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ELLIPTIC CURVES IN MODULI SPACE OF STABLE

BUNDLES

XIAOTAO SUN

Dedicated to the memory of Eckart Viehweg

Abstract. Let M be the moduli space of rank 2 stable bundles
with fixed determinant of degree 1 on a smooth projective curve
C of genus g ≥ 2. When C is generic, we show that any elliptic
curve on M has degree (respect to anti-canonical divisor −KM )
at least 6, and we give a complete classification for elliptic curves
of degree 6. Moreover, if g > 4, we show that any elliptic curve
passing through the generic point of M has degree at least 12. We
also formulate a conjecture for higher rank.

1. Introduction

Let C be a smooth projective curve of genus g ≥ 2 and L be a line
bundle of degree d on C. Let M := SUC(r,L)

s be the moduli space
of stable vector bundles on C of rank r and with fixed determinant L,
which is a smooth qusi-projective Fano variety with Pic(M) = Z · Θ
and −KM = 2(r, d)Θ, where Θ is an ample divisor. Let B be a smooth
projective curve of genus b. The degree of a curve φ : B → M is defined
to be degφ∗(−KM). It seems quite natural to ask what is the lower
bound of degree and to classify the curves of lowest degree.
When B = P1, we have determined all φ : P1 → M with lowest

degree in [6] and all φ : P1 → M passing through the generic point of
M with lowest degree in [9]. In fact, one can construct φ : P → M
for various projective spaces P such that φ∗(−KM ) = OP(2(r, d)), and
φ : Pr−1 → M passing through the generic point of M such that
φ∗(−KM) = OPr−1(2r). Then it was proved in [6] and [9] that the
images of lines in these projective spaces exhaust all minimal rational
curves on M (resp. minimal rational curves passing through generic
point of M). Some applications of the results were also pointed out in
[6] and [9]. Thus it is natural to ask what are the situation when b > 0.
This note is a start to study the case of b = 1. It may happen that the
normalization of φ(B) is P1. To avoid this case, we call φ : B → M
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an essential elliptic curve of M if the normalization of φ(B) is an
elliptic curve.
It is easy to construct essential elliptic curves of degree 6(r, d) on

M , and essential elliptic curves of degree 6r that pass through the
generic point of M . For example, for smooth elliptic curves B ⊂ P

of degree 3, the morphism φ : P → M defines essential elliptic curves
φ|B : B → M of degree 6(r, d) (See Example 3.6), which are called
elliptic curves of split type. For smooth elliptic curves B ⊂ Pr−1 of
degree 3, the morphism φ : Pr−1 → M defines essential elliptic curves
φ|B : B →M of degree 6r passing through the generic point ofM (See
Example 3.5), which are called elliptic curves of Hecke type. Are
they minimal elliptic curves ofM (resp. minimal elliptic curves passing
through generic point of M)? Do they exhaust all minimal essential
elliptic curves on M (See Conjecture 4.8 for detail)?
In this note, we consider the case that r = 2 and d = 1, then M

is a smooth projective fano manifold of dimension 3g − 3. When C
is generic, we show that any essential elliptic curve φ : B → M has
degree at least 6, and it must be an elliptic curve of split type if
it has degree 6 (See Theorem 4.6). When g > 4 and C is generic, we
show that any essential elliptic curve φ : B → M passing through the
generic point ofM have degree at least 12 (See Theorem 4.7). When C
is generic, there is no nontrivial morphism from C to an elliptic curve,
which implies that Pic(C × B) = Pic(C)× Pic(B). It is the condition
that we need through the whole paper.
We give a brief description of the article. In Section 2, we show

a formula of degree for general case. In Section 3, we show how the
general formula implies the known case B = P1 and construct the
examples of essential elliptic curves of degree 6(r, d) and 6r. In Section
4, we prove the main theorems (Theorem 4.6 and Theorem 4.7), which
is the special case r = 2, d = 1 of Conjecture 4.8. Although I believe
the conjecture, I leave the case of r > 2 to other occasion.

2. The degree formula of curves in moduli spaces

Let C be a smooth projective curve of genus g ≥ 2 and L a line
bundle on C of degree d. Let M = SUC(r,L)

s be the moduli spaces
of stable bundles on C of rank r, with fixed determinant L. It is well-
known that Pic(M) = Z ·Θ, where Θ is an ample divisor.

Lemma 2.1. For any smooth projective curve B of genus b, if

φ : B → M



ELLIPTIC CURVES IN MODULI SPACE OF STABLE BUNDLES 3

is defined by a vector bundle E on C × B, then

degφ∗(−KM) = c2(End
0(E)) = 2rc2(E)− (r − 1)c1(E)

2 := ∆(E)

Proof. In general, there is no universal bundle on C ×M , but there
exist vector bundle End0 and projective bundle P on C ×M such that
End0|C×{[V ]} = End0(V ) and P|C×{[V ]} = P(V ) for any [V ] ∈ M . Let
π : C × M → M be the projection, then TM = R1π∗(End

0), which
commutes with base changes since π∗(End

0) = 0.
For any curve φ : B → M , let X := C × B, E = (id × φ)∗End0 and

π : X = C ×B → B still denote the projection. Then φ∗TM = R1π∗E.
By Riemann-Roch theorem, we have

degφ∗(−KM) = χ(R1π∗E) + (r2 − 1)(g − 1)(b− 1).

By using Leray spectral sequence and χ(E) = deg(ch(E) · td(TX))2, we
have χ(R1π∗E) = −χ(E) = c2(E)− (r2 − 1)(g − 1)(b− 1), hence

degφ∗(−KM) = c2(E).

If φ : B → M is defined by a vector bundle E on X = C × B, then
E = End0(E) (cf. the proof of lemma 2.1 in [9]). Thus

degφ∗(−KM ) = c2(End
0(E)) = 2rc2(E)− (r − 1)c1(E)

2.

�

Let f : X → C be the projection. Then, for any vector bundle E on
X , there is a relative Harder-Narasimhan filtration (cf Theorem 2.3.2,
page 45 in [5])

0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E

such that Fi = Ei/Ei−1 (i = 1, ... n) are flat over C and its restriction
to general fiber Xp = f−1(p) is the Harder-Narasimhan filtration of
E|Xp

. Thus Fi are semi-stable of slop µi at generic fiber of f : X → B
with µ1 > µ2 > · · · > µn. Then we have the following theorem

Theorem 2.2. For any vector bundle E of rank r on X, let

0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E

be the relative Harder-Narasimhan filtration over C with Fi = Ei/Ei−1

and µi = µ(Fi|f−1(x)) for generic x ∈ C. Let µ(E) and µ(Ei) denote

the slop of E|π−1(b) and Ei|π−1(b) for generic b ∈ B. Then, if

Pic(C ×B) = Pic(C)× Pic(B),
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we have the following formula

∆(E) = 2r













n
∑

i=1

(

c2(Fi)−
rk(Fi)− 1

2 rk(Fi)
c1(Fi)

2

)

+
n−1
∑

i=1

(µ(E)− µ(Ei))rk(Ei)(µi − µi+1)













.(2.1)

Proof. It is easy to see that

2c2(E) = 2
n
∑

i=1

c2(Fi) + 2
n
∑

i=1

c1(Ei−1)c1(Fi)

= 2

n
∑

i=1

c2(Fi) + c1(E)
2 −

n
∑

i=1

c1(Fi)
2.

Thus

∆(E) = 2r
n
∑

i=1

c2(Fi) + c1(E)
2 − r

n
∑

i=1

c1(Fi)
2.

Let ri be the rank of Fi and di be the degree of Fi on the generic
fiber of π : C × B → B. Then we can write

c1(Fi) = f ∗OC(di) + π∗OB(riµi)

where OC(di) (resp. OB(riµi)) denotes a divisor of degree di (resp.
degree riµi) of C (resp. B). Note that

c1(Fi)
2 = 2diriµi, c1(E)

2 = 2d

n
∑

i=1

riµi

we have

∆(E) = 2r

(

n
∑

i=1

c2(Fi) + µ(E)
n
∑

i=1

riµi −
n
∑

i=1

diriµi

)

= 2r

(

n
∑

i=1

(c2(Fi)− (ri − 1)diµi) + µ(E)
n
∑

i=1

riµi −
n
∑

i=1

diµi

)

.

Let deg(Ei) denote the degree of Ei on the generic fiber of

π : C × B → B.

Using di = deg(Ei)− deg(Ei−1) and ri = rk(Ei)− rk(Ei−1), we have

µ(E)

n
∑

i=1

riµi −
n
∑

i=1

diµi =

n−1
∑

i=1

(µ(E)− µ(Ei))rk(Ei)(µi − µi+1).
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Since diµi = c1(Fi)
2/2ri, we get the formula

∆(E) = 2r













n
∑

i=1

(

c2(Fi)−
ri − 1

2ri
c1(Fi)

2

)

+

n−1
∑

i=1

(µ(E)− µ(Ei))rk(Ei)(µi − µi+1)













.

�

Remark 2.3. I do not know if the formula holds without the assump-
tion that Pic(C × B) = Pic(C) × Pic(B). On the other hand, the
assumption holds when B is an elliptic curve and C is generic.

Theorem 2.4. For any torsion free sheaf F on X = C × B, if its

restriction to a fiber of f : X = C × B → C is semi-stable, then

∆(F) = 2 rk(F) c2(F)− (rk(F)− 1)c1(F)2 ≥ 0.

If the determinants {det(F∗∗)x}x∈C are isomorphic each other, then

∆(F) = 0 if and only if F is locally free and satisfies

• All the bundles {Fx := F|{x}×B}x∈C are semi-stable and s-
equivalent each other.

• All the bundles {Fy := F|C×{y}}y∈B are isomorphic each other.

Proof. Since ∆(F) ≥ ∆(F∗∗), we can assume that F is a vector bun-
dle. There is a x ∈ C such that Fx = F|{x}×B is semi-stable, so is
End0(F)x = End0(Fx). Thus, by a theorem of Faltings (cf. Theorem
I.2. of [1]), there is a vector bundle V on B such that

H0(End0(F)x ⊗ V ) = H1(End0(F)x ⊗ V ) = 0,

which defines a global section ϑ(V ) of the line bundle

Θ(End0(F)⊗ π∗V ) = (detf!(End
0(F)⊗ π∗V ))−1

such that ϑ(V )(x) 6= 0. By Grothendieck-Riemann-Roch theorem,

c1(detf!(End
0(F)⊗ π∗V )) = f∗(ch(End

0(F)⊗ π∗V )td(π∗TB))2

= −c2(End
0(F)⊗ π∗V )

which means that the line bundle Θ(End0(F)⊗ π∗V ) has degree

c2(End
0(F)⊗ π∗V ) = rk(V ) · c2(End

0(F)) = rk(V ) ·∆(F)

with a nonzero global section ϑ(V ). Thus ∆(F) ≥ 0.
If ∆(F) = 0, then F = F∗∗ must be locally free and ϑ(V )(x) 6= 0

for any x ∈ C, which means that for any x ∈ C, we have

H0(End0(F)x ⊗ V ) = H1(End0(F)x ⊗ V ) = 0.
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Then, by the theorem of Faltings, the bundles

{ End0(F)x }x∈C

are all semi-stable. Thus, for any x ∈ C, the bundle Fx := F|{x}×B is
semi-stable. The bundle F defines a morphism φF : C → UB from C
to the moduli space UB of semi-stable bundles on B, the line bundle
Θ(End0(F) ⊗ π∗V ) clearly descends to a line bundle on UB. If the
determinants det(Fx) (x ∈ C) are fixed, then

deg(Θ(End0(F)⊗ π∗V )) = 0

means that all {Fx}x∈C are s-equivalence.
By using a technique of [4] (see Step 5 in the proof of Theorem 4.2

in [4], see also the proof of Theorem I.4 in [1]), we will show

F|C×{y1}
∼= F|C×{y2}, ∀ y1, y2 ∈ B.

Choose a nontrivial extension 0 → V → V ′ q1
−→ Oy1 → 0 on B, let Q

be the Quot-scheme of rank 0 and degree 1 quotients of V ′, and

0 → K → p∗BV
′ → T → 0

be the tautological exact sequence on B×Q. Fix a point x1 ∈ C, then
the set q ∈ Q such that H0(Fx1 ⊗ Kq) = H1(Fx1 ⊗ Kq) = 0 is an open

set U ⊂ Q and U 6= ∅ since q1 = (0 → V → V ′ q1
−→ Oy1 → 0) ∈ U .

Let Γ ⊂ B × P(V ′) be the graph of P(V ′)
p
−→ B, then

p∗BV
′ → p∗BV

′|Γ = p∗V ′ → O(1) → 0

induces a quotient p∗BV
′ → ΓO(1) → 0 on B × P(V ′), which defines a

morphism P(V ′) → Q. It is easy to see that P(V ′) → Q is surjective
(in fact, it is a isomorphism). Thus there is an open B1 ⊂ B with
y1 ∈ B1 such that for any y ∈ B1 there exists an exact sequence

0 → Kq → V ′ q
−→ Oy → 0(2.2)

such that H0(Fx1 ⊗Kq) = H1(Fx1 ⊗Kq) = 0, which implies

H0(Fx ⊗Kq) = H1(Fx ⊗Kq) = 0 ∀ x ∈ C

since Fx is s-equivalent to Fx1 for any x ∈ C. Pull back the exact
sequence (2.2) by π : C×B → B and tensor with F , we have the exact
sequence

0 → F ⊗ π∗Kq → F ⊗ π∗V ′ → Fy → 0.(2.3)

Take direct images of (2.2) under f : C ×B → C, we have

Fy
∼= f∗(F ⊗ π∗V ′) , ∀ y ∈ B1

which implies that all {Fy}y∈B are isomorphic each other. �
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We will need the following lemma in the later computation, whose
proof are straightforward computations (see [2] for the case of rank 1).

Lemma 2.5. Let X be a smooth projective surface and j : D →֒ X be

an effective divisor. Then, for any vector bundle V on D, we have

c1(j∗V ) = rk(V ) ·D

c2(j∗V ) =
rk(V )(rk(V ) + 1)

2
D2 − j∗c1(V ).

Recall that Xt = f−1(t) denotes the fiber of f : X → C and for any
vector bundle F on X , Ft denote the restrictions of F to Xt.

Lemma 2.6. Let Ft →W → 0 be a locally free quotient and

0 → F ′ → F → Xt
W → 0

be the elementary transformation of F along W at Xt ⊂ X. Then

∆(F) = ∆(F ′) + 2r(µ(Ft)− µ(W ))rk(W ).

3. Mminimal rational curves and examples of elliptic

curves on moduli spaces

When B = P1, the condition Pic(C ×B) = Pic(C)× Pic(B) always
hold and any morphism B →M is defined by a vector bundle on C×B
(cf. Lemma 2.1 of [9]).
Recall that given two nonnegative integers k, ℓ, a vector bundleW of

rank r and degree d on C is (k, ℓ)-stable, if, for each proper subbundle
W ′ of W , we have

deg(W ′) + k

rk(W ′)
<

deg(W ) + k − ℓ

r
.

The usual stability is equivalent to (0, 0)-stability. The (k, ℓ)-stability
is an open condition. The proofs of following lemmas are easy and
elementary (cf. [7]).

Lemma 3.1. If g ≥ 3, M contains (0, 1)-stable and (0, 1)-stable bun-

dles. M contains a (1, 1)-stable bundle W except g = 3, d, r both

even.

Lemma 3.2. Let 0 → V → W → Op → 0 be an exact sequence,

where Op is the 1-dimensional skyscraper sheaf at p ∈ C. If W is

(k, ℓ)-stable, then V is (k, ℓ− 1)-stable.
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A curve B →M defined by E on C ×B passes through the generic
point ofM implies that Ey := E|C×{y} is (1, 1)-stable for generic y ∈ B.
Thus in the formula (2.1) of Theorem 2.2 we have

(µ(E)− µ(Ei))rk(Ei) > 1.(3.1)

On the other hand, any semi-stable bundle on B = P1 must have
integer slop. By the formula (2.1) in Theorem 2.2, we have

∆(E) > 2r

if E is not semi-stable on the generic fiber of f : X = C × P1 → C.
When E is semi-stable on the generic fiber of f : X → C, by tensor E

with a line bundle, we can assume that E is trivial on the generic fiber
of f : X → C. Thus ∆(E) = 2rc2(E) ≥ 2r and there must be a fiber
Xt = f−1(t) such that Et = E|Xt

is not semi-stable by Theorem 2.4. If
∆(E) = 2r, by Lemma 2.6, we must have rk(W ) = 1, µ(W ) = −1 and
∆(F ′) = 0 in Lemma 2.6. Thus ∆(E) = 2r if and only if E satisfies

0 → f ∗V → E → Xt
OP1(−1) → 0

which defines a so called Hecke curve. Therefore we get the main
theorem in [9].

Theorem 3.3. If g ≥ 3, then any rational curve of M passing through

the generic point of M has at least degree 2r with respect to −KM . It

has degree 2r if and only if it is a Hecke curve except g = 3, r = 2 and

(2, d) = 2.

At the end of this section, we give some examples of elliptic curves
on M . Let us recall the construction of Hecke curves. Let UC(r, d− 1)
be the moduli space of stable bundles of rank r and degree d− 1. Let

O ⊂ UC(r, d− 1)

be the open set of (1, 0)-stable bundles. Let C×O
ψ
−→ Jd(C) be defined

as ψ(x, V ) = OC(x)⊗ det(V ) and

RC := ψ−1(L) ⊂ C ×O,

which consists of the points (x, V ) such that V are (1, 0)-stable bundles
on C with det(V ) = L(−x). There exists a projective bundle

p : P → RC

such that for any (x, V ) ∈ RC we have p−1(x, V ) = P(V ∨
x ). Let

V ∨
x ⊗OP(V ∨

x ) → OP(V ∨
x )(1) → 0

be the universal quotient, f : C × P(V ∨
x ) → C be the projection, and

0 → E
∨ → f ∗V ∨ → {x}×P(V ∨

x )OP(V ∨
x )(1) → 0



ELLIPTIC CURVES IN MODULI SPACE OF STABLE BUNDLES 9

where E ∨ is defined to the kernel of the surjection. Take dual, we have

0 → f ∗V → E → {x}×P(V ∨
x )OP(V ∨

x )(−1) → 0,(3.2)

which, at any point ξ = (V ∨
x → Λ → 0) ∈ P(V ∨

x ), gives exact sequence

0 → V
ι
−→ Eξ → Ox → 0

on C such that ker(ιx) = Λ∨ ⊂ Vx. V being (1, 0)-stable implies
stability of Eξ. Thus (3.2) defines

Ψ(x,V ) : P(V ∨
x ) = p−1(x, V ) →M.(3.3)

Definition 3.4. The images (under {Ψ(x,V )}(x,V )∈RC
) of lines in the

fibres of p : P → RC are the so called Hecke curves in M . The
images (under {Ψ(x,V )}(x,V )∈RC

) of elliptic curves in the fibres of

p : P → RC

are called elliptic curves of Hecke type.

It is known (cf. [7, Lemma 5.9]) that the morphisms in (3.3) are
closed immersions. By a straightforward computation, we have

Ψ∗
(x,V )(−KM ) = OP(V ∨

x )(2r).(3.4)

For any point [W ] ∈ M and (Wx → C → 0) ∈ P(Wx), where W is
(1, 1)-stable, we define a (1, 0)-stable bundle V by

0 → V
α
−→W → xC → 0.

Then the images of p−1(x, V ) = P(V ∨
x ) are projective spaces that pass

through [W ] ∈ M , and the images of lines ℓ ⊂ P(V ∨
x ) that pass through

[ker(αx)] ∈ P(V ∨
x ) are Hecke curves passing through [W ] ∈M .

Example 3.5. When g ≥ 4 and r > 2, for generic [W ] ∈M , the images
of smooth elliptic curves B ⊂ P(V ∨

x ) with degree 3 and [ker(αx)] ∈ B
are smooth elliptic curves on M that pass through [W ] ∈ M , which
have degree 6r by (3.4).

If we do not require the curve φ : B → M passing through generic
point of M , we may construct rational curves and elliptic curves with
smaller degree. Let us recall the Construction 2.3 from [6].
For any given r and d, let r1, r2 be positive integers and d1, d2 be

integers that satisfy the equalities r1 + r2 = r, d1 + d2 = d and

r1
d

(r, d)
− d1

r

(r, d)
= 1, d2

r

(r, d)
− r2

d

(r, d)
= 1.

Let UC(r1, d1) (resp. UC(r2, d2)) be the moduli space of stable vector
bundles with rank r1 (resp. r2) and degree d1 (resp. d2). Then, since
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(r1, d1) = 1 and (r2, d2) = 1, there are universal vector bundles V1, V2

on C × UC(r1, d1) and C × UC(r2, d2) respectively. Consider

UC(r1, d1)× UC(r2, d2)
det(•)×det(•)
−−−−−−−→ Jd1C × Jd2C

(•)⊗(•)
−−−−→ JdC ,

let R(r1, d1) be its fiber at [L] ∈ JdC . The pullback of V1, V2 by the
projection C ×R(r1, d1) → C × UC(ri, di) (i = 1, 2) is still denoted by
V1, V2 respectively. Let p : C ×R(r1, d1) → R(r1, d1) and

G = R1p∗(V
∨
2 ⊗ V1),

which is locally free of rank r1r2(g − 1) + (r, d). Let

q : P (r1, d1) = P(G) → R(r1, d1)

be the projective bundle parametrzing 1-dimensional subspaces of Gt
(t ∈ R(r1, d1)) and f : C×P (r1, d1) → C, π : C×P (r1, d1) → P (r1, d1)
be the projections. Then there is a universal extension

0 → (id× q)∗V1 ⊗ π∗OP (r1,d1)(1) → E → (id× q)∗V2 → 0(3.5)

on C×P (r1, d1) such that for any x = ([V1], [V2], [e]) ∈ P (r1, d1), where
[Vi] ∈ UC(ri, di) with det(V1) ⊗ det(V2) = L and [e] ⊂ H1(C, V ∨

2 ⊗ V1)
being a line through the origin, the bundle E|C×{x} is the isomorphic
class of vector bundles E given by extensions

0 → V1 → V → V2 → 0

that defined by vectors on the line [e] ⊂ H1(C, V ∨
2 ⊗V1). Then V must

be stable by [6, Lemma 2.2], and the sequence (3.5) defines

Φ : P (r1, d1) → SUC(r,L)
s =M.

On each fiber q−1(ξ) = P(H1(V ∨
2 ⊗ V1)) at ξ = (V1, V2), the morphisms

Φξ := Φ|q−1(ξ) : q
−1(ξ) = P(H1(V ∨

2 ⊗ V1)) → M(3.6)

is birational and Φ∗
ξ(−KM ) = OP(H1(V ∨

2
⊗V1))(2(r, d)) by [6, Lemma 2.4].

Example 3.6. The images of lines ℓ ⊂ P(H1(V ∨
2 ⊗ V1)) are rational

curves of degree 2(r, d) onM , which is clearly the minimal degree since
−KM = 2(r, d)Θ. For smooth elliptic curves B ⊂ P(H1(V ∨

2 ⊗ V1))
of degree 3, the images of Φξ : B → M are of degree 6(r, d). For
any smooth elliptic curve B ⊂ q−1(ξ) (∀ ξ ∈ R(r1, d1)), the images of
Φξ : B →M are called elliptic curves of split type.
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4. Minimal elliptic curves on moduli spaces

In this section, we consider the moduli space M of rank 2 stable
bundles on C with a fixed determinant L of degree 1. We also assume
that the curve C is generic in the sense that C admits no surjective
morphism to an elliptic curve. With this assumption, we know that
Pic(C × B) = Pic(C)× Pic(B) for any elliptic curve B.
For a morphism φ : B → M , it may happen that the normalization

of φ(B) is a rational curve. To avoid this case, we make the following
definition

Definition 4.1. φ : B → M is called an essential elliptic curve of M
if the normalization of φ(B) is an elliptic curve.

For any morphism φ : B → M , let E be the vector bundle on
X = C ×B that defines φ. It will be free to tensor E with a pull-back
of line bundles on B. In this section, B will always denote an elliptic
curve.

Proposition 4.2. Let φ : B → M be an essential elliptic curve of M
defined by a vector bundle E. If E is not semi-stable on the generic

fiber of f : X → C, then
∆(E) ≥ 6.

If g = g(C) ≥ 4 and the curve φ : B → M passes through the generic

point of M , then

∆(E) > 12.

Proof. Let 0 → E1 → E → F2 → 0 be the relative Harder-Narasimhan
filtration over C. Then we have exact sequence

0 → E1|Xt
→ E|Xt

→ F2|Xt
→ 0

on each fiber Xt = {t} × B of f : X → C since E1, F2 are flat over C.
Thus E1 is locally free (cf. Lemma 1.27 of [8]) and

∆(E) = 4c2(F2) + 4(µ(E)− µ(E1))(µ1 − µ2)(4.1)

where µ1 = deg(E1|Xt
), µ2 = deg(F2|Xt

) for t ∈ C (cf. Theorem 2.2).
That 0 → E1 → E → F2 → 0 is the relative Harder-Narasimhan

filtration over C means for almost t ∈ C the exact sequences

0 → E1|Xt
→ E|Xt

→ F2|Xt
→ 0

are the Harder-Narasimhan filtration of E|Xt
, which in particular means

that F2 is locally free over f−1(C \T ) where T ⊂ C is a finite set. Thus

0 → E1|C×{y} → E|C×{y} → F2|C×{y} → 0 , ∀ y ∈ B(4.2)

are exact sequences, which imply that F2 is also B-flat.
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If c2(F2) = 0, then F2 is a line bundle and there are line bundles V1,
V2 on C such that

E1 = f ∗V1 ⊗ π∗O(µ1), F2 = f ∗V2 ⊗ π∗O(µ2)

where O(µi) denote line bundles on B of degree µi. Replace E by
E ⊗ π∗O(−µ2), we can assume that E satisfies

0 → f ∗V1 ⊗ π∗O(µ1 − µ2) → E → f ∗V2 → 0.(4.3)

Let di = deg(Vi) and J = {(L1, L2) ∈ Jd1C × Jd2C |L1 ⊗ L2 = L}. Then
there is a projective bundle q : P → J and an universal extension

0 → (id× q)∗V1 ⊗ π∗OP (1) → E → (id× q)∗V2 → 0(4.4)

on C × P such that for any x = ([V1], [V2], [e]) ∈ P , where [Vi] ∈ JdiC
with V1)⊗ V2 = L and [e] ⊂ H1(C, V −1

2 ⊗ V1) being a line through the
origin, the bundle E|C×{x} is the isomorphic class of vector bundles V
given by extensions 0 → V1 → V → V2 → 0 that defined by vectors
on the line [e] ⊂ H1(C, V −1

2 ⊗V1), where Vi denote the pullback (under
C×J → C×JdiC ) of universal line bundles, and π : C×P → P denote
the projection. Thus the exact sequence (4.3) induces a morphism

ψ : B → P
d2−d1+g−2 = q−1(V1, V2) ⊂ P(4.5)

such that O(µ1 − µ2) = ψ∗OP (1) and φ : B → M factors through
ψ : B → ψ(B) ⊂ Pd2−d1+g−2, which implies that the normalization of
ψ(B) is an elliptic curve. Hence µ1−µ2 ≥ 3 and ∆(E) ≥ 6 by (4.1). If
φ : B → M passes through the generic point, then µ(E)− µ(E1) > 1
and ∆(E) > 12.
If c2(F2) 6= 0, F2 is not locally free, which implies that there is a

y0 ∈ B such that F2|C×{y0} has torsion τ(F2|C×{y0}) 6= 0 since F2 is
B-flat (cf. Lemma 1.27 of [8]). Let

0 → τ(F2|C×{y0}) → F2|C×{y0} → F 0
2 → 0.(4.6)

Then F 0
2 being a quotient line bundle of E|C×{y0} implies

deg(F 0
2 ) > µ(E|C×{y0}) =

1

2

since E|C×{y0} is stable. By sequences (4.2) and (4.6), we have

µ(E1) = deg(E1|C×{y0}) = 1− deg(F 0
2 )− dim τ(F2|C×{y0}) ≤ −1

which, by the formula (4.1), implies that

∆(E) ≥ 4c2(F2) + 4(
1

2
+ 1)(µ1 − µ2) ≥ 10.

When φ : B → M passes through a generic point, in order to show
∆(E) > 12, we note that c2(F2) 6= 0 and F2 being C-flat also imply
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that there exists a t0 ∈ C such that F2|Xt0
has torsion τ(F2|Xt0

) 6= 0.
Let 0 → τ(F2|Xt0

) → F2|Xt0
→ Q → 0 and E ′ = ker(E → Xt0

Q), then

0 → E ′ → E → Xt0
Q → 0

which, for any y ∈ B, induces exact sequence

0 → E ′|C×{y} → E|C×{y} → (t0,y)Q → 0.(4.7)

Thus all E ′
y := E ′|C×{y} are semi-stable of degree 0. If φ : B → M

passes through a generic point, then there is a y0 ∈ B such that Ey0
is (1, 1)-stable on Xy0 = C × {y0}, thus E ′

y0
is stable by (4.7) and

Lemma 3.2. This implies that ∆(E ′) > 0. Otherwise {E ′
y}y∈B are

s-equivalent by applying Theorem 2.4 to π : X → B, which implies
E ′ = f ∗V ⊗ π∗L for a stable bundle V on C and a line bundle L on B.
Then Et = E ′

t = L⊕L for any t 6= t0, which is a contradiction since E
is not semi-stable on the generic fiber of f : X → C.
To compute ∆(E ′), consider the Harder-Narasimhan filtration

0 → E ′
1 → E ′ → F ′

2 → 0

over C, let µ′
1 = deg(E ′

1|Xt
), µ′

2 = deg(F ′
2|Xt

) for t ∈ C, then

∆(E ′) = 4c2(F
′
2) + 4(µ(E ′)− µ(E ′

1))(µ
′
1 − µ′

2) ≥ 8.

To see it, we can assume c2(F
′
2) = 0, then there are line bundles V ′

i on
C and line bundles O(µ′

i) on B of degree µ′
i such that

0 → f ∗V ′
1 ⊗ π∗O(µ′

1 − µ′
2) → E ′ ⊗ π∗O(−µ′

2) → f ∗V ′
2 → 0

which defines a morphism ψ : B → P to a projective space such that
O(µ′

1 − µ′
2) = ψ∗OP(1). Thus µ

′
1 − µ′

2 ≥ 2 and ∆(E ′) ≥ 8. Then

∆(E) = ∆(E ′) + 4(µ(E|Xt0
)− µ(Q)) ≥ ∆(E ′) + 6 ≥ 14.

�

Now we consider the case that E is semi-stable on the generic fiber
of f : X → C. We can assume 0 ≤ deg(E|Xt

) ≤ 1 on Xt = f−1(t).

Proposition 4.3. When E is semi-stable of degree 1 on the generic

fiber of f : X → C, we have ∆(E) ≥ 10. If g > 4 and φ : B → M
passes through the generic point, then ∆(E) ≥ 14.

Proof. It is easy to see that there is a unique stable rank 2 vector
bundle with a fixed determinant of degree 1 on an elliptic curve. Thus
∆(E) > 0 if and only if there exists t1 ∈ C such that Et1 = E|Xt1

is
not semi-stable.
Let Et1 → O(µ1) → 0 be the quotient of minimal degree and

0 → E(1) → E → Xt1
O(µ1) → 0
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be the elementary transformation of E along O(µ1) at Xt1 . If E(i) is

defined and ∆(E(i)) > 0, let ti+1 ∈ C such that E
(i)
ti+1

= E(i)|Xti+1
is

not semi-stable and E
(i)
ti+1

→ O(µi+1) → 0 be the quotient of minimal

degree, then we define E(i+1) to be the elementary transformation of
E(i) along O(µi+1) at Xti+1

, namely E(i+1) satisfies the exact sequence

0 → E(i+1) → E(i) → Xti+1
O(µi+1) → 0.(4.8)

Let s be the minimal integer such that ∆(E(s)) = 0. Then

∆(E) = 2 · s− 4

s
∑

i=1

µi(4.9)

where µi ≤ 0 (i = 1 , 2 , ... , s). Take direct image of (4.8), we have

0 → f∗E
(s) → f∗E

(s−1) → tsH
0(O(µs)) → 0(4.10)

(since R1f∗E
(s) = 0) and deg(f∗E

(i+1)) ≤ deg(f∗E
(i)), which imply

deg(f∗E
(s)) ≤ deg(f∗E)− dimH0(O(µs)).(4.11)

Restrict (4.8) to a fiber Xy = π−1(y), we have exact sequence

0 → E(i+1)
y → E(i)

y → (ti+1,y)C → 0,

which implies that

deg(E(s)
y ) = deg(Ey)− s = 1− s.(4.12)

On the other hand, by Theorem 2.4, ∆(E(s)) = 0 implies that there
exist a stable rank 2 vector bundle V of degree 1 on B and a line bundle
L on C such that E(s) = π∗V ⊗ f ∗L. It is easy to see

deg(E(s)
y ) = 2 deg(L) = 2 deg(f∗E

(s)).

Thus, combine (4.11) and (4.12), we have the inequality

s ≥ 1− 2 deg(f∗E) + 2 dimH0(O(µs)).(4.13)

We claim that deg(f∗E) ≤ −1. To show it, consider

0 → F ′ := f ∗(f∗E) → E → F → 0(4.14)

where F is locally free on f−1(C \ T ) and T ⊂ C is a finite set such
that Et (t ∈ T ) is not semi-stable. Thus, for any y ∈ B, the sequence

0 → F ′
y → Ey → Fy → 0(4.15)

is still exact, which implies that F is B-flat (cf. Lemma 2.1.4 of [5]).
The sequence (4.15) already implies deg(f∗E) = deg(F ′

y) ≤ 0 since Ey
is stable of degree 1. Thus F can not be locally free since

4 · c2(F) = ∆(E)− 4 · deg(f∗E) + 2 > 0.
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Then there is at least a y0 ∈ B such that Fy0 has torsion, otherwise F
is locally free (cf. Lemma 1.27 of [8]). The stability of Ey0 implies that
Fy0/torsion has degree at least 1. Thus deg(Fy0) ≥ 2 and

deg(f∗E) = deg(F ′
y0
) ≤ −1,

which means s ≥ 3 + 2 dimH0(O(µs)). Therefore, if µs < 0, we have
∆(E) ≥ 2 · s + 4 ≥ 10 by (4.9). If µs = 0, by tensoring E with
π∗O(µs)

−1, we may assume dimH0(O(µs)) = 1, then s ≥ 5 and

∆(E) ≥ 10.

If φ : B → M passes through the generic point of M , we claim that
deg(f∗E) ≤ −2, which implies ∆(E) ≥ 14. To prove the claim, assume
deg(f∗E) = −1, we will show that φ(B) lies in a given divisor. Note
that Fy must be locally free of degree 2 for generic y ∈ B (if Fy has
nontrivial torsion, then Ey has a quotient line bundle of degree at most
1, which is impossible since Ey is (1, 1)-stable for generic y ∈ B). Thus
Ey satisfies 0 → ξ → Ey → ξ−1 ⊗ L → 0 where ξ is a line bundle
of degree −1 on C. The locus of such bundles has dimension at most
g+h1(ξ2⊗L−1)−1 = 2g+1 < dim(M) when g > 4. We are done. �

Now we consider the case that E is semi-stable of degree 0 on the
generic fiber of f : X → C. If E is semi-stable on every fiber of
f : X → C, then E induces a non-trivial morphism

ϕE : C → P
1

(cf. [3]) such that ϕ∗
EOP1(1) = Θ(E) = (detf!E)

−1, which has degree
c2(E) by Grothendieck-Riemann-Roch theorem. Thus

∆(E) = 4 · c2(E) = 4 · deg(ϕE) ≥ 8.(4.16)

If there is a t0 ∈ C such that Et0 = E|Xt0
is not semi-stable on Xt0 =

f−1(t0), let Et0 → O(µ) → 0 be the quotient line bundle of minimal
degree µ and E ′ = kernel (E → Xt0

O(µ) → 0 ), then we have

Lemma 4.4. If ∆(E ′) = 0, then there is a semi-stable vector bundle

V on C and a line bundle L of degree 0 on B such that

E ′ = f ∗V ⊗ π∗L.

Proof. By the definition, {E ′
t = E ′|{t}×B}t∈C and {E ′

y = E ′|C×{y}}y∈B
are families of semi-stable bundles of degree 0. Apply Theorem 2.4 to
f : X → C (resp. π : X → B), then ∆(E ′) = 0 implies that {E ′

t}t∈C
(resp. {E ′

y}y∈B) are isomorphic each other. By tensor E (thus E ′)
with π∗L−1 (where L is a line bundle of degree 0 on B), we can assume
that H0(E ′

t) 6= 0 (∀ t ∈ C), which have dimension at most 2 since E ′
t is
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semi-stable of degree 0. If H0(E ′
t) has dimension 2, then E ′ = f ∗(f∗E

′)
and we are done.
If H0(E ′

t) has dimension 1, we will show a contradiction. In fact, by
the definition of E ′, we have an exact sequence

0 → E ′ → E → Xt0
O(µ) → 0(4.17)

where O(µ) is a line bundle on {t0} × B ∼= B of degree µ < 0. Then

V1 := f∗E = f∗E
′

is a line bundle on C. Since {E ′
t}t∈C are isomorphic each other and

H0(E ′
t) has dimension 1, we have the exact sequence

0 → f ∗V1 → E ′ → f ∗V2 ⊗ π∗L0 → 0(4.18)

for a line bundle V2 on C and a degree 0 line bundle L0 on B. If
L0 6= OB, then Rif∗(f

∗(V −1
2 ⊗ V1) ⊗ L0) = V −1

2 ⊗ V1 ⊗ Hi(L0) = 0
(i = 0, 1), which implies H1(X, f ∗(V −1

2 ⊗ V1) ⊗ L0) = 0 and (4.18) is
splitting. This is impossible since E ′

y is semi-stable of degree 0 and we
can show that deg(V1) = deg(f∗E) ≤ −1 in the following.
To prove that deg(f∗E) ≤ −1, we consider the exact sequence

0 → f ∗f∗E → E → F → 0(4.19)

where F|f−1(C\{t0}) is locally free of rank 1 by (4.18). But F is not
locally free (otherwise c2(E) = (c1(E) − c1(f

∗f∗E)) · c1(f
∗f∗E) = 0)

and for any y ∈ B the restriction of (4.19) to Xy = π−1(y)

0 → f∗E → Ey → Fy → 0(4.20)

is exact, which means that F is B-flat (cf. Lemma 2.1.4 of [5]). Thus,
by Lemma 1.27 of [8], there is a y0 ∈ B such that Fy0 has torsion τ 6= 0
since F is not locally free. Then, since Ey0 is stable of degree 1,

deg(Fy0) ≥ 1 + deg(Fy0/τ) > 1 + µ(Ey0) =
3

2

which implies deg(f∗E) ≤ −1 by (4.20).
We have shown that L0 has to be OB and (4.18) has to be

0 → f ∗V1 → E ′ → f ∗V2 → 0(4.21)

which is determined by a class of H1(X, f ∗(V1 ⊗ V −1
2 )). However, note

R1f∗(f
∗(V1 ⊗ V −1

2 )) = V1 ⊗ V −1
2 ⊗H1(OB) = V1 ⊗ V −1

2 and

H0(C, V1 ⊗ V −1
2 ) = 0,

by using Leray spectral sequence, we have

H1(C, V1 ⊗ V −1
2 ) ∼= H1(X, f ∗(V1 ⊗ V −1

2 )).
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Hence there exists an extension 0 → V1 → V → V2 → 0 on C such
that E ′ ∼= f ∗V , which contradicts the assumption

dim(H0({t} × B,E ′
t)) = 1.

�

Proposition 4.5. When E is semi-stable of degree 0 on the generic

fiber of f : X → C, we have ∆(E) ≥ 8. If C is not hyper-elliptic

and φ : B → M passes through a (1, 1)-stable bundle, assume that E
defines an essential elliptic curve, then ∆(E) ≥ 12.

Proof. If E is semi-stable on each fiber Xt = f−1(t), then E induces a
non-trivial morphism ϕE : C → P1. By (4.16), ∆(E) ≥ 8.
If there is a t0 ∈ C such that Et0 is not semi-stable, then we have

0 → E ′ → E → Xt0
O(µ) → 0

where O(µ) is a line bundle of degree µ on B. If ∆(E ′) 6= 0, then
∆(E ′) > 0 by Theorem 2.4. On the other hand, c1(E

′)2 = 0 since
E ′ has degree 0 on the generic fiber of X → C and Pic(C × B) =
Pic(C)× Pic(B). Thus ∆(E ′) = 4 · c2(E

′) ≥ 4, and by Lemma 2.6

∆(E) = ∆(E ′)− 4µ ≥ 8.

If ∆(E ′) = 0, by Lemma 4.4, we can assume that E ′ = f ∗V , then the
sequence (4.17) induces a nontrivial morphism ϕ : B → P(V ∨

t0
) such

that O(−µ) = ϕ∗OP(V ∨

t0
)(1). Thus ∆(E) = −4µ ≥ 8.

Now we assume that C is not hyper-elliptic and φ : B → M passes
through a (1, 1)-stable bundle. If E is semi-stable on each fiber Xt,
then ∆(E) = 4 · deg(ϕE) ≥ 12 by (4.16) since C is not hyper-elliptic.
If there is t0 ∈ C such that Et0 is not semi-stable, we claim ∆(E ′) > 0

since φ : B → M passes through a (1, 1)-stable bundle. Otherwise,
E ′ = f ∗V where V is a (1, 0)-stable by Lemma 3.2, then sequence
(4.17) implies that φ : B → M factors through a Hecke curve, which
implies that φ : B → M is not an essential elliptic curve. If E ′ is
semi-stable on each fiber Xt, then E ′ defines a nontrivial morphism
ϕE′ : C → P1 such that ϕ∗OP1(1) = Θ(E ′) = (detf!E

′)−1 = c2(E
′).

Thus ∆(E ′) = 4 · deg(ϕE′) ≥ 12 and ∆(E) = ∆(E ′)− 4µ ≥ 16.
If there is t′0 ∈ C such that E ′

t0
is not semi-stable, then we have

0 → F → E ′ → Xt′
0

O(µ′) → 0(4.22)

where Fy = F|C×{y} is stable of degre −1 for generic y ∈ B since E ′
y is

stable of degree 0. If ∆(F) 6= 0, it is clear that ∆(F) = 4 · c2(F) ≥ 4
and ∆(E) = ∆(F) − 4µ′ − 4µ ≥ 12. If ∆(F) = 0, by Theorem 2.4,
there is a stable vector bundle V ′ on C such that Fy

∼= V ′ for all y ∈ B.
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Then we can choose F = f ∗V ′, the sequence (4.22) induces a nontrivial
morphism ϕ : B → P(V ′∨

t′
0
) such that O(−µ′) = ϕ∗OP(V ′∨

t′
0

)(1). Thus

∆(E ′) = −4µ′ ≥ 8 and ∆(E) = ∆(E ′)− 4µ ≥ 12.
�

We have seen in Example 3.6 the existence of essential elliptic curves
of degree 6(r, d) (which is 6 in our case). Then we have shown

Theorem 4.6. Let M = SUC(2,L) be the moduli space of rank two

stable bundles on C with a fixed determinant of degree 1. Then, when

C is generic, any essential elliptic curve φ : B →M has degree

degφ∗(−KM) ≥ 6

and degφ∗(−KM) = 6 if and only if φ : B → M factors through

φ : B
ψ
−→ q−1(ξ) = P(H1(V ∨

2 ⊗ V1))
Φξ

−→ M

for some ξ = (V1, V2) such that ψ∗OP(H1(V ∨

2
⊗V1))(1) has degree 3.

Proof. By Proposition 4.2, Proposition 4.3 and Proposition 4.5, we have
∆(E) ≥ 6. The possible case ∆(E) = 6 occurs only in Proposition 4.2
when c2(F2) = 0. This implies that E must satisfy

0 → f ∗V1 ⊗ π∗O(µ1 − µ2) → E → f ∗V2 → 0

which defines ψ : B → P(H1(V ∨
2 ⊗ V1)) such that ψ∗OP(H1(V ∨

2
⊗V1))(1)

has degree µ1 − µ2. Then ∆(E) = 6 and (4.1) imply µ1 − µ2 = 3. �

Theorem 4.7. When g > 4 and C is generic, any essential elliptic

curve φ : B → M = SUC(2,L) that passes through the generic point

must have degφ∗(−KM) ≥ 12.

For r > 2, let M = SUC(r,L) where L is a line bundle of degree d.
What is the minimal degree of essential elliptic curves onM ? I expect
the following conjecture to be true.

Conjecture 4.8. Let φ : B →M = SUC(r,L)
s be an essential elliptic

curve defined by a vector bundle E on C × M . Then, when C is a

generic curve, we have

degφ∗(−KM) ≥ 6(r, d).

When (r, d) 6= r, then degφ∗(−KM ) = 6(r, d) if and only if it is an

elliptic curve of split type in Example 3.6. If φ : B → M passes

through the generic point and g > 4, then degφ∗(−KM) ≥ 6r.
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