fiber of $f: X \rightarrow C$ and for any vector bundle \mathcal{F} on X, \mathcal{F}_{t} denote the restrictions of \mathcal{F} to X_{t}.

Lemma 2.6. Let $\mathcal{F}_{t} \rightarrow W \rightarrow 0$ be a locally free quotient and

$$
0 \rightarrow \mathcal{F}^{\prime} \rightarrow \mathcal{F} \rightarrow{ }_{X_{t}} W \rightarrow 0
$$

be the elementary transformation of \mathcal{F} along W at $X_{t} \subset X$. Then

$$
\Delta(\mathcal{F})=\Delta\left(\mathcal{F}^{\prime}\right)+2 r\left(\mu\left(\mathcal{F}_{t}\right)-\mu(W)\right) \operatorname{rk}(W)
$$

3. Mminimal Rational curves and examples of elliptic CURVES ON MODULI SPACES

When $B=\mathbb{P}^{1}$, the condition $\operatorname{Pic}(C \times B)=\operatorname{Pic}(C) \times \operatorname{Pic}(B)$ always hold and any morphism $B \rightarrow M$ is defined by a vector bundle on $C \times B$ (cf. Lemma 2.1 of [9]).

Recall that given two nonnegative integers k, ℓ, a vector bundle W of rank r and degree d on C is (k, ℓ)-stable, if, for each proper subbundle W^{\prime} of W, we have

$$
\frac{\operatorname{deg}\left(W^{\prime}\right)+k}{\operatorname{rk}\left(W^{\prime}\right)}<\frac{\operatorname{deg}(W)+k-\ell}{r}
$$

The usual stability is equivalent to $(0,0)$-stability. The (k, ℓ)-stability is an open condition. The proofs of following lemmas are easy and elementary (cf. 7]).

Lemma 3.1. If $g \geq 3$, M contains $(0,1)$-stable and $(0,1)$-stable bundles. M contains a (1,1)-stable bundle W except $g=3, d, r$ both even.

Lemma 3.2. Let $0 \rightarrow V \rightarrow W \rightarrow \mathcal{O}_{p} \rightarrow 0$ be an exact sequence, where \mathcal{O}_{p} is the 1-dimensional skyscraper sheaf at $p \in C$. If W is (k, ℓ)-stable, then V is $(k, \ell-1)$-stable.

A curve $B \rightarrow M$ defined by E on $C \times B$ passes through the generic point of M implies that $E_{y}:=\left.E\right|_{C \times\{y\}}$ is $(1,1)$-stable for generic $y \in B$. Thus in the formula (2.1) of Theorem 2.2 we have

$$
\begin{equation*}
\left(\mu(E)-\mu\left(E_{i}\right)\right) \operatorname{rk}\left(E_{i}\right)>1 . \tag{3.1}
\end{equation*}
$$

On the other hand, any semi-stable bundle on $B=\mathbb{P}^{1}$ must have integer slop. By the formula (2.1) in Theorem 2.2, we have

$$
\Delta(E)>2 r
$$

if E is not semi-stable on the generic fiber of $f: X=C \times \mathbb{P}^{1} \rightarrow C$.
When E is semi-stable on the generic fiber of $f: X \rightarrow C$, by tensor E with a line bundle, we can assume that E is trivial on the generic fiber of $f: X \rightarrow C$. Thus $\Delta(E)=2 r c_{2}(E) \geq 2 r$ and there must be a fiber $X_{t}=f^{-1}(t)$ such that $E_{t}=\left.E\right|_{X_{t}}$ is not semi-stable by Theorem 2.4. If $\Delta(E)=2 r$, by Lemma 2.6, we must have $\operatorname{rk}(W)=1, \mu(W)=-1$ and $\Delta\left(\mathcal{F}^{\prime}\right)=0$ in Lemma 2.6. Thus $\Delta(E)=2 r$ if and only if E satisfies

$$
0 \rightarrow f^{*} V \rightarrow E \rightarrow X_{t} \mathcal{O}_{\mathbb{P}^{1}}(-1) \rightarrow 0
$$

which defines a so called Hecke curve. Therefore we get the main theorem in [9].

Theorem 3.3. If $g \geq 3$, then any rational curve of M passing through the generic point of M has at least degree $2 r$ with respect to $-K_{M}$. It has degree $2 r$ if and only if it is a Hecke curve except $g=3, r=2$ and $(2, d)=2$.

At the end of this section, we give some examples of elliptic curves on M. Let us recall the construction of Hecke curves. Let $\mathcal{U}_{C}(r, d-1)$ be the moduli space of stable bundles of rank r and degree $d-1$. Let

$$
\mathfrak{O} \subset \mathcal{U}_{C}(r, d-1)
$$

be the open set of $(1,0)$-stable bundles. Let $C \times \mathfrak{O} \xrightarrow{\psi} J^{d}(C)$ be defined as $\psi(x, V)=\mathcal{O}_{C}(x) \otimes \operatorname{det}(V)$ and

$$
\mathscr{R}_{C}:=\psi^{-1}(\mathcal{L}) \subset C \times \mathfrak{O},
$$

which consists of the points (x, V) such that V are $(1,0)$-stable bundles on C with $\operatorname{det}(V)=\mathcal{L}(-x)$. There exists a projective bundle

$$
p: \mathscr{P} \rightarrow \mathscr{R}_{C}
$$

such that for any $(x, V) \in \mathscr{R}_{C}$ we have $p^{-1}(x, V)=\mathbb{P}\left(V_{x}^{\vee}\right)$. Let

$$
V_{x}^{\vee} \otimes \mathcal{O}_{\mathbb{P}\left(V_{x}^{\vee}\right)} \rightarrow \mathcal{O}_{\mathbb{P}\left(V_{x}^{\vee}\right)}(1) \rightarrow 0
$$

be the universal quotient, $f: C \times \mathbb{P}\left(V_{x}^{\vee}\right) \rightarrow C$ be the projection, and

$$
0 \rightarrow \mathscr{E}^{\vee} \rightarrow f^{*} V^{\vee} \rightarrow\{x\} \times \mathbb{P}\left(V_{x}^{\vee}\right) \mathcal{O}_{\mathbb{P}\left(V_{x}^{\vee}\right)}(1) \rightarrow 0
$$

where $\mathscr{E} \vee$ is defined to the kernel of the surjection. Take dual, we have

$$
\begin{equation*}
0 \rightarrow f^{*} V \rightarrow \mathscr{E} \rightarrow{ }_{\{x\} \times \mathbb{P}\left(V_{x}^{\vee}\right)} \mathcal{O}_{\mathbb{P}\left(V_{x}^{\vee}\right)}(-1) \rightarrow 0, \tag{3.2}
\end{equation*}
$$

which, at any point $\xi=\left(V_{x}^{\vee} \rightarrow \Lambda \rightarrow 0\right) \in \mathbb{P}\left(V_{x}^{\vee}\right)$, gives exact sequence

$$
0 \rightarrow V \xrightarrow{\iota} \mathscr{E}_{\xi} \rightarrow \mathcal{O}_{x} \rightarrow 0
$$

on C such that $\operatorname{ker}\left(\iota_{x}\right)=\Lambda^{\vee} \subset V_{x} . \quad V$ being (1,0)-stable implies stability of \mathscr{E}_{ξ}. Thus (3.2) defines

$$
\begin{equation*}
\Psi_{(x, V)}: \mathbb{P}\left(V_{x}^{\vee}\right)=p^{-1}(x, V) \rightarrow M . \tag{3.3}
\end{equation*}
$$

Definition 3.4. The images (under $\left\{\Psi_{(x, V)}\right\}_{(x, V) \in \mathscr{R}_{C}}$) of lines in the fibres of $p: \mathscr{P} \rightarrow \mathscr{R}_{C}$ are the so called Hecke curves in M. The images (under $\left\{\Psi_{(x, V)}\right\}_{(x, V) \in \mathscr{R}_{C}}$) of elliptic curves in the fibres of

$$
p: \mathscr{P} \rightarrow \mathscr{R}_{C}
$$

are called elliptic curves of Hecke type.
It is known (cf. [7, Lemma 5.9]) that the morphisms in (3.3) are closed immersions. By a straightforward computation, we have

$$
\begin{equation*}
\Psi_{(x, V)}^{*}\left(-K_{M}\right)=\mathcal{O}_{\mathbb{P}\left(V_{x}^{\vee}\right)}(2 r) . \tag{3.4}
\end{equation*}
$$

For any point $[W] \in M$ and $\left(W_{x} \rightarrow \mathbb{C} \rightarrow 0\right) \in \mathbb{P}\left(W_{x}\right)$, where W is (1,1)-stable, we define a (1,0)-stable bundle V by

$$
0 \rightarrow V \xrightarrow{\alpha} W \rightarrow{ }_{x} \mathbb{C} \rightarrow 0 .
$$

Then the images of $p^{-1}(x, V)=\mathbb{P}\left(V_{x}^{\vee}\right)$ are projective spaces that pass through $[W] \in M$, and the images of lines $\ell \subset \mathbb{P}\left(V_{x}^{\vee}\right)$ that pass through $\left[\operatorname{ker}\left(\alpha_{x}\right)\right] \in \mathbb{P}\left(V_{x}^{\vee}\right)$ are Hecke curves passing through $[W] \in M$.

Example 3.5. When $g \geq 4$ and $r>2$, for generic $[W] \in M$, the images of smooth elliptic curves $B \subset \mathbb{P}\left(V_{x}^{\vee}\right)$ with degree 3 and $\left[\operatorname{ker}\left(\alpha_{x}\right)\right] \in B$ are smooth elliptic curves on M that pass through $[W] \in M$, which have degree $6 r$ by (3.4).

If we do not require the curve $\phi: B \rightarrow M$ passing through generic point of M, we may construct rational curves and elliptic curves with smaller degree. Let us recall the Construction 2.3 from [6].

For any given r and d, let r_{1}, r_{2} be positive integers and d_{1}, d_{2} be integers that satisfy the equalities $r_{1}+r_{2}=r, d_{1}+d_{2}=d$ and

$$
r_{1} \frac{d}{(r, d)}-d_{1} \frac{r}{(r, d)}=1, \quad d_{2} \frac{r}{(r, d)}-r_{2} \frac{d}{(r, d)}=1 .
$$

Let $\mathcal{U}_{C}\left(r_{1}, d_{1}\right)$ (resp. $\left.\mathcal{U}_{C}\left(r_{2}, d_{2}\right)\right)$ be the moduli space of stable vector bundles with rank r_{1} (resp. r_{2}) and degree d_{1} (resp. d_{2}). Then, since
$\left(r_{1}, d_{1}\right)=1$ and $\left(r_{2}, d_{2}\right)=1$, there are universal vector bundles $\mathcal{V}_{1}, \mathcal{V}_{2}$ on $C \times \mathcal{U}_{C}\left(r_{1}, d_{1}\right)$ and $C \times \mathcal{U}_{C}\left(r_{2}, d_{2}\right)$ respectively. Consider

$$
\mathcal{U}_{C}\left(r_{1}, d_{1}\right) \times \mathcal{U}_{C}\left(r_{2}, d_{2}\right) \xrightarrow{\operatorname{det}(\bullet) \times \operatorname{det}(\bullet)} J_{C}^{d_{1}} \times J_{C}^{d_{2}} \xrightarrow{(\bullet) \otimes(\bullet)} J_{C}^{d},
$$

let $\mathcal{R}\left(r_{1}, d_{1}\right)$ be its fiber at $[\mathcal{L}] \in J_{C}^{d}$. The pullback of $\mathcal{V}_{1}, \mathcal{V}_{2}$ by the projection $C \times \mathcal{R}\left(r_{1}, d_{1}\right) \rightarrow C \times \mathcal{U}_{C}\left(r_{i}, d_{i}\right)(i=1,2)$ is still denoted by $\mathcal{V}_{1}, \mathcal{V}_{2}$ respectively. Let $p: C \times \mathcal{R}\left(r_{1}, d_{1}\right) \rightarrow \mathcal{R}\left(r_{1}, d_{1}\right)$ and

$$
\mathcal{G}=R^{1} p_{*}\left(\mathcal{V}_{2}^{\vee} \otimes \mathcal{V}_{1}\right)
$$

which is locally free of rank $r_{1} r_{2}(g-1)+(r, d)$. Let

$$
q: P\left(r_{1}, d_{1}\right)=\mathbb{P}(\mathcal{G}) \rightarrow \mathcal{R}\left(r_{1}, d_{1}\right)
$$

be the projective bundle parametrzing 1-dimensional subspaces of \mathcal{G}_{t} $\left(t \in \mathcal{R}\left(r_{1}, d_{1}\right)\right)$ and $f: C \times P\left(r_{1}, d_{1}\right) \rightarrow C, \pi: C \times P\left(r_{1}, d_{1}\right) \rightarrow P\left(r_{1}, d_{1}\right)$ be the projections. Then there is a universal extension

$$
\begin{equation*}
0 \rightarrow(i d \times q)^{*} \mathcal{V}_{1} \otimes \pi^{*} \mathcal{O}_{P\left(r_{1}, d_{1}\right)}(1) \rightarrow \mathcal{E} \rightarrow(i d \times q)^{*} \mathcal{V}_{2} \rightarrow 0 \tag{3.5}
\end{equation*}
$$

on $C \times P\left(r_{1}, d_{1}\right)$ such that for any $x=\left(\left[V_{1}\right],\left[V_{2}\right],[e]\right) \in P\left(r_{1}, d_{1}\right)$, where $\left[V_{i}\right] \in \mathcal{U}_{C}\left(r_{i}, d_{i}\right)$ with $\operatorname{det}\left(V_{1}\right) \otimes \operatorname{det}\left(V_{2}\right)=\mathcal{L}$ and $[e] \subset \mathrm{H}^{1}\left(C, V_{2}^{\vee} \otimes V_{1}\right)$ being a line through the origin, the bundle $\left.\mathcal{E}\right|_{C \times\{x\}}$ is the isomorphic class of vector bundles E given by extensions

$$
0 \rightarrow V_{1} \rightarrow V \rightarrow V_{2} \rightarrow 0
$$

that defined by vectors on the line $[e] \subset \mathrm{H}^{1}\left(C, V_{2}^{\vee} \otimes V_{1}\right)$. Then V must be stable by [6, Lemma 2.2], and the sequence (3.5) defines

$$
\Phi: P\left(r_{1}, d_{1}\right) \rightarrow \mathcal{S U}_{C}(r, \mathcal{L})^{s}=M
$$

On each fiber $q^{-1}(\xi)=\mathbb{P}\left(\mathrm{H}^{1}\left(V_{2}^{\vee} \otimes V_{1}\right)\right)$ at $\xi=\left(V_{1}, V_{2}\right)$, the morphisms

$$
\begin{equation*}
\Phi_{\xi}:=\left.\Phi\right|_{q^{-1}(\xi)}: q^{-1}(\xi)=\mathbb{P}\left(\mathrm{H}^{1}\left(V_{2}^{\vee} \otimes V_{1}\right)\right) \rightarrow M \tag{3.6}
\end{equation*}
$$

is birational and $\Phi_{\xi}^{*}\left(-K_{M}\right)=\mathcal{O}_{\mathbb{P}\left(H^{1}\left(V_{2}^{\vee} \otimes V_{1}\right)\right)}(2(r, d))$ by [6, Lemma 2.4].
Example 3.6. The images of lines $\ell \subset \mathbb{P}\left(\mathrm{H}^{1}\left(V_{2}^{\vee} \otimes V_{1}\right)\right)$ are rational curves of degree $2(r, d)$ on M, which is clearly the minimal degree since $-K_{M}=2(r, d) \Theta$. For smooth elliptic curves $B \subset \mathbb{P}\left(\mathrm{H}^{1}\left(V_{2}^{\vee} \otimes V_{1}\right)\right)$ of degree 3, the images of $\Phi_{\xi}: B \rightarrow M$ are of degree $6(r, d)$. For any smooth elliptic curve $B \subset q^{-1}(\xi)\left(\forall \xi \in \mathcal{R}\left(r_{1}, d_{1}\right)\right)$, the images of $\Phi_{\xi}: B \rightarrow M$ are called elliptic curves of split type.

4. Minimal elliptic curves on moduli Spaces

In this section, we consider the moduli space M of rank 2 stable bundles on C with a fixed determinant \mathcal{L} of degree 1 . We also assume that the curve C is generic in the sense that C admits no surjective morphism to an elliptic curve. With this assumption, we know that $\operatorname{Pic}(C \times B)=\operatorname{Pic}(C) \times \operatorname{Pic}(B)$ for any elliptic curve B.

For a morphism $\phi: B \rightarrow M$, it may happen that the normalization of $\phi(B)$ is a rational curve. To avoid this case, we make the following definition

Definition 4.1. $\phi: B \rightarrow M$ is called an essential elliptic curve of M if the normalization of $\phi(B)$ is an elliptic curve.

For any morphism $\phi: B \rightarrow M$, let E be the vector bundle on $X=C \times B$ that defines ϕ. It will be free to tensor E with a pull-back of line bundles on B. In this section, B will always denote an elliptic curve.

Proposition 4.2. Let $\phi: B \rightarrow M$ be an essential elliptic curve of M defined by a vector bundle E. If E is not semi-stable on the generic fiber of $f: X \rightarrow C$, then

$$
\Delta(E) \geq 6
$$

If $g=g(C) \geq 4$ and the curve $\phi: B \rightarrow M$ passes through the generic point of M, then

$$
\Delta(E)>12 .
$$

Proof. Let $0 \rightarrow E_{1} \rightarrow E \rightarrow F_{2} \rightarrow 0$ be the relative Harder-Narasimhan filtration over C. Then we have exact sequence

$$
\left.\left.\left.0 \rightarrow E_{1}\right|_{X_{t}} \rightarrow E\right|_{X_{t}} \rightarrow F_{2}\right|_{X_{t}} \rightarrow 0
$$

on each fiber $X_{t}=\{t\} \times B$ of $f: X \rightarrow C$ since E_{1}, F_{2} are flat over C. Thus E_{1} is locally free (cf. Lemma 1.27 of [8]) and

$$
\begin{equation*}
\Delta(E)=4 c_{2}\left(F_{2}\right)+4\left(\mu(E)-\mu\left(E_{1}\right)\right)\left(\mu_{1}-\mu_{2}\right) \tag{4.1}
\end{equation*}
$$

where $\mu_{1}=\operatorname{deg}\left(\left.E_{1}\right|_{X_{t}}\right), \mu_{2}=\operatorname{deg}\left(\left.F_{2}\right|_{X_{t}}\right)$ for $t \in C$ (cf. Theorem 2.2).
That $0 \rightarrow E_{1} \rightarrow E \rightarrow F_{2} \rightarrow 0$ is the relative Harder-Narasimhan filtration over C means for almost $t \in C$ the exact sequences

$$
\left.\left.\left.0 \rightarrow E_{1}\right|_{X_{t}} \rightarrow E\right|_{X_{t}} \rightarrow F_{2}\right|_{X_{t}} \rightarrow 0
$$

are the Harder-Narasimhan filtration of $\left.E\right|_{X_{t}}$, which in particular means that F_{2} is locally free over $f^{-1}(C \backslash T)$ where $T \subset C$ is a finite set. Thus

$$
\begin{equation*}
\left.\left.\left.0 \rightarrow E_{1}\right|_{C \times\{y\}} \rightarrow E\right|_{C \times\{y\}} \rightarrow F_{2}\right|_{C \times\{y\}} \rightarrow 0, \quad \forall y \in B \tag{4.2}
\end{equation*}
$$

are exact sequences, which imply that F_{2} is also B-flat.

If $c_{2}\left(F_{2}\right)=0$, then F_{2} is a line bundle and there are line bundles V_{1}, V_{2} on C such that

$$
E_{1}=f^{*} V_{1} \otimes \pi^{*} \mathcal{O}\left(\mu_{1}\right), \quad F_{2}=f^{*} V_{2} \otimes \pi^{*} \mathcal{O}\left(\mu_{2}\right)
$$

where $\mathcal{O}\left(\mu_{i}\right)$ denote line bundles on B of degree μ_{i}. Replace E by $E \otimes \pi^{*} \mathcal{O}\left(-\mu_{2}\right)$, we can assume that E satisfies

$$
\begin{equation*}
0 \rightarrow f^{*} V_{1} \otimes \pi^{*} \mathcal{O}\left(\mu_{1}-\mu_{2}\right) \rightarrow E \rightarrow f^{*} V_{2} \rightarrow 0 \tag{4.3}
\end{equation*}
$$

Let $d_{i}=\operatorname{deg}\left(V_{i}\right)$ and $J=\left\{\left(L_{1}, L_{2}\right) \in J_{C}^{d_{1}} \times J_{C}^{d_{2}} \mid L_{1} \otimes L_{2}=\mathcal{L}\right\}$. Then there is a projective bundle $q: P \rightarrow J$ and an universal extension

$$
\begin{equation*}
0 \rightarrow(i d \times q)^{*} \mathcal{V}_{1} \otimes \pi^{*} \mathcal{O}_{P}(1) \rightarrow \mathcal{E} \rightarrow(i d \times q)^{*} \mathcal{V}_{2} \rightarrow 0 \tag{4.4}
\end{equation*}
$$

on $C \times P$ such that for any $x=\left(\left[V_{1}\right],\left[V_{2}\right],[e]\right) \in P$, where $\left[V_{i}\right] \in J_{C}^{d_{i}}$ with $\left.V_{1}\right) \otimes V_{2}=\mathcal{L}$ and $[e] \subset \mathrm{H}^{1}\left(C, V_{2}^{-1} \otimes V_{1}\right)$ being a line through the origin, the bundle $\left.\mathcal{E}\right|_{C \times\{x\}}$ is the isomorphic class of vector bundles V given by extensions $0 \rightarrow V_{1} \rightarrow V \rightarrow V_{2} \rightarrow 0$ that defined by vectors on the line $[e] \subset \mathrm{H}^{1}\left(C, V_{2}^{-1} \otimes V_{1}\right)$, where \mathcal{V}_{i} denote the pullback (under $C \times J \rightarrow C \times J_{C}^{d_{i}}$) of universal line bundles, and $\pi: C \times P \rightarrow P$ denote the projection. Thus the exact sequence (4.3) induces a morphism

$$
\begin{equation*}
\psi: B \rightarrow \mathbb{P}^{d_{2}-d_{1}+g-2}=q^{-1}\left(V_{1}, V_{2}\right) \subset P \tag{4.5}
\end{equation*}
$$

such that $\mathcal{O}\left(\mu_{1}-\mu_{2}\right)=\psi^{*} \mathcal{O}_{P}(1)$ and $\phi: B \rightarrow M$ factors through $\psi: B \rightarrow \psi(B) \subset \mathbb{P}^{d_{2}-d_{1}+g-2}$, which implies that the normalization of $\psi(B)$ is an elliptic curve. Hence $\mu_{1}-\mu_{2} \geq 3$ and $\Delta(E) \geq 6$ by (4.1). If $\phi: B \rightarrow M$ passes through the generic point, then $\mu(E)-\mu\left(E_{1}\right)>1$ and $\Delta(E)>12$.

If $c_{2}\left(F_{2}\right) \neq 0, F_{2}$ is not locally free, which implies that there is a $y_{0} \in B$ such that $\left.F_{2}\right|_{C \times\left\{y_{0}\right\}}$ has torsion $\tau\left(\left.F_{2}\right|_{C \times\left\{y_{0}\right\}}\right) \neq 0$ since F_{2} is B-flat (cf. Lemma 1.27 of [8]). Let

$$
\begin{equation*}
\left.0 \rightarrow \tau\left(\left.F_{2}\right|_{C \times\left\{y_{0}\right\}}\right) \rightarrow F_{2}\right|_{C \times\left\{y_{0}\right\}} \rightarrow F_{2}^{0} \rightarrow 0 . \tag{4.6}
\end{equation*}
$$

Then F_{2}^{0} being a quotient line bundle of $\left.E\right|_{C \times\left\{y_{0}\right\}}$ implies

$$
\operatorname{deg}\left(F_{2}^{0}\right)>\mu\left(\left.E\right|_{C \times\left\{y_{0}\right\}}\right)=\frac{1}{2}
$$

since $\left.E\right|_{C \times\left\{y_{0}\right\}}$ is stable. By sequences (4.2) and (4.6), we have

$$
\mu\left(E_{1}\right)=\operatorname{deg}\left(\left.E_{1}\right|_{C \times\left\{y_{0}\right\}}\right)=1-\operatorname{deg}\left(F_{2}^{0}\right)-\operatorname{dim} \tau\left(\left.F_{2}\right|_{C \times\left\{y_{0}\right\}}\right) \leq-1
$$

which, by the formula (4.1), implies that

$$
\Delta(E) \geq 4 c_{2}\left(F_{2}\right)+4\left(\frac{1}{2}+1\right)\left(\mu_{1}-\mu_{2}\right) \geq 10
$$

When $\phi: B \rightarrow M$ passes through a generic point, in order to show $\Delta(E)>12$, we note that $c_{2}\left(F_{2}\right) \neq 0$ and F_{2} being C-flat also imply
that there exists a $t_{0} \in C$ such that $\left.F_{2}\right|_{X_{t_{0}}}$ has torsion $\tau\left(\left.F_{2}\right|_{X_{t_{0}}}\right) \neq 0$. Let $\left.0 \rightarrow \tau\left(\left.F_{2}\right|_{X_{t_{0}}}\right) \rightarrow F_{2}\right|_{X_{t_{0}}} \rightarrow \mathcal{Q} \rightarrow 0$ and $E^{\prime}=\operatorname{ker}\left(E \rightarrow X_{t_{0}} \mathcal{Q}\right)$, then

$$
0 \rightarrow E^{\prime} \rightarrow E \rightarrow X_{t_{0}} \mathcal{Q} \rightarrow 0
$$

which, for any $y \in B$, induces exact sequence

$$
\begin{equation*}
\left.\left.0 \rightarrow E^{\prime}\right|_{C \times\{y\}} \rightarrow E\right|_{C \times\{y\}} \rightarrow{ }_{\left(t_{0}, y\right)} \mathcal{Q} \rightarrow 0 . \tag{4.7}
\end{equation*}
$$

Thus all $E_{y}^{\prime}:=\left.E^{\prime}\right|_{C \times\{y\}}$ are semi-stable of degree 0 . If $\phi: B \rightarrow M$ passes through a generic point, then there is a $y_{0} \in B$ such that $E_{y_{0}}$ is (1, 1)-stable on $X_{y_{0}}=C \times\left\{y_{0}\right\}$, thus $E_{y_{0}}^{\prime}$ is stable by (4.7) and Lemma 3.2. This implies that $\Delta\left(E^{\prime}\right)>0$. Otherwise $\left\{E_{y}^{\prime}\right\}_{y \in B}$ are s-equivalent by applying Theorem 2.4 to $\pi: X \rightarrow B$, which implies $E^{\prime}=f^{*} V \otimes \pi^{*} L$ for a stable bundle V on C and a line bundle L on B. Then $E_{t}=E_{t}^{\prime}=L \oplus L$ for any $t \neq t_{0}$, which is a contradiction since E is not semi-stable on the generic fiber of $f: X \rightarrow C$.

To compute $\Delta\left(E^{\prime}\right)$, consider the Harder-Narasimhan filtration

$$
0 \rightarrow E_{1}^{\prime} \rightarrow E^{\prime} \rightarrow F_{2}^{\prime} \rightarrow 0
$$

over C, let $\mu_{1}^{\prime}=\operatorname{deg}\left(\left.E_{1}^{\prime}\right|_{X_{t}}\right), \mu_{2}^{\prime}=\operatorname{deg}\left(\left.F_{2}^{\prime}\right|_{X_{t}}\right)$ for $t \in C$, then

$$
\Delta\left(E^{\prime}\right)=4 c_{2}\left(F_{2}^{\prime}\right)+4\left(\mu\left(E^{\prime}\right)-\mu\left(E_{1}^{\prime}\right)\right)\left(\mu_{1}^{\prime}-\mu_{2}^{\prime}\right) \geq 8
$$

To see it, we can assume $c_{2}\left(F_{2}^{\prime}\right)=0$, then there are line bundles V_{i}^{\prime} on C and line bundles $\mathcal{O}\left(\mu_{i}^{\prime}\right)$ on B of degree μ_{i}^{\prime} such that

$$
0 \rightarrow f^{*} V_{1}^{\prime} \otimes \pi^{*} \mathcal{O}\left(\mu_{1}^{\prime}-\mu_{2}^{\prime}\right) \rightarrow E^{\prime} \otimes \pi^{*} \mathcal{O}\left(-\mu_{2}^{\prime}\right) \rightarrow f^{*} V_{2}^{\prime} \rightarrow 0
$$

which defines a morphism $\psi: B \rightarrow \mathbb{P}$ to a projective space such that $\mathcal{O}\left(\mu_{1}^{\prime}-\mu_{2}^{\prime}\right)=\psi^{*} \mathcal{O}_{\mathbb{P}}(1)$. Thus $\mu_{1}^{\prime}-\mu_{2}^{\prime} \geq 2$ and $\Delta\left(E^{\prime}\right) \geq 8$. Then

$$
\Delta(E)=\Delta\left(E^{\prime}\right)+4\left(\mu\left(\left.E\right|_{X_{t_{0}}}\right)-\mu(\mathcal{Q})\right) \geq \Delta\left(E^{\prime}\right)+6 \geq 14 .
$$

Now we consider the case that E is semi-stable on the generic fiber of $f: X \rightarrow C$. We can assume $0 \leq \operatorname{deg}\left(\left.E\right|_{X_{t}}\right) \leq 1$ on $X_{t}=f^{-1}(t)$.

Proposition 4.3. When E is semi-stable of degree 1 on the generic fiber of $f: X \rightarrow C$, we have $\Delta(E) \geq 10$. If $g>4$ and $\phi: B \rightarrow M$ passes through the generic point, then $\Delta(E) \geq 14$.

Proof. It is easy to see that there is a unique stable rank 2 vector bundle with a fixed determinant of degree 1 on an elliptic curve. Thus $\Delta(E)>0$ if and only if there exists $t_{1} \in C$ such that $E_{t_{1}}=\left.E\right|_{X_{t_{1}}}$ is not semi-stable.

Let $E_{t_{1}} \rightarrow \mathcal{O}\left(\mu_{1}\right) \rightarrow 0$ be the quotient of minimal degree and

$$
0 \rightarrow E^{(1)} \rightarrow E \rightarrow x_{t_{1}} \mathcal{O}\left(\mu_{1}\right) \rightarrow 0
$$

be the elementary transformation of E along $\mathcal{O}\left(\mu_{1}\right)$ at $X_{t_{1}}$. If $E^{(i)}$ is defined and $\Delta\left(E^{(i)}\right)>0$, let $t_{i+1} \in C$ such that $E_{t_{i+1}}^{(i)}=\left.E^{(i)}\right|_{X_{t_{i+1}}}$ is not semi-stable and $E_{t_{i+1}}^{(i)} \rightarrow \mathcal{O}\left(\mu_{i+1}\right) \rightarrow 0$ be the quotient of minimal degree, then we define $E^{(i+1)}$ to be the elementary transformation of $E^{(i)}$ along $\mathcal{O}\left(\mu_{i+1}\right)$ at $X_{t_{i+1}}$, namely $E^{(i+1)}$ satisfies the exact sequence

$$
\begin{equation*}
0 \rightarrow E^{(i+1)} \rightarrow E^{(i)} \rightarrow X_{t_{i+1}} \mathcal{O}\left(\mu_{i+1}\right) \rightarrow 0 \tag{4.8}
\end{equation*}
$$

Let s be the minimal integer such that $\Delta\left(E^{(s)}\right)=0$. Then

$$
\begin{equation*}
\Delta(E)=2 \cdot s-4 \sum_{i=1}^{s} \mu_{i} \tag{4.9}
\end{equation*}
$$

where $\mu_{i} \leq 0(i=1,2, \ldots, s)$. Take direct image of (4.8), we have

$$
\begin{equation*}
0 \rightarrow f_{*} E^{(s)} \rightarrow f_{*} E^{(s-1)} \rightarrow{ }_{t_{s}} \mathrm{H}^{0}\left(\mathcal{O}\left(\mu_{s}\right)\right) \rightarrow 0 \tag{4.10}
\end{equation*}
$$

(since $\left.R^{1} f_{*} E^{(s)}=0\right)$ and $\operatorname{deg}\left(f_{*} E^{(i+1)}\right) \leq \operatorname{deg}\left(f_{*} E^{(i)}\right)$, which imply

$$
\begin{equation*}
\operatorname{deg}\left(f_{*} E^{(s)}\right) \leq \operatorname{deg}\left(f_{*} E\right)-\operatorname{dim} \mathrm{H}^{0}\left(\mathcal{O}\left(\mu_{s}\right)\right) \tag{4.11}
\end{equation*}
$$

Restrict (4.8) to a fiber $X_{y}=\pi^{-1}(y)$, we have exact sequence

$$
0 \rightarrow E_{y}^{(i+1)} \rightarrow E_{y}^{(i)} \rightarrow{ }_{\left(t_{i+1}, y\right)} \mathbb{C} \rightarrow 0
$$

which implies that

$$
\begin{equation*}
\operatorname{deg}\left(E_{y}^{(s)}\right)=\operatorname{deg}\left(E_{y}\right)-s=1-s \tag{4.12}
\end{equation*}
$$

On the other hand, by Theorem [2.4, $\Delta\left(E^{(s)}\right)=0$ implies that there exist a stable rank 2 vector bundle V of degree 1 on B and a line bundle L on C such that $E^{(s)}=\pi^{*} V \otimes f^{*} L$. It is easy to see

$$
\operatorname{deg}\left(E_{y}^{(s)}\right)=2 \operatorname{deg}(L)=2 \operatorname{deg}\left(f_{*} E^{(s)}\right)
$$

Thus, combine (4.11) and (4.12), we have the inequality

$$
\begin{equation*}
s \geq 1-2 \operatorname{deg}\left(f_{*} E\right)+2 \operatorname{dim} \mathrm{H}^{0}\left(\mathcal{O}\left(\mu_{s}\right)\right) \tag{4.13}
\end{equation*}
$$

We claim that $\operatorname{deg}\left(f_{*} E\right) \leq-1$. To show it, consider

$$
\begin{equation*}
0 \rightarrow \mathcal{F}^{\prime}:=f^{*}\left(f_{*} E\right) \rightarrow E \rightarrow \mathcal{F} \rightarrow 0 \tag{4.14}
\end{equation*}
$$

where \mathcal{F} is locally free on $f^{-1}(C \backslash T)$ and $T \subset C$ is a finite set such that $E_{t}(t \in T)$ is not semi-stable. Thus, for any $y \in B$, the sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{F}_{y}^{\prime} \rightarrow E_{y} \rightarrow \mathcal{F}_{y} \rightarrow 0 \tag{4.15}
\end{equation*}
$$

is still exact, which implies that \mathcal{F} is B-flat (cf. Lemma 2.1.4 of [5]). The sequence (4.15) already implies $\operatorname{deg}\left(f_{*} E\right)=\operatorname{deg}\left(\mathcal{F}_{y}^{\prime}\right) \leq 0$ since E_{y} is stable of degree 1 . Thus \mathcal{F} can not be locally free since

$$
4 \cdot c_{2}(\mathcal{F})=\Delta(E)-4 \cdot \operatorname{deg}\left(f_{*} E\right)+2>0
$$

Then there is at least a $y_{0} \in B$ such that $\mathcal{F}_{y_{0}}$ has torsion, otherwise \mathcal{F} is locally free (cf. Lemma 1.27 of [8]). The stability of $E_{y_{0}}$ implies that $\mathcal{F}_{y_{0}} /$ torsion has degree at least 1 . Thus $\operatorname{deg}\left(\mathcal{F}_{y_{0}}\right) \geq 2$ and

$$
\operatorname{deg}\left(f_{*} E\right)=\operatorname{deg}\left(\mathcal{F}_{y_{0}}^{\prime}\right) \leq-1
$$

which means $s \geq 3+2 \operatorname{dim} \mathrm{H}^{0}\left(\mathcal{O}\left(\mu_{s}\right)\right)$. Therefore, if $\mu_{s}<0$, we have $\Delta(E) \geq 2 \cdot s+4 \geq 10$ by (4.9). If $\mu_{s}=0$, by tensoring E with $\pi^{*} \mathcal{O}\left(\mu_{s}\right)^{-1}$, we may assume $\operatorname{dim} \mathrm{H}^{0}\left(\mathcal{O}\left(\mu_{s}\right)\right)=1$, then $s \geq 5$ and

$$
\Delta(E) \geq 10
$$

If $\phi: B \rightarrow M$ passes through the generic point of M, we claim that $\operatorname{deg}\left(f_{*} E\right) \leq-2$, which implies $\Delta(E) \geq 14$. To prove the claim, assume $\operatorname{deg}\left(f_{*} E\right)=-1$, we will show that $\phi(B)$ lies in a given divisor. Note that \mathcal{F}_{y} must be locally free of degree 2 for generic $y \in B$ (if \mathcal{F}_{y} has nontrivial torsion, then E_{y} has a quotient line bundle of degree at most 1 , which is impossible since E_{y} is $(1,1)$-stable for generic $\left.y \in B\right)$. Thus E_{y} satisfies $0 \rightarrow \xi \rightarrow E_{y} \rightarrow \xi^{-1} \otimes \mathcal{L} \rightarrow 0$ where ξ is a line bundle of degree -1 on C. The locus of such bundles has dimension at most $g+h^{1}\left(\xi^{2} \otimes \mathcal{L}^{-1}\right)-1=2 g+1<\operatorname{dim}(M)$ when $g>4$. We are done.

Now we consider the case that E is semi-stable of degree 0 on the generic fiber of $f: X \rightarrow C$. If E is semi-stable on every fiber of $f: X \rightarrow C$, then E induces a non-trivial morphism

$$
\varphi_{E}: C \rightarrow \mathbb{P}^{1}
$$

(cf. [3]) such that $\varphi_{E}^{*} \mathcal{O}_{\mathbb{P}^{1}}(1)=\Theta(E)=\left(\operatorname{det} f_{!} E\right)^{-1}$, which has degree $c_{2}(E)$ by Grothendieck-Riemann-Roch theorem. Thus

$$
\begin{equation*}
\Delta(E)=4 \cdot c_{2}(E)=4 \cdot \operatorname{deg}\left(\varphi_{E}\right) \geq 8 \tag{4.16}
\end{equation*}
$$

If there is a $t_{0} \in C$ such that $E_{t_{0}}=\left.E\right|_{X_{t_{0}}}$ is not semi-stable on $X_{t_{0}}=$ $f^{-1}\left(t_{0}\right)$, let $E_{t_{0}} \rightarrow \mathcal{O}(\mu) \rightarrow 0$ be the quotient line bundle of minimal degree μ and $E^{\prime}=\operatorname{kernel}\left(E \rightarrow X_{t_{0}} \mathcal{O}(\mu) \rightarrow 0\right)$, then we have

Lemma 4.4. If $\Delta\left(E^{\prime}\right)=0$, then there is a semi-stable vector bundle V on C and a line bundle L of degree 0 on B such that

$$
E^{\prime}=f^{*} V \otimes \pi^{*} L
$$

Proof. By the definition, $\left\{E_{t}^{\prime}=\left.E^{\prime}\right|_{\{t\} \times B}\right\}_{t \in C}$ and $\left\{E_{y}^{\prime}=\left.E^{\prime}\right|_{C \times\{y\}}\right\}_{y \in B}$ are families of semi-stable bundles of degree 0 . Apply Theorem [2.4 to $f: X \rightarrow C$ (resp. $\pi: X \rightarrow B$), then $\Delta\left(E^{\prime}\right)=0$ implies that $\left\{E_{t}^{\prime}\right\}_{t \in C}$ (resp. $\left\{E_{y}^{\prime}\right\}_{y \in B}$) are isomorphic each other. By tensor E (thus E^{\prime}) with $\pi^{*} L^{-1}$ (where L is a line bundle of degree 0 on B), we can assume that $\mathrm{H}^{0}\left(E_{t}^{\prime}\right) \neq 0(\forall t \in C)$, which have dimension at most 2 since E_{t}^{\prime} is
semi-stable of degree 0 . If $\mathrm{H}^{0}\left(E_{t}^{\prime}\right)$ has dimension 2 , then $E^{\prime}=f^{*}\left(f_{*} E^{\prime}\right)$ and we are done.

If $\mathrm{H}^{0}\left(E_{t}^{\prime}\right)$ has dimension 1 , we will show a contradiction. In fact, by the definition of E^{\prime}, we have an exact sequence

$$
\begin{equation*}
0 \rightarrow E^{\prime} \rightarrow E \rightarrow X_{t_{0}} \mathcal{O}(\mu) \rightarrow 0 \tag{4.17}
\end{equation*}
$$

where $\mathcal{O}(\mu)$ is a line bundle on $\left\{t_{0}\right\} \times B \cong B$ of degree $\mu<0$. Then

$$
V_{1}:=f_{*} E=f_{*} E^{\prime}
$$

is a line bundle on C. Since $\left\{E_{t}^{\prime}\right\}_{t \in C}$ are isomorphic each other and $\mathrm{H}^{0}\left(E_{t}^{\prime}\right)$ has dimension 1, we have the exact sequence

$$
\begin{equation*}
0 \rightarrow f^{*} V_{1} \rightarrow E^{\prime} \rightarrow f^{*} V_{2} \otimes \pi^{*} L_{0} \rightarrow 0 \tag{4.18}
\end{equation*}
$$

for a line bundle V_{2} on C and a degree 0 line bundle L_{0} on B. If $L_{0} \neq \mathcal{O}_{B}$, then $R^{i} f_{*}\left(f^{*}\left(V_{2}^{-1} \otimes V_{1}\right) \otimes L_{0}\right)=V_{2}^{-1} \otimes V_{1} \otimes \mathrm{H}^{i}\left(L_{0}\right)=0$ $(i=0,1)$, which implies $\mathrm{H}^{1}\left(X, f^{*}\left(V_{2}^{-1} \otimes V_{1}\right) \otimes L_{0}\right)=0$ and (4.18) is splitting. This is impossible since E_{y}^{\prime} is semi-stable of degree 0 and we can show that $\operatorname{deg}\left(V_{1}\right)=\operatorname{deg}\left(f_{*} E\right) \leq-1$ in the following.

To prove that $\operatorname{deg}\left(f_{*} E\right) \leq-1$, we consider the exact sequence

$$
\begin{equation*}
0 \rightarrow f^{*} f_{*} E \rightarrow E \rightarrow \mathcal{F} \rightarrow 0 \tag{4.19}
\end{equation*}
$$

where $\left.\mathcal{F}\right|_{f^{-1}\left(C \backslash\left\{t_{0}\right\}\right)}$ is locally free of rank 1 by (4.18). But \mathcal{F} is not locally free (otherwise $c_{2}(E)=\left(c_{1}(E)-c_{1}\left(f^{*} f_{*} E\right)\right) \cdot c_{1}\left(f^{*} f_{*} E\right)=0$) and for any $y \in B$ the restriction of (4.19) to $X_{y}=\pi^{-1}(y)$

$$
\begin{equation*}
0 \rightarrow f_{*} E \rightarrow E_{y} \rightarrow \mathcal{F}_{y} \rightarrow 0 \tag{4.20}
\end{equation*}
$$

is exact, which means that \mathcal{F} is B-flat (cf. Lemma 2.1.4 of [5). Thus, by Lemma 1.27 of [8$]$, there is a $y_{0} \in B$ such that $\mathcal{F}_{y_{0}}$ has torsion $\tau \neq 0$ since \mathcal{F} is not locally free. Then, since $E_{y_{0}}$ is stable of degree 1 ,

$$
\operatorname{deg}\left(\mathcal{F}_{y_{0}}\right) \geq 1+\operatorname{deg}\left(\mathcal{F}_{y_{0}} / \tau\right)>1+\mu\left(E_{y_{0}}\right)=\frac{3}{2}
$$

which implies $\operatorname{deg}\left(f_{*} E\right) \leq-1$ by (4.20).
We have shown that L_{0} has to be \mathcal{O}_{B} and (4.18) has to be

$$
\begin{equation*}
0 \rightarrow f^{*} V_{1} \rightarrow E^{\prime} \rightarrow f^{*} V_{2} \rightarrow 0 \tag{4.21}
\end{equation*}
$$

which is determined by a class of $\mathrm{H}^{1}\left(X, f^{*}\left(V_{1} \otimes V_{2}^{-1}\right)\right)$. However, note $R^{1} f_{*}\left(f^{*}\left(V_{1} \otimes V_{2}^{-1}\right)\right)=V_{1} \otimes V_{2}^{-1} \otimes \mathrm{H}^{1}\left(\mathcal{O}_{B}\right)=V_{1} \otimes V_{2}^{-1}$ and

$$
\mathrm{H}^{0}\left(C, V_{1} \otimes V_{2}^{-1}\right)=0
$$

by using Leray spectral sequence, we have

$$
\mathrm{H}^{1}\left(C, V_{1} \otimes V_{2}^{-1}\right) \cong \mathrm{H}^{1}\left(X, f^{*}\left(V_{1} \otimes V_{2}^{-1}\right)\right)
$$

Hence there exists an extension $0 \rightarrow V_{1} \rightarrow V \rightarrow V_{2} \rightarrow 0$ on C such that $E^{\prime} \cong f^{*} V$, which contradicts the assumption

$$
\operatorname{dim}\left(\mathrm{H}^{0}\left(\{t\} \times B, E_{t}^{\prime}\right)\right)=1
$$

Proposition 4.5. When E is semi-stable of degree 0 on the generic fiber of $f: X \rightarrow C$, we have $\Delta(E) \geq 8$. If C is not hyper-elliptic and $\phi: B \rightarrow M$ passes through a $(1,1)$-stable bundle, assume that E defines an essential elliptic curve, then $\Delta(E) \geq 12$.

Proof. If E is semi-stable on each fiber $X_{t}=f^{-1}(t)$, then E induces a non-trivial morphism $\varphi_{E}: C \rightarrow \mathbb{P}^{1}$. By (4.16), $\quad \Delta(E) \geq 8$.

If there is a $t_{0} \in C$ such that $E_{t_{0}}$ is not semi-stable, then we have

$$
0 \rightarrow E^{\prime} \rightarrow E \rightarrow X_{t_{0}} \mathcal{O}(\mu) \rightarrow 0
$$

where $\mathcal{O}(\mu)$ is a line bundle of degree μ on B. If $\Delta\left(E^{\prime}\right) \neq 0$, then $\Delta\left(E^{\prime}\right)>0$ by Theorem [2.4. On the other hand, $c_{1}\left(E^{\prime}\right)^{2}=0$ since E^{\prime} has degree 0 on the generic fiber of $X \rightarrow C$ and $\operatorname{Pic}(C \times B)=$ $\operatorname{Pic}(C) \times \operatorname{Pic}(B)$. Thus $\Delta\left(E^{\prime}\right)=4 \cdot c_{2}\left(E^{\prime}\right) \geq 4$, and by Lemma 2.6

$$
\Delta(E)=\Delta\left(E^{\prime}\right)-4 \mu \geq 8
$$

If $\Delta\left(E^{\prime}\right)=0$, by Lemma 4.4, we can assume that $E^{\prime}=f^{*} V$, then the sequence (4.17) induces a nontrivial morphism $\varphi: B \rightarrow \mathbb{P}\left(V_{t_{0}}^{\vee}\right)$ such that $\mathcal{O}(-\mu)=\varphi^{*} \mathcal{O}_{\mathbb{P}\left(V_{t_{0}}^{\vee}\right)}(1)$. Thus $\Delta(E)=-4 \mu \geq 8$.

Now we assume that C is not hyper-elliptic and $\phi: B \rightarrow M$ passes through a $(1,1)$-stable bundle. If E is semi-stable on each fiber X_{t}, then $\Delta(E)=4 \cdot \operatorname{deg}\left(\varphi_{E}\right) \geq 12$ by (4.16) since C is not hyper-elliptic.

If there is $t_{0} \in C$ such that $E_{t_{0}}$ is not semi-stable, we claim $\Delta\left(E^{\prime}\right)>0$ since $\phi: B \rightarrow M$ passes through a $(1,1)$-stable bundle. Otherwise, $E^{\prime}=f^{*} V$ where V is a $(1,0)$-stable by Lemma 3.2, then sequence (4.17) implies that $\phi: B \rightarrow M$ factors through a Hecke curve, which implies that $\phi: B \rightarrow M$ is not an essential elliptic curve. If E^{\prime} is semi-stable on each fiber X_{t}, then E^{\prime} defines a nontrivial morphism $\varphi_{E^{\prime}}: C \rightarrow \mathbb{P}^{1}$ such that $\varphi^{*} \mathcal{O}_{\mathbb{P}^{1}}(1)=\Theta\left(E^{\prime}\right)=\left(\operatorname{det} f_{!} E^{\prime}\right)^{-1}=c_{2}\left(E^{\prime}\right)$. Thus $\Delta\left(E^{\prime}\right)=4 \cdot \operatorname{deg}\left(\varphi_{E^{\prime}}\right) \geq 12$ and $\Delta(E)=\Delta\left(E^{\prime}\right)-4 \mu \geq 16$.

If there is $t_{0}^{\prime} \in C$ such that $E_{t_{0}}^{\prime}$ is not semi-stable, then we have

$$
\begin{equation*}
0 \rightarrow \mathcal{F} \rightarrow E^{\prime} \rightarrow x_{t_{0}^{\prime}} \mathcal{O}\left(\mu^{\prime}\right) \rightarrow 0 \tag{4.22}
\end{equation*}
$$

where $\mathcal{F}_{y}=\left.\mathcal{F}\right|_{C \times\{y\}}$ is stable of degre -1 for generic $y \in B$ since E_{y}^{\prime} is stable of degree 0 . If $\Delta(\mathcal{F}) \neq 0$, it is clear that $\Delta(\mathcal{F})=4 \cdot c_{2}(\mathcal{F}) \geq 4$ and $\Delta(E)=\Delta(\mathcal{F})-4 \mu^{\prime}-4 \mu \geq 12$. If $\Delta(\mathcal{F})=0$, by Theorem 2.4, there is a stable vector bundle V^{\prime} on C such that $\mathcal{F}_{y} \cong V^{\prime}$ for all $y \in B$.

Then we can choose $\mathcal{F}=f^{*} V^{\prime}$, the sequence (4.22) induces a nontrivial morphism $\varphi: B \rightarrow \mathbb{P}\left(V_{t_{0}^{\prime}}^{\prime}\right)$ such that $\mathcal{O}\left(-\mu^{\prime}\right)=\varphi^{*} \mathcal{O}_{\mathbb{P}\left(V_{t_{0}^{\prime}}^{\prime \vee}\right)}(1)$. Thus $\Delta\left(E^{\prime}\right)=-4 \mu^{\prime} \geq 8$ and $\Delta(E)=\Delta\left(E^{\prime}\right)-4 \mu \geq 12$.

We have seen in Example 3.6 the existence of essential elliptic curves of degree $6(r, d)$ (which is 6 in our case). Then we have shown

Theorem 4.6. Let $M=\mathcal{S U}_{C}(2, \mathcal{L})$ be the moduli space of rank two stable bundles on C with a fixed determinant of degree 1. Then, when C is generic, any essential elliptic curve $\phi: B \rightarrow M$ has degree

$$
\operatorname{deg} \phi^{*}\left(-K_{M}\right) \geq 6
$$

and $\operatorname{deg} \phi^{*}\left(-K_{M}\right)=6$ if and only if $\phi: B \rightarrow M$ factors through

$$
\phi: B \xrightarrow{\psi} q^{-1}(\xi)=\mathbb{P}\left(\mathrm{H}^{1}\left(V_{2}^{\vee} \otimes V_{1}\right)\right) \xrightarrow{\Phi_{\xi}} M
$$

for some $\xi=\left(V_{1}, V_{2}\right)$ such that $\psi^{*} \mathcal{O}_{\mathbb{P}\left(\mathrm{H}^{1}\left(V_{2}^{\vee} \otimes V_{1}\right)\right)}(1)$ has degree 3 .
Proof. By Proposition4.2, Proposition 4.3 and Proposition 4.5, we have $\Delta(E) \geq 6$. The possible case $\Delta(E)=6$ occurs only in Proposition 4.2 when $c_{2}\left(F_{2}\right)=0$. This implies that E must satisfy

$$
0 \rightarrow f^{*} V_{1} \otimes \pi^{*} \mathcal{O}\left(\mu_{1}-\mu_{2}\right) \rightarrow E \rightarrow f^{*} V_{2} \rightarrow 0
$$

which defines $\psi: B \rightarrow \mathbb{P}\left(\mathrm{H}^{1}\left(V_{2}^{\vee} \otimes V_{1}\right)\right)$ such that $\psi^{*} \mathcal{O}_{\mathbb{P}\left(\mathrm{H}^{1}\left(V_{2}^{\vee} \otimes V_{1}\right)\right)}(1)$ has degree $\mu_{1}-\mu_{2}$. Then $\Delta(E)=6$ and (4.1) imply $\mu_{1}-\mu_{2}=3$.

Theorem 4.7. When $g>4$ and C is generic, any essential elliptic curve $\phi: B \rightarrow M=\mathcal{S U}_{C}(2, \mathcal{L})$ that passes through the generic point must have $\operatorname{deg} \phi^{*}\left(-K_{M}\right) \geq 12$.

For $r>2$, let $M=\mathcal{S U}_{C}(r, \mathcal{L})$ where \mathcal{L} is a line bundle of degree d. What is the minimal degree of essential elliptic curves on M ? I expect the following conjecture to be true.

Conjecture 4.8. Let $\phi: B \rightarrow M=\mathcal{S U}_{C}(r, \mathcal{L})^{s}$ be an essential elliptic curve defined by a vector bundle E on $C \times M$. Then, when C is a generic curve, we have

$$
\operatorname{deg} \phi^{*}\left(-K_{M}\right) \geq 6(r, d)
$$

When $(r, d) \neq r$, then $\operatorname{deg} \phi^{*}\left(-K_{M}\right)=6(r, d)$ if and only if it is an elliptic curve of split type in Example 3.6. If $\phi: B \rightarrow M$ passes through the generic point and $g>4$, then $\operatorname{deg} \phi^{*}\left(-K_{M}\right) \geq 6 r$.

References

[1] G. Faltings: Stable G-bundles and projective connections, J. Algebraic Geom. 2 (1993), 507-568
[2] R. Friedman: Algebraic surfaces and holomorphic vector bundles, Universitext, Springer Verlag (1998), 291-345
[3] R. Friedman, J.W. Morgan and E. Witten: Vector bundles over elliptic fibrations, J. Algebraic Geom. 8 (1999), no. 2, 279-401
[4] G. Hein: Generalized Albanese morphisms, Compositio Math. 142 (2006), 719733
[5] D. Huybrechts and M. Lehn: The geometry of moduli spaces of sheaves, Aspects of Mathematics, Vieweg, Braunschweig, (1997).
[6] N. Mok and X. Sun: Remarks on lines and Minimal rational curves, Science in China, Series A: Mathematics 52 (2005), no. 4, 617-630.
[7] M. S. Narasimhan and S. Ramanan: Geometry of Hecke cycles I, C. P. Ramanujam-a tribute, Springer Verlag (1978), 291-345
[8] C. Simpson: Moduli of representations of the fundamental group of a smooth projective variety I , I.H.E.S. Publications Mathématiques 79 (1994), 47-129.
[9] X. Sun: Minimal rational curves on moduli spaces of stable bundles, Math. Ann. 331 (2005), 925-973.

Chinese Academy of Mathematics and Systems Science, Beijing, P. R. of China

E-mail address: xsun@math.ac.cn

[^0]: Date: September 8, 2010.
 Partially supported by NBRPC 2011CB302400 and NSFC (No. 10731030).

