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BCS-BEC crossover in a two-dimensional Fermi gas
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We investigate the crossover from Bardeen-Cooper-Schrieffer (BCS) superfluidity to Bose-Einstein
condensation (BEC) in a two-dimensional Fermi gas at T = 0 using the fixed-node diffusion Monte
Carlo method. We calculate the equation of state and the gap parameter as a function of the
interaction strength, observing large deviations compared to mean-field predictions. In the BEC
regime our results show the important role of dimer-dimer and atom-dimer interaction effects that
are completely neglected in the mean-field picture. Results on Tan’s contact parameter associated
with short-range physics are also reported along the BCS-BEC crossover.
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The study of ultracold atomic Fermi gases has become
an active and rich field of research [1]. Important ar-
eas of investigation include the BCS-BEC crossover in
a superfluid gas with resonantly enhanced interactions,
the Chandrasekhar-Clogston instability of the superfluid
state when spin polarization is increased, the possible
onset of itinerant ferromagnetism in a gas with repulsive
interactions [2] and the realization of the Hubbard model
for fermions loaded in optical lattices [3].

Low dimensional configurations of degenerate Fermi
gases have also been the object of experimental and the-
oretical studies [1, 3]. In particular, a two-dimensional
(2D) ultracold Fermi gas has been recently realized us-
ing a highly anisotropic pancake-shaped potential, and
the density profile of the cloud has been measured using
in situ imaging [4]. On the theoretical side, the evolution
from a superfluid state with large Cooper pairs to one
with tight molecules in a 2D system of attractive fermions
was first investigated by Miyake [5] and later by Randeria
and coworkers [6] aiming to describe high-Tc supercon-
ductors. More recent studies address the problem of the
superfluid transition [7, 8], of harmonic trapping [9] and
of population and mass imbalance [10]. These studies
are in general based on perturbative or mean-field ap-
proaches that are suitable in the regime of weak coupling,
but are bound to break down when interactions become
stronger.

In this Letter we provide the first determination using
quantumMonte Carlo methods of the equation of state at
T = 0 of a homogeneous 2D Fermi gas in the BCS-BEC
crossover. We also obtain results for the pairing gap and
the contact parameter as a function of the interaction
strength. In the strong-coupling regime the emergence
of interaction effects involving dimers produce large de-
viations compared to mean-field predictions. A similar
study carried out in 3D [11] has provided an important
benchmark against which experimental determination of
the equation of state, using measurements of the disper-
sion of collective modes [12] or of in situ density pro-
files [13], have been successfully compared. Hopefully,
the results reported in this work will stimulate more ex-
perimental efforts towards the realization of a 2D Fermi
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FIG. 1: (color online). Equation of state in the BCS-BEC
crossover. Squares refer to the BCS and circles to the JS wave
function. The solid (red) line is a fit to the data, the dotted
(green) line is half of the molecular binding energy and the
dashed (blue) line is the prediction of mean-field theory. The
horizontal dotted (black) line denotes the energy per particle
EFG of the non-interacting gas. Inset: 2D scattering length
a2D as a function of the depth V0 for a SW potential of radius
R. The BCS and BEC regimes correspond, respectively, to
kF a2D ≫ 1 and kF a2D ≪ 1.

gas in the strong-coupling regime by means, for exam-
ple, of a Feshbach resonance to increase the interaction
parameter [4].
We consider a homogeneous two-component Fermi gas

described by the Hamiltonian

H = − h̄2

2m





N↑
∑

i=1

∇2
i +

N↓
∑

i′=1

∇2
i′



+
∑

i,i′

V (rii′ ) , (1)

where m denotes the mass of the particles, i, j, ... and
i′, j′, ... label, respectively, spin-up and spin-down par-
ticles and N↑ = N↓ = N/2, N being the total number
of atoms. We model the interspecies interatomic inter-
actions using an attractive square-well (SW) potential:
V (r) = −V0 for r < R (V0 > 0), and V (r) = 0 oth-
erwise. In order to ensure that the mean interparticle
distance is much larger than the range of the potential
we use nR2 = 10−6, where n is the gas number density,
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or equivalently kFR = 0.0025 in terms of the Fermi wave
vector kF =

√
2πn. We simulate a system that is strictly

2D and we describe the low-energy collisions of the SW
potential in terms of the 2D scattering length a2D defined
as [14]

a2D = R eJ0(κ)/κJ1(κ) , (2)

where J0(1)(x) are Bessel functions of the first kind and

κ =
√

V0mR2/h̄2. The scattering length (2) is non neg-

ative and diverges at κ = 0 and at the zeros of J1, cor-
responding to the appearance of new two-body bound
states in the well. Close to these points the shallow
dimers have size a2D and their binding energy is given by
εb = −4h̄2/(ma22De

2γ), where γ ≃ 0.577 is Euler’s con-
stant [15]. The dependence of a2D on the depth V0 in the
region where the well supports only one bound state is
shown in the inset of Fig. 1. Two regions are clearly iden-
tified by comparing a2D with the mean interparticle dis-
tance 1/kF : i) kF a2D ≫ 1 corresponds to the BCS regime
where interactions are weak and dimers are large and
weakly bound, ii) kFa2D ≪ 1 corresponds to the BEC
regime of tightly bound composite bosons. Compared
to the 3D case the BCS-BEC crossover in 2D exhibits
important differences. a) For a purely attractive poten-
tial a two-body bound state exists for arbitrarily weak
attractions. b) The weak-coupling limit corresponds to
a diverging scattering length a2D. c) The 2D scattering
amplitude of particles colliding at low energy is given by
f(k) = 2π/[log(2/ka2De

γ)+ iπ/2] [16]. There is no range
of values of a2D for which f(k) is independent of interac-
tion (unitary limit). d) The mean-field coupling constant
can be written as g = (2πh̄2/m)/ log(1/kFa2D) with log-
arithmic accuracy. Within the same accuracy, the region
kFa2D ∼ 1 identifies the strong-coupling crossover re-
gion between the BCS and the BEC regime (see inset of
Fig. 1).
Simulations are carried out in a square box of area

L2 = N/n with periodic boundary conditions, using the
fixed-node diffusion Monte Carlo (FN-DMC) method.
This numerical technique yields an upper bound for the
ground-state energy of the gas, resulting from an ansatz
for the nodal surface of the many-body wave function
that is kept fixed during the calculation (see Ref. [17] for
more details). The boundary condition is enforced using
a trial function that we choose of the general form [18]
ψT (R) = ΦS(R)ΦA(R). ΦS is a positive function of the
particle coordinates R = (r1, ..., rN ) and is symmetric
in the exchange of particles with equal spin, while ΦA

satisfies the fermionic antisymmetry condition and de-
termines the nodal surface of ψT . The symmetric part
is chosen of the Jastrow form ΦS(R) =

∏

i,i′ f↑↓(rii′ ),
where two-body correlation functions of the interparticle
distance have been introduced for antiparallel spins. The
ΦA component is chosen as an antisymmetrized product
ΦA(R) = A

(

φ(r11′ )φ(r22′ )...φ(rN↑N↓
)
)

of pair-wise or-
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FIG. 2: (color online). Equation of state in the BCS-BEC
crossover with εb/2 subtracted from E/N . Symbols are as in
Fig.1. The solid (red) line is a fit to the data, the other dotted
lines show the equation of state (4) of composite bosons and
the perturbation expansion (5) holding in the BCS regime.
The dashed (blue) line is the result of mean-field theory.

bitals of the form φ(r) = β
∑

kα≤kF
eikα·r + ϕs(r). Here,

kα = 2π/L(ℓαxx̂ + ℓαy ŷ) indicate the plane-wave states
in the box, with integers ℓ’s summed up to the maximum
value of the k-shell accommodating N/2 particles, and β
is a variational parameter controlling the relative weight
of the plane-wave sum to the spherical symmetric com-
ponent ϕs(r) [19]. Two important regimes are described
by the above trial wave function: i) if f↑↓ = 1, β = 0 and
ϕs(r) = fb(r) is the two-body bound state of the poten-
tial V (r), ψT (R) describes a BCS state of dimers that is
expected to be appropriate in the deep BEC regime; ii)
if instead ϕs = 0 and f↑↓(r) = fb(r), the antisymmetric
component in the trial function coincides with the prod-
uct of the plane-wave Slater determinants for spin-up and
spin-down particles, ΦA(R) = D↑(N↑)D↓(N↓) [20], and
ψT is a typical Jastrow-Slater (JS) function of a normal
Fermi liquid. This description is expected to hold in the
BCS regime of a weakly interacting gas where the ef-
fect of pairing on the ground-state energy is negligible.
The more general form of the trial wave function writ-
ten above provides an interpolation between these two
regimes.
In Figs. 1-2 and in Tab. I we report the FN-DMC re-

sults for the equation of state as a function of the inter-
action parameter in units of the energy per particle of
the non-interacting gas

EFG =
1

2

h̄2k2F
2m

=
1

2
εF , (3)

where εF is the Fermi energy. Calculations are car-
ried out using ψT of the BCS and JS form as described
above [21]. The BCS function provides a lower energy for
values of the interaction parameter η = log(kFa2D) <∼ 1,
while the JS function is more favorable for larger values
of η. More sophisticated forms of ψT , interpolating be-
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TABLE I: Energy per particle and molecular binding energy
in the BEC-BCS crossover (energies are in units of EFG).

log(kFa2D) E/N εb/2 E/N − εb/2
-2.00 -137.761(7) -137.832 0.070(7)
-1.50 -50.593(4) -50.675 0.082(4)
-1.00 -18.532(4) -18.637 0.105(4)
-0.50 -6.714(4) -6.856 0.142(4)
0.00 -2.318(2) -2.522 0.204(2)
0.25 -1.283(12) -1.530 0.247(12)
0.50 -0.638(10) -0.928 0.290(10)
0.75 -0.201(12) -0.563 0.361(12)
1.44 0.349(6) -0.143 0.492(6)
1.72 0.459(16) -0.080 0.539(16)
2.15 0.552(2) -0.034 0.587(2)
2.64 0.634(4) -0.013 0.647(4)
3.34 0.706(2) -0.003 0.709(2)
4.03 0.755(4) 0.000 0.755(4)
4.37 0.775(1) 0.000 0.775(1)
5.18 0.821(7) 0.000 0.821(7)

tween the BCS and JS function, have been used in the
region log(kF a2D) ∼ 1, but without a significant improve-
ment of the ground-state energy. The role of finite-size
effects has been investigated by carrying out calculations
with N = 26 and N = 98. No significant change is
seen when using the BCS trial function. In the case of
the JS function a large suppression of such effects is ob-
tained by compensating for the finite-size correction of
non-interacting fermions with the same number of parti-
cles [22]. The result E/N = EFG + εb/2 obtained from
the mean-field theory [5, 6] is shown in Figs. 1-2 for com-
parison. The inadequacy of the mean-field approach is
best shown in Fig. 2, where the molecular contribution
is subtracted from the energy per particle. In the BEC
regime the FN-DMC results are fitted with the equation
of state of a gas of composite bosons corresponding to
hard disks of diameter ad

E

Nd
+ |εb| =

2πh̄2nd

md

1

log(1/nda2d)

[

1− log log(1/nda
2
d)

log(1/nda2d)

+
log π + 2γ + 1/2

log(1/nda2d)

]

, (4)

where md = 2m is the mass of the dimer, while the num-
ber of dimers, and correspondingly their density nd, is
half of the total number of fermions Nd = N/2. The
above expression includes beyond mean-field terms [23,
24] and allows for a precise determination of the dimer-
dimer scattering length ad. We obtain ad = 0.55(4)a2D,
in agreement with the four-body calculation in Ref. [7].
In the opposite BCS regime, where the contribution of
the pairing gap can be neglected, the fermionic equa-
tion of state can be described in terms of an attrac-
tive normal Fermi liquid (FL). Beyond logarithmic ac-
curacy one has the second-order expansion in terms of
η = log(kF a2D) [25, 26]

E

N
= EFG

(

1− 1

η
+
A

η2

)

. (5)

 0

 20

 40

 60

 80

 100

 120

-2 -1.5 -1 -0.5  0

∆ g
ap

 [ε
F
]

η=log(kFa2D)

mean field
DMC

 0

 0.2

 0.4

 0.6

 0.8

 1

-2 -1.5 -1 -0.5  0  0.5

∆ g
ap

-|
ε b

|/2
 [ε

F
]

FIG. 3: (color online). Excitation gap in the BCS-BEC
crossover. The solid (red) line is the result of mean-field the-
ory. Inset: excitation gap with |εb|/2 subtracted from ∆gap.
The dashed (blue) line is a fit using the energy functional of
a Fermi-Bose mixture.

From a best fit we find the result A = 0.06(2) for the
coefficient of the second order term [27].

In Fig. 3 we show the results for the pairing gap ∆gap

in the strong-coupling regime. This quantity is defined
from the difference of ground-state energy E(N↑, N↓)
of systems having one and two more (less) particles
∆gap = 1/2[2E(N/2± 1, N/2)− E(N/2 ± 1, N/2± 1)−
E(N/2, N/2)] [28]. At the level of mean-field theory [5, 6]
the pairing gap coincides with the result for the order pa-
rameter ∆gap = ∆ =

√

2εF |εb| if |εb| < 2εF , and is given
by ∆gap = εF + |εb|/2 for larger values of |εb|. In the
BEC regime the quantity ∆gap − |εb|/2, shown in the
inset of Fig. 3, displays the repulsive interaction effects
between unpaired fermionic atoms and bosonic dimers.
In fact, the energy of the system with one extra spin-up
particle can be written as the sum of the contribution
(4) of N/2 dimers and the Fermi-Bose interaction en-
ergy E(N/2 + 1, N/2) = E(N/2, N/2) + gBFnd, where
gBF = 3πh̄2/[m log(1/nda

2
ad)] is the coupling constant

fixed by the atom-dimer reduced mass 2m/3 and the ef-
fective scattering length aad. By using the definition of
∆gap and the value ad = 0.55a2D for the dimer-dimer
scattering length in the energy functional (4), we find
aad = 1.7(1)a2D from the fit shown in the inset of Fig. 3.

Finally, we calculate the contact parameter C [29]
defined from the short-range behavior of the an-
tiparallel pair distribution function limr→0 g↑↓(r) =
4C/k4F log2(r/a2D) [30, 31]. The contact parameter
is also related to the derivative of the equation of
state with respect to the interaction parameter C =
(2πm/h̄2)d(nE/N)/d(log kFa2D) [30]. The results are
shown in Fig. 4. In the inset we show the quantity C−C0,
where C0 = (πm/h̄2)d(nεb)/d(log kF a2D) is the contri-
bution to the contact C from the molecular state. The
comparison between the two determinations of C is a
stringent consistency check of the theoretical approach.
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FIG. 4: (color online). Contact parameter in the BCS-BEC
crossover. The solid (red) line corresponds to the calculation
from the derivative of the equation of state reported in Fig.1.
Inset: Contact parameter with the two-body contribution C0

subtracted.

We find a good agreement with Tan’s relation, apart from
the region log(kF a2D) ∼ 1 where small deviations are
visible, both with the JS and BCS-type wave function,
showing the need of a better optimization of ψT .
An important question relates to the relevance of

these results for systems in harmonic traps. 2D con-
figurations are realized if the transverse confinement is
strong enough to reduce the kinematics to the xy-plane:
h̄ωz ≫ εF = h̄ω⊥

√
N , where we assumed isotropic

trapping in the radial direction ωx = ωy = ω⊥. In
these conditions the effective 2D scattering length can
be expressed in terms of a3D and the transverse har-
monic oscillator length az =

√

h̄/mωz being given by

a2D = az(2
√

π/B/eγ) exp(−
√

π/2az/a3D), where B ≃
0.915 [16]. For small, negative values of the 3D scattering
length a3D the system is found in the BCS regime corre-
sponding to an exponentially large a2D. The BEC regime
is reached if the absolute value of a3D is increased such
that |a3D| ≫ az/ log(1/kFaz). An additional require-
ment concerns the dimer state, which is well described
by the 2D expression only if |εb| ≪ h̄ωz [16], or equiv-
alently a2D ≫ az . We believe that this latter condition
can be relaxed if, in the comparison with the results re-
ported in this work, one considers quantities where the
molecular contribution has been subtracted out.
This work, as part of the European Science Foundation
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