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MINIMAL CHARACTERISTIC BISETS AND FINITE GROUPS

REALIZING RUIZ-VIRUEL EXOTIC FUSION SYSTEMS

SEJONG PARK

Abstract. Continuing our previous work [2], we determine a minimal left characteristic
bisetX for every exotic fusion system F on the extraspecial group S of order 73 and exponent
7 discovered by Ruiz and Viruel [6], and analyze the finite group G obtained from X by
the method of [2] which realizes F as the full subcategory of the 7-fusion system of G. In
particular, we obtain an upper bound for the exoticity index for F .

1. Introduction

In our previous work [2], we observed that every saturated fusion system F on a finite
p-group S can be realized by a finite group G containing S as a subgroup, in the sense that
F = FS(G), i.e. the fusion system on S whose morphisms are the G-conjugation maps among
subgroups of S. This observation lead us to propose the notion of the exoticity index e(F) of
F as the minimum of the values logp |S0 : S| where S0 is a Sylow p-subgroup of G containing
S as G runs over all finite groups such that F = FS(G). With this definition, F is exotic
if and only if e(F) > 0, and e(F) measures how far the fusion system F is from being the
fusion system of some finite group. In [2] the finite group G was constructed by using a
finite S-S-biset X called a left characteristic biset of the fusion system F as G = Aut(1X),
i.e. the automorphism group of X viewed as a right S-set ignoring the left S-action (or
equivalently, restricting the left S-action to the trivial subgroup, whence the subscript 1 on
the left). Then we have

G ∼= S ≀ Σe(X) where e(X) = |X|/|S|.

The upper bound of the exoticity index e(F) of F obtained from this G is as follows:

e(F) ≤ (e(X)− 1) logp |S|+
∑

i≥1

⌊
e(X)

pi

⌋
≤ e(X)(1 + logp |S|).

As far as we know, no other method for constructing a finite group realizing a given saturated
fusion system has been found.

In this paper, we determine minimal left characteristic bisets for some saturated fusion
systems F on the extraspecial group S of order p3 and exponent p including all exotic fusion
systems on S discovered by Ruiz and Viruel [6], and thereby obtain finite groups realizing F
which are the smallest among those obtained by the method of [2] described in the previous
paragraph.
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Theorem 1.1. Let p be an odd prime and let S be the extraspecial group of order p3 and
exponent p. Let F be a saturated fusion system on S such that all subgroups of S of order
p2 are F-radical. Then there exists a unique minimal left characteristic biset X for F , and
we have

e(X) =
p5 − 1

p− 1
|OutF(S)|.

A more detailed version of this theorem is stated and proved in §5 as Theorem 5.2 and
Remark 5.3.

The upper bound for the exoticity index of a Ruiz-Viruel exotic fusion system F given by
the above theorem is quite large. An extraspecial group S of order p3 and exponent p affords
exotic fusion systems only when p = 7, and in that case there are three of them with the
order of the outer automorphism groups of S being 48, 72 and 96, respectively. The upper
bound that we obtain for the case where |OutF(S)| = 48 is 425744, for example.

A natural question that follows is whether we can cut down the group G to get a smaller
upper bound for the exoticity index. By Alperin’s fusion theorem, an obvious candidate is
the subgroup H of G generated by the normalizers of the F -essential subgroups of S. After
close analysis of some elements of the normalizers of F -essential subgroups of S, we find that
even H is quite large, though this gives us a better understanding of the fusion action of G
on S.

Theorem 1.2. Let p be an odd prime and let S be an extraspecial group of order p3 and
exponent p. Let F be a saturated fusion system on S such that all subgroups of S of order p2

are F-radical. Let X be the minimal left characteristic biset X for F given by Theorem 1.1.
Let G = Aut(1X) ∼= S ≀ Σe(X) and let H be the subgroup of G generated by the normalizers
of the F-essential subgroups of S. Then the image of H in Σe(X) is a transitive subgroup of
Σe(X).

This theorem is proved in §6 as Theorem 6.4.
Organization of the paper: In §2, we recall the definition of characteristic bisets for

fusion systems and fix basic notations. We also compare notational conventions in the
literature about bisets concerning fusion systems in Remark 2.6. In §3, we introduce the
notion of layers of bisets and review some basic results about the number of fixed points
which will be used in the subsequent sections. §4 contains a general result which determines
the top two layers of a characteristic biset of any saturated fusion system. Using this result
and detailed information of the saturated fusion systems on an extraspecial group S of order
p3 and exponent p in [6], we determine minimal left characteristic bisets for saturated fusion
systems F on S such that all subgroups of S of order p2 are F -radical in §5. A more detailed
version of Theorem 1.1 is stated and proved in this section as Theorem 5.2 and Remark 5.3.
In §6, we analyze some elements of the normalizers of F -essential subgroups of S and obtain
Theorem 1.2 as a consequence. Finally in the Appendix A, we determine coefficients of
characteristic idempotents as an easy application of results in §4 and §5.

Acknowledgments: The author would like to express his special thanks to Ronald
Solomon and Justin Lynd for very helpful discussions about the content of this paper and
their warm hospitality whenever he visited The Ohio State University.
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2. Characteristic bisets for fusion systems

First let us fix notations. We keep the notations in our previous paper [2] and expand
on them as needed. Our notations are largely compatible with (and in fact many of them
derive from) those in [4, 5], except that the directions of maps are inverted. See Remark 2.6
for more details.

Let S1, S2 be groups. An S1-S2-biset is a set X with left S1-action and right S2-action such
that (ux)v = u(xv) for x ∈ X , u ∈ S1, v ∈ S2. An S1-S2-biset X can be viewed as a (left)
(S1 × S2)-set via (u, v) · x = uxv−1 for x ∈ X , u ∈ S1, v ∈ S2 and vice versa. Throughout
this paper, we will go freely back and forth between S1-S2-bisets and (S1 × S2)-sets using
this correspondence. That way, we can exploit the advantages of both perspectives. On one
hand, bisets can be composed: if S3 is another group and Y is an S2-S3-biset, the set

X ×S2 Y = (X × Y )/ ∼,

where (xu, y) ∼ (x, uy) for x ∈ X , y ∈ Y , u ∈ S2, is an S1-S3-biset by the left action of S1

on X and the right action of S3 on Y . On the other hand, X viewed as an (S1 ×S2)-set has
the fixed-point subset XH = {x ∈ X | hx = x for all h ∈ H} by any subgroup H ≤ S1 × S2,
and the number of fixed-points |XH| as H runs over all subgroups of S1 × S2 determine the
isomorphism type of X by Burnside’s theorem.

For a subgroup Q of S1 and an injective group homomorphism ϕ : Q→ S2, let

S1 ×(Q,ϕ) S2 = (S1 × S2)/ ∼

where (xu, y) ∼ (x, ϕ(u)y) for x ∈ S1, y ∈ S2, u ∈ Q, and let 〈x, y〉 be the ∼-equivalence
class containing (x, y). One can view this set as an S1-S2-biset by u · 〈x, y〉 = 〈ux, y〉,
〈x, y〉 · v = 〈x, yv〉 for x, u ∈ S1, y, v ∈ S2. It is a transitive S1-S2-biset with free left S1-
action and free right S2-action. In fact, every such S1-S2-biset is of this form. Viewed as an
(S1 × S2)-set, it is isomorphic to

(S1 × S2)/∆
ϕ
Q

where ∆ϕ
Q = {(u, ϕ(u)) : u ∈ Q}.

Two transitive S1-S2-bisets S1 ×(Q,ϕ) S2 and S1 ×(R,ψ) S2 where Q,R ≤ S1, ϕ : Q → S2,

ψ : R → S2 are isomorphic if and only if ∆ϕ
Q is conjugate to ∆ψ

R in S1×S2, which in turn holds

if and only if there exist x ∈ S1, y ∈ S2 such that xQ := xQx−1 = R and ψ ◦ cx|Q = cy ◦ ϕ
where cx : S1 → S1 denotes the conjugation map by x given by cx(u) = xux−1 for u ∈ S1, and
cy is defined analogously. If this is the case, we say that ϕ and ψ are S1-S2-conjugate, and
write ϕ ∼(S1,S2) ψ. We write [ϕ] for the S1-S2-conjugacy class containing ϕ. More generally,
we say that ϕ is S1-S2-subconjugate to ψ and write ϕ -(S1,S2) ψ if there exist x ∈ S1, y ∈ S2

such that xQ ≤ R and ψ ◦ cx|Q = cy ◦ ϕ
Finally, for an S1-S2-biset X , Q ≤ S1, and an injective group homomorphism ϕ : Q→ S2,

let ϕX be the Q-S2-biset obtained from X where the left Q-action is induced by ϕ; let

QX := (idQ)X . Equivalently,

ϕX ∼= (Q×(Q,ϕ) S1)×S1 X.

For R ≤ S2 and an injective group homomorphism ψ : R → S2, S1-R-bisets Xψ and XR are
defined analogously.

Definition 2.1. Let F be a fusion system on a finite p-group S. A finite S-S-biset X is
called a left characteristic biset for the fusion system F if it satisfies the following conditions:
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(A) Every transitive subbiset of X is of the form S ×(Q,ϕ) S where Q ≤ S and ϕ ∈
HomF(Q, S).

(B) e(X) := |X|/|S| 6≡ 0 mod p.
(C) (left F -stability) QX ∼= ϕX as Q-S-bisets for every Q ≤ S and ϕ ∈ HomF(Q, S).

Similarly, X is called a right characteristic biset for F if it satisfies the conditions (A), (B),
and

(C’) (right F -stability) XQ
∼= Xϕ as S-Q-bisets for every Q ≤ S and ϕ ∈ HomF (Q, S).

If X satisfies the conditions (A), (B), (C) and (C’), then X is called a characteristic biset for
F .

Throughout this paper, we will refer to the conditions in this definition by the symbols
(A), (B), (C) and (C’).

The following result, due to Broto, Levi and Oliver, is fundamental for this paper.

Theorem 2.2 ([1, 5.5]). Every saturated fusion system has a characteristic biset.

Remark 2.3. [1, 5.5] only states the existence of a right characteristic biset. But in fact what
is constructed in the proof of [1, 5.5] is a characteristic biset, as pointed out by Ragnarsson
in the paragraph right before Proposition 4.4 in [4].

We define an object which will play a central role in this paper.

Definition 2.4. Let F be a saturated fusion system on a finite p-group S. A (left or right)
characteristic biset X for F is called minimal if it has the smallest size among all possible
(left or right) characteristic bisets for F .

Finally, we introduce the opposite operation, which is useful when comparing left and
right stability.

Definition 2.5. Let S1 and S2 be groups. For an S1-S2-biset X , let Xop be the S2-S1-biset
which has the same underlying set as X and such that v ·x ·u = u−1xv−1 for x ∈ X , u ∈ S1,
v ∈ S2.

If X is a left (resp. right) characteristic biset for a fusion system F , then Xop is a right
(resp. left) characteristic biset for F . If S1, S2 are groups, Q ≤ S1 and ϕ : Q → S2 is an
injective group homomorphism, then

(S1 ×(Q,ϕ) S2)
op ∼= S2 ×(ϕ(Q),ϕ−1) S1

See [5, §3.5] for a more discussion of this opposite operation.

Remark 2.6. Our use of the terminology ‘characteristic biset’ derives from Ragnarsson [4],
and Ragnarsson and Stancu [5], whereas Puig [3, Ch. 21] calls them basic sets. But our
convention in which maps defining transitive bisets are directed from left to right is close to
Puig’s; Ragnarsson and Stancu use the opposite notations. More precisely, the correspon-
dence between Ragnarsson and Stancu’s notation and ours is as follows:

[S1 ×(Q,ϕ) S2] = [ϕ(Q), ϕ−1]S1
S2

=
(
[Q,ϕ]S2

S1

)op
,

where the square bracket denotes the isomorphism class of bisets. Accordingly, our left (resp.
right) stabilitiy corresponds to Ragnarsson and Stancu’s right (resp. left) stability.
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3. Layers of characteristic bisets and counting fixed-points

Definition 3.1. Let S be a finite group. Let X be an S-S-biset with free left and right
action of S. For each r ≥ 0, let Xr denote the ‘r-th layer’ of X , i.e. the union of the transitive
subbisets of X of the form

S ×(Q,ϕ) S with |S : Q| = pr,

so that
X = X0 ∐X1 ∐X2 ∐ · · · .

Let X≤r =
∐

0≤i≤rXi.

A very effective way of studying finite sets with action of a finite group is counting the
number of fixed-points by subgroups. Indeed it is a standard fact due to Burnside that, for
a finite group G, two finite G-sets X and Y are isomorphic if and only if |XH| = |Y H | for
all H ≤ G.

First we make a simple, yet useful, observation.

Lemma 3.2. Let F be a saturated fusion system on a finite p-group S with a left or right
characteristic biset X.

(1) For U ≤ S×S, we have XU 6= ∅ if and only if there is a transitive subbiset S×(Q,ϕ)S

of X such that U is conjugate in S × S to a subgroup of ∆ϕ
Q. In particular, U = ∆ψ

R

for some R ≤ S and ψ ∈ HomF(R, S).

(2) |X∆ϕ
Q| = |X

∆ϕ
Q

≤r | if |S : Q| = pr.

Proof. In general, if G is a group and H , K are subgroups of G, we have (G/H)K 6= ∅ if and
only if K is G-conjugate to a subgroup of H . The lemma follows immediately from this fact
and that the family of subgroups of S×S of the form ∆ϕ

Q where Q ≤ S and ϕ ∈ HomF(Q, S)
is invariant under conjugation in S × S. �

In the following lemma, we record what the stability conditions (C) and (C’) in Defini-
tion 2.1 mean in terms of the number of fixed-points. It is a slight variation of [5, 4.8], which
reduces the number of equations to consider.

Lemma 3.3. Let F be a fusion system on a finite p-group S, and let X be a finite S-S-
biset satisfying the condition (A). Then the left stability condition (C) is equivalent to the
following condition:

|X∆ϕ
Q| = |X∆id

ϕ(Q)| for all Q ≤ S, ϕ ∈ HomF (Q, S);

the right stability condition (C’) is equivalent to the following condition:

|X∆ϕ
Q| = |X∆id

Q | for all Q ≤ S, ϕ ∈ HomF(Q, S).

Proof. We consider the condition (C), the case for (C’) being analogous. We have QX ∼= ϕX
if and only if |(QX)H | = |(ϕX)H | for all H ≤ S × S. Since X satisfies the condition (A),

Lemma 3.2 implies that both (QX)H and (ϕX)H will be empty unless H = ∆ψ
R for some

R ≤ Q and ψ ∈ HomF(R, S). Now (QX)∆
ψ
R = X∆ψ

R, while (ϕX)∆
ψ
R = X

∆ψ◦ϕ−1

ϕ(R) . Thus

QX ∼= ϕX if and only if |X∆ψ
R| = |X∆ψ◦ϕ−1

ϕ(R) | for all R ≤ Q, ψ ∈ HomF (R, S). The latter

condition implies in particular (when R = Q and ψ = ϕ) |X∆ϕ
Q| = |X∆id

ϕ(Q)|. Thus the
5



condition (C) implies that |X∆ϕ
Q| = |X∆id

ϕ(Q)| for all Q ≤ S, ϕ ∈ HomF(Q, S). Conversely, if

|X∆ϕ
Q| = |X∆id

ϕ(Q)| for all Q ≤ S, ϕ ∈ HomF(Q, S), then the condition (C) holds, because

|X∆ψ
R| = |X∆id

ψ(R)| = |X∆ψ◦ϕ−1

ϕ(R) |

for all R ≤ Q ≤ S, ψ ∈ HomF(R, S), ϕ ∈ HomF(Q, S). �

We recall the formula for the number of fixed-points of transitive bisets.

Lemma 3.4 ([5, 3.10]). Let S be a finite group. Let Q,R ≤ S, and let ϕ : Q→ S, ψ : R → S
be injective group homomorphisms. Then

|((S × S)/∆ϕ
Q)

∆ψ
R| =

|Nψ,ϕ|

|Q|
|CS(ψ(R))|

where
Nψ,ϕ = {x ∈ S | xR ≤ Q, ∃y ∈ S : ϕ ◦ cx|R = cy ◦ ψ}.

Note that Nψ,ϕ = ∅ unless ψ -(S,S) ϕ. Also, Nϕ,ϕ = Nϕ, the largest subgroup of NS(Q) to
which ϕ can be extended. In the special case where Q = S, Lemma 3.4 takes the following
form.

Lemma 3.5. Let S be a finite group. Let R ≤ S, and let α : S → S, ψ : R → S be injective
group homomorphisms. Then

|((S × S)/∆α
S)

∆ψ
R| =

{
|CS(ψ(R)|, if ψ -(S,S) α,

0, otherwise.

Proof. By Lemma 3.4, ((S × S)/∆α
S)

∆ψ
R 6= ∅ if and only if Nψ,α 6= ∅, i.e. if there are x, y ∈ S

such that α ◦ cx|R = cy ◦ ψ. Since α ◦ cx = cα(x) ◦ α, we have Nψ,α 6= ∅ if and only if
Nψ,α = S. �

4. Minimal characteristic bisets up to index p subgroups

In this section, we determine the coefficients of the top two layers X0 and X1 of a left or
right characteristic biset X for a saturated fusion system F . It is well-known that X0 has
the following form.

Proposition 4.1. Let X be a left or right characteristic biset for a saturated fusion system
F on a finite p-group S. Then there is a positive integer c0 which is not divisible by p such
that

X0
∼= c0

∐

[α]∈OutF (S)

(S × S)/∆α
S.

Proof. Write X0
∼=

∐
[α]∈OutF (S) cα(S × S)/∆α

S where the cα are nonnegative integers. We

have |X|/|S| ≡ |X0|/|S| ≡
∑

α cα mod p. Thus the condition (B) is equivalent to that∑
α cα 6≡ 0 mod p. In particular, there is β ∈ AutF(S) such that cβ > 0. Lemma 3.3

implies that |X∆αS | = |X∆β
S | for every α ∈ AutF(S). But |X∆αS | = |X

∆α
S

0 | = cα|Z(S)| by
Lemma 3.2 and Lemma 3.4. Thus we have cα = cβ =: c0 for every β ∈ AutF(S). Then
|X|/|S| ≡

∑
α cα ≡ c0|OutF(S)| 6≡ 0 mod p. It follows that c0 6≡ 0 mod p. �

To determine X1, we need the following definitions.
6



Definition 4.2. Let F be a fusion system on a finite p-group S. Let Q ≤ R ≤ S and
let ϕ ∈ AutF(Q, S). We say that ϕ is extendable (in F) to R if there is a morphism
ψ ∈ HomF(R, S) such that ϕ = ψ|Q. We say that ϕ is extendable if it is extendable to some
subgroup of S properly containing Q; otherwise, we say that ϕ is nonextendable. Let

Home,R
F (Q, S) = {ϕ ∈ HomF(Q, S) | ϕ is extendable to R},

Home
F(Q, S) = {ϕ ∈ HomF(Q, S) | ϕ is extendable },

Homn
F(Q, S) = {ϕ ∈ HomF(Q, S) | ϕ is nonextendable }.

Note that Home
F(Q, S) =

⋃
Q<R≤S Hom

e,R
F (Q, S). Also, if |S : Q| = p, then Home,S

F (Q, S) =

Home
F(Q, S).

The following proposition is implicit in [5, 5.5].

Proposition 4.3. Let X be a left or right characteristic biset for a saturated fusion system
F on a finite p-group S. Let ϕ ∈ Homn

F(Q, S) for some Q ≤ S. Then X has a transitive
subbiset isomorphic to S ×(Q,ϕ) S.

Proof. Assume that X is a left characteristic biset for F ; the proof is identical when X is

a right characteristic biset. By Lemma 3.3, we have |X∆ϕ
Q| = |X∆id

ϕ(Q)|. By Proposition 4.1

and Lemma 3.5, we have |X∆id
ϕ(Q)| ≥ |((S × S)/∆id

S )
∆id
ϕ(Q) | > 0. Thus we have |X∆ϕ

Q| 6= 0.
Lemma 3.2 and the assumption that ϕ is nonextendable, it follows that X has a transitive
subbiset isomorphic to S ×(Q,ϕ) S. �

We denote by HomF(Q, S)/ ∼(S,S) the set of ∼(S,S)-equivalence classes of elements of
HomF(Q, S). For instance, we have OutF(S) = AutF(S)/ ∼(S,S). The following proposition
is based on an important property of F -centric subgroups which can be found in [1, A.8].
Both the proposition and the proof are crucial for many results in this paper.

Proposition 4.4. Let F be a saturated fusion system on a finite p-group S. Let Q ≤ R ≤ S
be normal subgroups of S which are F-centric. Then restriction to Q induces a bijection

HomF(R, S)/ ∼(S,S)

∼=
−→ Home,R

F (Q, S)/ ∼(S,S) .

In particular, if |S : Q| = p, then we have

OutF(S)
∼=
−→ Home

F(Q, S)/ ∼(S,S)

Proof. The given map is well-defined because Q E S. It is clearly surjective. To show that
it is injective, let ϕ, ψ ∈ HomF(R, S) and suppose ϕ|Q ∼(S,S) ψ|Q. That means there exist
x ∈ NS(Q) and y ∈ S such that cy ◦ ψ|Q = ϕ ◦ cx|Q. Since Q is F -centric, we apply [1, A.8]
to cy ◦ ψ|R and ϕ ◦ cx|R (the latter is well-defined because R E S) and get z ∈ Z(Q) such
that cy ◦ ψ = ϕ ◦ cx ◦ cz|R. In other words, ϕ ∼(S,S) ψ, showing that the given map is also
injective. �

Now we determine X1 of a characteristic biset X for a saturated fusion system, which
amounts to solving a part of the system of linear equations given in [4, 5.6].

Proposition 4.5. Let F be a saturated fusion system on a finite p-group S. Let {Pi | 1 ≤ i ≤
n} be the set of subgroups of S of index p. For each 1 ≤ i ≤ n, let {ϕi,j : Pi → S | 0 ≤ j ≤ mi}

7



be a set of representatives of ∼(S,S)-equivalence classes of F-morphisms with domain Pi such
that ϕi,0 = ιPi, the inclusion map Pi →֒ S. Let X be a finite S-S-biset with

X0
∼= c0

∐

[α]∈OutF (S)

(S × S)/∆α
S

for some positive integer c0 which is not divisible by p.

(1) If X is a right characteristic biset for F , then there is an integer c
(i)
1 ≥ 0 for each

1 ≤ i ≤ n such that

X1
∼=

∐

1≤i,j≤n
ϕi,j extendable

c
(i)
1 (S × S)/∆

ϕi,j
Pi

∐
∐

1≤i,j≤n
ϕi,j nonextendable

(c0 + pc
(i)
1 )(S × S)/∆

ϕi,j
Pi
.

(2) If X is a left characteristic biset for F , then there is an integer c
(i)
1 ≥ 0 for each

1 ≤ i ≤ n such that

X1
∼=

∐

1≤i,j≤n
ϕi,j extendable

c
(i)
1 (S × S)/∆

ϕ−1
i,j

ϕi,j(Pi)
∐

∐

1≤i,j≤n
ϕi,j nonextendable

(c0 + pc
(i)
1 )(S × S)/∆

ϕ−1
i,j

ϕi,j(Pi)
.

Proof. We prove (1) and obtain (2) by taking opposite of (1). Suppose that X is a right

characteristic biset for F . Write X1
∼=

∐
i,j c

(i,j)
1 (S×S)/∆

ϕi,j
Pi

where the c
(i,j)
1 are nonnegative

integers. For each pair (i, j), we have |X∆
ϕi,j
Pi | = |X

∆
ϕi,0
Pj | by Lemma 3.3. Since |S : Pi| = p,

we have |X∆
ϕi,j
Pi | = |X

∆
ϕi,j
Pi

0 |+ |X
∆
ϕi,j
Pi

1 | by Lemma 3.2, and

|X
∆
ϕi,j
Pi

0 | = c0ai,j|CS(ϕi,j(Pi))|,

|X
∆
ϕi,j
Pi

1 | = c
(i,j)
1 |((S × S)/∆

ϕi,j
Pi

)
∆
ϕi,j
Pi | = c

(i,j)
1

|Nϕi,j |

|Pi|
|CS(ϕi,j(Pi))|,

where

ai,j = |{[α] ∈ OutF(S) | α|Pi ∼(S,S) ϕi,j}|,

by Lemma 3.4 and Lemma 3.5. Thus we have
(
c0ai,j + c

(i,j)
1 |Nϕi,j |/|Pi|

)
|CS(ϕi,j(Pi))| =

(
c0ai,0 + c

(i,0)
1 |Nϕi,0 |/|Pi|

)
|CS(Pi)|.

Case 1: ϕi,j is extendable. Then ϕi,j = α|Pi for some α ∈ AutF(S). Then CS(ϕi,j(Pi)) =
CS(α(Pi)) = α(CS(Pi)), so |CS(ϕi,j(Pi))| = |CS(Pi)|. Also Nϕi,j = Nϕi,0 = S. Now if
β ∈ AutF(S) and β|Pi ∼(S,S) ϕi,j, then α|Pi ∼(S,S) β|Pi, so β

−1 ◦ α|Pi ∼(S,S) idPi. This shows

that ai,j = ai,0. Hence, we have c
(i,j)
1 = c

(i,0)
1 =: c

(i)
1 .

Case 2: ϕi,j is not extendable. Then Pi and ϕi,j(Pi) are F -centric by Alperin’s fusion
theorem. So |CS(ϕi,j(Pi))| = |Z(ϕi,j(Pi))| = |ϕi,j(Z(Pi))| = |Z(Pi)| = |CS(Pi)|. Also
Nϕi,j = Pi and Nϕi,0 = S. We have ai,j = 0 since ϕi,j is nonextendable. On the other hand,
suppose α|Pi ∼(S,S) ιPi , i.e. there is α ∈ AutF(S) such that α|Pi = cx|Pi for some x ∈ S.
By [1, A8], we have α = cx ◦ cz for some z ∈ Z(Pi), and so α ∼(S,S) idS. Thus ai,0 = 1.

Therefore, we have c
(i,j)
1 = c0 + pc

(i)
1 . �

8



5. Minimal bisets for Ruiz-Viruel exotic systems

In this section, we determine minimal left characteristic bisets for Ruiz-Viruel exotic fu-
sion systems [6]. In particular, we show that every Ruiz-Viruel exotic fusion system has a
unique minimal left characteristic biset, and that in fact it is also a unique minimal right
characteristic biset.

First we review some of the results on the Ruiz-Viruel exotic fusion systems and fix
notations. Throughout this section, let p be an odd prime, and let S be an extraspecial
p-group of order p3 and exponent p. Then S has center Z(S) = 〈z〉 of order p, and exactly
p+ 1 subgroups

Vi = 〈z, ui〉 (0 ≤ i ≤ p)

of order p2, which are elementary abelian and centric in S. Therefore, for any fusion system
F on S, all the Vi are F -centric. Let us fix the ordered basis (z, ui) for Vi as an Fp-
vector space. Via this ordered basis we get an isomorphism Aut(Vi) ∼= GL2(p). Then

Ui := AutS(Vi) ∼=

{(
1 ∗
0 1

)}
=: U ≤ GL2(p). Set some subgroups of GL2(p) as

B := NGL2(p)(U) =

{(
∗ ∗
0 ∗

)}
, T :=

{(
∗ 0
0 ∗

)}
, R :=

{(
0 ∗
∗ 0

)}
,

and denote by Bi, Ti and Ri their isomorphic images in AutF(Vi). Note that T ⊔ R is a set
of representatives of U -U -double cosets in GL2(p).

Let F be a saturated fusion system on S. By the extension axiom, we have

AutF(Vi) ∩ Bi = AuteF(Vi),

AutF(Vi)− Bi = AutnF (Vi),

for 0 ≤ i ≤ p. Note that AutF(Vi) is closed under left and right AutS(Vi)-action in Aut(Vi).
Thus AutF(Vi) ∩ Ti is a set of representatives of extendable F -automorphisms of Vi, and
AutF(Vi)∩Ri is a set of representatives of nonextendable F -automorphisms of Vi, both with
respect to S-S-conjugacy.

The subgroup Vi is F -radical if and only if AutF (Vi) contains SL2(p). In this case, we
have

AutF(Vi) ∼= SL2(p) : ri for some ri|(p− 1).

Then

AutF(Vi) ∩ Ti =

{(
k 0
0 l

)

Vi

| k, l ∈ F×
p , kl ∈ 〈µ(p−1)/ri〉

}
,

AutF(Vi) ∩ Ri =

{(
0 l
k 0

)

Vi

| k, l ∈ F×
p ,−kl ∈ 〈µ(p−1)/ri〉

}
,

where F×
p = 〈µ〉. In particular, we have

|AutF(Vi) ∩ Ti| = |AutF(Vi) ∩ Ri| = (p− 1)ri.

For later use, set Λei = {(k, l) | kl ∈ 〈µ(p−1)/ri〉}, Λni = {(k, l) | −kl ∈ 〈µ(p−1)/ri〉}.
We will consider saturated fusion systems F on S such that all Vi are F -radical. In

particular, all exotic fusion systems on S have this property. We list all of them in the
following table.
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p OutF(S) |V F
i | ri Group

3 D8 2, 2 2, 2 2F4(2)
′

3 SD16 4 2 J4

5 4S4 6 4 Th

7 D16 × 3 4, 4 2, 2

7 62 : 2 6, 2 2, 6

7 SD32 × 3 8 2

Here |V F
i | denotes the size of the F -conjugacy class of subgroups of S containing Vi. In the

columns |V F
i | and ri, numbers corresponding to different F -conjugacy classes are separated

by commas, and they are in the same order in these two columns. The column “Group”
indicates finite groups realizing corresponding saturated fusion systems. An empty entry in
this column means that the corresponding saturated fusion system is exotic. For example,
when p = 7, the saturated fusion system on S with OutF(S) ∼= 62 : 2 has exactly two F -
conjugacy classes of subgroups of order 72. One of them consists of 6 subgroups of order 72

and their automorphism groups are isomorphic to SL2(7) : 2; the other consists of 2 subgroups
of order 72 and their automorphism groups are isomorphic to SL2(7) : 6 = GL2(7). This
saturated fusion system is exotic.

One observes that the numerical relation |OutF (S)| = (p−1)|V F
i |ri is satisfied in all cases.

This is not a coincidence, and indeed a special case of a more general phenomenon.

Lemma 5.1. Let F be a saturated fusion system on S. Suppose that Vi is F-radical for
some 1 ≤ i ≤ p. Then we have

f :=
|OutF(S)|

p− 1
= |V F

i |ri = |{[α] ∈ OutF(S) | α(z) = zm}|

for any m ∈ F×
p .

Proof. By Proposition 4.4, we have

|OutF(S)| = |Home
F(Vi, S)/ ∼(S,S) |.

We claim that
|Home

F(Vi, S)/ ∼(S,S) | = |V F
i | · |AuteF(Vi)/ ∼(S,S) |.

Indeed, if Vi ∼=F Vj, then there is α ∈ AutF(S) such that α(Vi) = Vj by Alperin’s fusion
theorem. Then composition with α induces a bijection

AuteF(Vi)/ ∼(S,S)
≃
−→ {ϕ ∈ Home

F (Vi, S) | ϕ(Vi) = Vj}/ ∼(S,S) .

Since this holds for every j with Vi ∼=F Vj , the claim follows. Since

|AuteF(Vi)/ ∼(S,S) | = |AutF (Vi) ∩ Ti| = (p− 1)ri,

as we have observed previously in this section, the first equaltiy of the proposition follows.
Now consider the restriction map AutF(S) → AutF(Z(S)). Since inner automorphisms of

S acts as the identity map on Z(S), this restriction map induces the group homomorphism

OutF(S) → AutF(Z(S)), [α] 7→ α|Z(S).
10



For each m ∈ F×
p , we have

(
m 0
0 m−1

)

Vi

∈ AuteF(Vi) as Aut
e
F (Vi) contains SL2(p), and hence

there exists α ∈ AutF(S) such that α(z) = zm. For each pairm,n ∈ F×
p , choose β ∈ AutF(S)

such that β(z) = znm
−1
. Then composition with β defines the bijection

{[α] ∈ OutF(S) | α(z) = zm} → {[α] ∈ OutF(S) | α(z) = zn}.

Thus we get the second equality of the proposition. �

Now suppose that F is a saturated fusion system on S such that all Vi are F -radical.
Let us enumerate F -morphisms between subgroups of S of index p up to S-S-conjugacy.
Suppose Vi ∼=F Vj. By Alperin’s fusion theorem, there is α ∈ AutF(S) such that α(Vi) = Vj.
Then α(Z(S)) = Z(S) and α(ui) ∈ ukj 〈z〉 for some 0 < k < p. We normalize the notations
for the sake of convenience as follows. Since AutF(Vj) ≥ SL2(p), by composing α with some
extendable F -automorphism of Vj and replacing uj by a suitable power of uj, we obtain
αi,j ∈ AutF(S) sending z to z and ui to uj. We do this one by one for each F -conjugacy
class of the Vi in a compatible way. By composing elements of AutF(Vi) ∩ Ri with αi,j, we
obtain nonextendable F -isomorphisms

ϕk,li,j : Vi → Vj

sending z to ukj and ui to z
l where (k, l) ∈ Λni . The set

{ϕk,li,j | Vi
∼=F Vj, (k, l) ∈ Λni }

is a set of representatives of nonextendable isomorphisms between index p subgroups of S
with respect to S-S-conjugacy. Similarly we have a set

{ψk,li,j | Vi
∼=F Vj , (k, l) ∈ Λei}

of representatives of extendable isomorphisms between index p subgroups of S with respect
to S-S-conjugacy, where

ψk,li,j : Vi → Vj

sends z to zk and ui to u
l
j.

Then, by Proposition 4.5, if X is a right characteristic biset for F we have

X0
∼= c0

∐

[α]∈OutF (S)

(S × S)/∆α
S,(X0)

X1
∼=

∐

Vi∼=FVj
(k,l)∈Λei

c
(i)
1 (S × S)/∆

ψk,li,j
Vi

∐
∐

Vi∼=FVj
(k,l)∈Λni

(c0 + pc
(i)
1 )(S × S)/∆

ϕk,li,j
Vi

,(X1)

for some nonnegative integers c0 and c
(i)
1 such that p ∤ c0.

Now we consider F -maps between subgroups of order p. Since we are assuming that all Vi
are F -radical, all elements of S of order p are F -conjugate. For elements ξ, ζ ∈ S of order
p, let ∆ζ

ξ := ∆ϕ
〈ξ〉 where ϕ : 〈ξ〉 → 〈ζ〉 sends ξ to ζ . Then the F -graph subgroups of S × S

(i.e. subgroups of S × S of the form ∆ϕ
Q for some Q ≤ S and ϕ ∈ HomF (Q, S)) of order p

up to S × S-conjugacy are

∆ζ
ξ where ξ ∈ {z, ui}0≤i≤p, ζ ∈ {zm, umj }0≤j≤p,1≤m≤p−1.
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Thus

X2
∼=

∐

1≤m≤p−1

c
(z,zm)
2 (S × S)/∆zm

z ∐
∐

0≤i≤p
1≤m≤p−1

c
(ui,zm)
2 (S × S)/∆zm

ui
(X2)

∐
∐

0≤j≤p
1≤m≤p−1

c
(z,umj )

2 (S × S)/∆
umj
zm ∐

∐

0≤i,j≤p
1≤m≤p−1

c
(ui,u

m
j )

2 (S × S)/∆
umj
ui

for some nonnegative integers c
(z,zm)
2 , c

(ui,z
m)

2 , c
(z,umj )

2 and c
(ui,umj )

2 .
Now we can state the main result of this section precisely.

Theorem 5.2. Let p be an odd prime and let S be an extraspecial group of order p3 and
exponent p. Let F be a saturated fusion system on S such that all subgroups Vi of S of order
p2 are F-radical. Then there exists a unique minimal right characteristic biset X for F given
as follows:

X0
∼=

∐

[α]∈OutF (S)

(S × S)/∆α
S,

X1
∼=

∐

Vi∼=FVj
(k,l)∈Λni

(S × S)/∆
ϕk,li,j
Vi

,

X2
∼=

∐

Vi∼=FVj
1≤m≤p−1

(f − ri)(S × S)/∆
umj
ui ∐

∐

Vi 6∼=FVj
1≤m≤p−1

f(S × S)/∆
umj
ui .

Moreover, X is a unique minimal left characteristic biset for F and hence a unique minimal
characteristic biset for F .

Proof. The proof is done by explicitly computing all right characteristic bisets for F and
showing that there is the smallest one among them. For this, let X be an arbitrary right
characteristic biset for F . The top two layers X0 and X1 of X are given as in (X0) and (X1)
by Proposition 4.5. Write X2 as in (X2). The coefficients of X2 are completely determined
by the system of equations

|X∆ζ
ξ | = |X∆ξ

ξ |, ξ ∈ {z, ui}0≤i≤p, ζ ∈ {zm, umj }0≤j≤p,1≤m≤p−1.
12



To solve this system of equations, first compute the numbers of fixed points of ∆ζ
ξ on transitive

subbisets of X using Lemma 3.4 and Lemma 3.5:

|((S × S)/∆α
S)

∆ζ
ξ | =





p3, if α(ξ) = ζ ∈ 〈z〉

p2, if α(ξ) ∈ ζ〈z〉 6= 〈z〉

0, otherwise,

|((S × S)/∆
ψk,li,j
Vi

)∆
ζ
ξ | =





p4, if (ξ, ζ) = (z, zk)

p3, if (ξ, ζ) = (ui, u
l
j)

0, otherwise,

|((S × S)/∆
ϕk,li,j
Vi

)∆
ζ
ξ | =






p3, if (ξ, ζ) = (z, ukj ) or (ξ, ζ) = (ui, z
l)

p2, if ξ = ui, ζ ∈ 〈uj〉

0, otherwise,

|((S × S)/∆ζ
ξ)

∆ζ
ξ | =





p5, if ξ, ζ ∈ 〈z〉

p4, if ξ ∈ 〈z〉 6∋ ζ or ξ /∈ 〈z〉 ∋ ζ

p3, if ξ /∈ 〈z〉 6∋ ζ .

Adding up those numbers, we get the following result using Lemma 5.1:

|X
∆z

m

z

0 | = p3fc0, |X
∆z

m

ui

0 | = |X∆
umj
z

0 | = 0,

|X
∆
umj
ui

0 | = c0p
2|{[α] ∈ OutF(S) | α(ui) ∈ umj 〈z〉}|

=

{
p2ric0, if Vi ∼=F Vj
0, otherwise,

,

|X
∆z

m

z

1 | = p4f
∑

0≤i≤p

c
(i)
1 , |X

∆z
m

ui

1 | = p3fc0 + p4fc
(i)
1

|X∆
umj
z

1 | = p3fc0 + p4rj
∑

Vi∼=FVj

c
(i)
1 ,

|X
∆
umj
ui

1 | =

{
p3ric

(i)
1 + p2(p− 1)ri(c0 + pc

(i)
1 ), if Vi ∼=F Vj

0, otherwise.

The second equality for |X
∆
umj
ui

0 | needs more explanation. If there is α ∈ AutF(S) such that
α(ui) ∈ umj 〈z〉, then α(Vi) = Vj. Thus if Vi 6∼=F Vj, then {α ∈ OutF(S) | α(ui) ∈ umj 〈z〉} = ∅.
Suppose Vi ∼=F Vj . Then by the extension axiom, there is α ∈ AutF(S) such that α(Vi) = Vj.
Then α(ui) ∈ ulj〈z〉 for some l 6= 0. Since AutF(Vi) ≥ SL2(p), we may modify α so that

α(ui) = umj . Then α(z) = zk for some k and there are ri choices for k. By [1, A8], each
choice of k determines α up to S-S-conjugacy.

13



Thus

|X∆z
m

z

≤1 | = p3fc0 + p4f
∑

0≤i≤p

c
(i)
1 ,

|X
∆z

m

ui

≤1 | = p3fc0 + p4fc
(i)
1 ,

|X∆
umj
z

≤1 | = p3fc0 + p4rj
∑

Vi∼=FVj

c
(i)
1 ,

|X
∆
umj
ui

≤1 | =

{
p3ric0 + p4ric

(j)
1 , if Vi ∼=F Vj

0, otherwise.

Now |X∆ζ
ξ | = |X∆ξ

ξ | and |X∆ζ
ξ | = |X

∆ζ
ξ

≤1 |+ c
(ξ,ζ)
2 |((S × S)/∆ζ

ξ)
∆ζ
ξ |. Thus

c
(ξ,ζ)
2 |((S × S)/∆ζ

ξ)
∆ζ
ξ | = c

(ξ,ξ)
2 |((S × S)/∆ξ

ξ)
∆ξ
ξ |+ (|X

∆ξ
ξ

≤1 | − |X
∆ζ
ξ

≤1 |).

Then

|X∆z
m

z | = |X∆zz | : c
(z,zm)
2 = c

(z,z)
2 =: c

(z)
2 ,

|X∆
umj
ui | = |X∆

ui
ui | : c

(ui,umj )

2 = c
(ui,ui)
2 =: c

(ui)
2 (if Vi ∼=F Vj),

|X∆
umj
ui | = |X∆

ui
ui | : c

(ui,u
m
j )

2 = ric0 + pric
(i)
1 + c

(ui)
2 (if Vi 6∼=F Vj),

|X∆
umj
z | = |X∆zz | : c

(z,umj )

2 = pc
(z)
2 + (f − rj)

∑

Vi∼=FVj

c
(i)
1 + f

∑

Vi 6∼=FVj

c
(i)
1 ,

|X∆z
m

ui | = |X∆
ui
ui | : pc

(ui,zm)
2 = c

(ui)
2 − (f − ri)c0 − p(f − ri)c

(i)
1 .

The only restriction on coefficients (other than p ∤ c0) is that they must be nonnegative
because X is a genuine biset:

p ∤ c0 ≥ 1, c
(i)
1 ≥ 0, c

(z)
2 ≥ 0, c

(ui)
2 ≥ (f − ri)c0 + p(f − ri)c

(i)
1 .

Thus X is minimal if and only if

c0 = 1, c
(i)
1 = 0, c

(z)
2 = 0, c

(ui)
2 = (f − ri),

and in this case

c
(ui,umj )

2 =

{
f − ri, if Vi ∼=F Vj

f, if Vi 6∼=F Vj,

c
(ui,zm)
2 = c

(z,umj )

2 = 0.

The last statement follows from observing that the unique minimal right characteristic biset
X is isomorphic to its opposite Xop. �

Remark 5.3. Let us look more closely at numerical relations in the above minimal character-
istic biset X . Let e := e(X) = |X|/|S| and ei := |Xi|/|S| (i = 0, 1, 2) so that e = e0+e1+e2.
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Let di = ei/p
i (i = 0, 1, 2). In other words, di is the number of transitive subbisets appearing

in Xi. Then, using Lemma 5.1, we see that

d0 = |OutF(S)|,

d1 =
∑

0≤i≤p

|V F
i ||Λni | =

∑

0≤i≤p

|V F
i |(p− 1)ri = (p+ 1)|OutF(S)|,

d2 =
∑

0≤i≤p

(f − ri)|V
F
i |(p− 1) +

∑

0≤i≤p

f((p+ 1)− |V F
i |)(p− 1) = p(p+ 1)|OutF (S)|.

Thus

e = d0 + pd1 + p2d2 =
p5 − 1

p− 1
|OutF(S)|.

We summarize all these numbers in the following table.

p OutF(S) |V F
i | ri f d0 d1 d2 e(X) Group

3 D8 2, 2 2, 2 4 8 32 96 968 2F4(2)
′

3 SD16 4 2 8 16 64 192 1936 J4

5 4S4 6 4 24 96 576 2880 74976 Th

7 D16 × 3 4, 4 2, 2 8 48 384 2688 134448 ≤ 425744

7 62 : 2 6, 2 2, 6 12 72 576 4032 201672 ≤ 638620

7 SD32 × 3 8 2 16 96 768 5376 268896 ≤ 851496

Numbers in the column “Group” are the upper bounds of the exoticity indices obtained by
minimal characteristic bisets.

6. Finite groups realizing Ruiz-Viruel exotic fusion systems

In this section, we analyze how the finite group G realizes fusion more closely, and as a
consequence prove Theorem 1.2. For this, the following basic double coset formula concerning
restriction of bisets will be useful.

Lemma 6.1 ([4, §2]). Let S be a group. Let Q,R ≤ S and let ϕ : Q → S, ψ : R → S be
injective group homomorphisms. Then

ψ((S × S)/∆ϕ
Q)

∼=
∐

t∈[ϕ(R)\S/Q]

(R× S)/∆
ϕ◦c−1

t ◦ψ

ψ−1(tQ)

Let F be a saturated fusion system on a finite p-group S with a left characteristic biset
X . Let G = Aut(1X), i.e. the group of bijections of X preserving the right S-action, and
define ι : S → G by ι(u)(x) = ux for u ∈ S, x ∈ X . By our previous work [2], we know that
ι is injective and F ∼= Fι(S)(G). More precisely, let R ≤ S and let ψ ∈ HomF (R, S). Then
the left F -stability of X implies that RX and ψX are isomorphic as R-S-bisets. Then any

isomorphism of R-S-bisets g : RX
∼
−→ ψX viewed as an element of G realizes ψ in the sense

that ψ(u) = gug−1 for all u ∈ R.
15



In fact, we can be more precise about the element g ∈ G. Let us recall the notations in
[2]. Write

X =

n∐

i=1

S ×(Qi,ϕi) S

where Qi ≤ S, ϕi ∈ HomF(Qi, S) for 1 ≤ i ≤ n. For each i, fix a set {tij}j∈Ji of repre-
sentatives of the left cosets of Qi in S. Set J =

∐n
i=1 Ji. For each 1 ≤ i ≤ n, we have a

decomposition of right S-sets

S ×(Qi,ϕi) S =
∐

j∈Ji

〈tij, S〉,

where 〈tij, S〉 := {〈tij, x〉 | x ∈ S} is a regular right S-set for all j ∈ Ji. So we have

G := Aut(1X) ∼= S ≀ Sym(J),

where Sym(J) denotes the symmetric group on the set J .
Let G be the image of G in Sym(J) and use bar notation for images of subgroups or

elements of G in Sym(J). Then each Ji is an S-orbit with |Ji| = |S : Qi|. In particular, we
have |Ji| = 1 precisely when the corresponding F -morphism ϕi : Qi → S is an automorphism
of S. Suppose that the Qi are indexed so that |Qi| ≥ |Qi+1| for all i. Then there are integers
1 ≤ n0 ≤ n1 ≤ n2 ≤ · · · ≤ n such that |S : Qi| = pr for all i with nr ≤ i < nr+1. With this
notation, S-orbits of J can be represented schematically as follows:

[ϕi](n0≤i<n1)︷ ︸︸ ︷
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

[ϕi](n1≤i<n2)︷ ︸︸ ︷
(∗ ∗ ∗) · · · (∗ ∗ ∗)

[ϕi](n2≤i<n3)︷ ︸︸ ︷
(∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗) · · · (∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗) · · ·

Each asterisk in the above diagram represents an element of the index set J . Left S-orbits
of the asterisks are denoted by brackets, except for the first eight asterisks, each of which is
a single left S-orbit. Each left S-orbit corresponds to a transitive subbiset of X of the form
S×(Qi,ϕi) S, and indexed by the S-S-conjugacy class of F -morphisms [ϕi] determining it. In

a left S-orbit indexed by the S-S-conjugacy class of ϕi : Qi → S, each asterisk is indexed by
a left coset of Qi in S.

Remark 6.2. With the above notation in mind, suppose R ≤ S, ψ ∈ HomF(R, S). Then

RX ∼= ψX , and by Lemma 6.1,

ψ((S × S)/∆ϕi
Qi
) ∼=

∐

t∈[ψ(R)\S/Qi]

(R× S)/∆
ϕi◦c

−1
t ◦ψ

ψ−1(tQi)
,

R((S × S)/∆ϕi
Qi
) ∼=

∐

s∈[R\S/Qi]

(R× S)/∆ϕi◦c
−1
s

sQi
.

So one can find a bijective correspondence µ between the above transitive subbisets of RX
and ψX and a permutation µ̃ ∈ Sym(J) which respects µ, and construct an isomorphism of

R-S-bisets g : RX
∼
−→ ψX which, viewed as an element of G, realizes ψ and such that g = µ̃.

Our focus is the behavior of the permutations g ∈ Sym(J) associated with elements
g ∈ G realizing F -automorphisms of the F -essential subgroups of S. First we consider
F -automorphisms of S.
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Proposition 6.3. Let F be a saturated fusion system on a finite p-group S with a left
characteristic biset X. Let G = Aut(1X) and use the notations introduced above. Then the
image of AutF(S) in Sym(J) is transitive on J (0) :=

∐
{Ji | |Ji| = 1}.

Proof. J (0) is the union of singleton left S-orbits of J , each corresponding to an outer auto-
morphism of S. By Remark 6.2, for any α ∈ AutF(S) there is g ∈ G which realizes α and
such that g ∈ Sym(J) sends the element of J (0) corresponding to [idS] to the element of J (0)

corresponding to [α] because

α((S × S)/∆ϕi
S ) ∼= (S × S)/∆ϕi◦α

S

for Qi = S. �

Now we can prove Theorem 1.2, which we restate here for the convenience of the reader.

Theorem 6.4. Let p be an odd prime and let S be an extraspecial group of order p3 and
exponent p. Let F be a saturated fusion system on S such that all subgroups of S of order p2

are F-radical. Let X be the minimal left characteristic biset X for F given by Theorem 1.1.
Let G = Aut(1X) ∼= S ≀ Σe(X) and let H be the subgroup of G generated by the normalizers
of the F-essential subgroups of S. Then the image of H in Σe(X) is a transitive subgroup of
Σe(X).

Proof. We keep the notations of this section and §5. We have

H = 〈AutF(S),AutF(Vi) | 1 ≤ i ≤ n〉.

The index set J of the symmetric group Σe(X) can be represented schematically as follows:

[α]︷ ︸︸ ︷
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

[ϕk,l0,j ]︷ ︸︸ ︷
(∗ ∗ ∗) · · · (∗ ∗ ∗) · · ·

[ϕk,lp,j ]︷ ︸︸ ︷
(∗ ∗ ∗) · · · (∗ ∗ ∗)

[u0→umj ]
︷ ︸︸ ︷
(∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗) · · · (∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗) · · ·

By Proposition 6.3, we know that the image of AutF(S) in Sym(J) is transitive on the union
of singleton left S-orbits of J corresponding to outer automorphisms of S.

Now let ϕ = ϕr,s0,0 ∈ AutF(V0) for some (r, s) ∈ Λn0 . Recall that Z(S) = 〈z〉, Vi = 〈z, ui〉
for 0 ≤ i ≤ p. Let v ∈ S such that [v, u0] = z so that vtu0v

−t = ztu0 for all t. Then we have
sets of left coset representatives as follows:

[S/V0] = {vt}0≤t≤p−1, [S/Vi] = {ut0}0≤t≤p−1(i 6= 0),

[S/〈u0〉] = {vtzw}0≤t,w≤p−1, [S/〈ui〉] = {ut0z
w}0≤t,w≤p−1(i 6= 0).

We have V0X
∼= ϕX as V0-S-bisets, and for each transitive subbiset of X , the two restrictions

to V0 via the inclusion V0 →֒ S and via ϕ are given as follows:

Y V0Y ϕY

(S × S)/∆α
S (V0 × S)/∆

α|V0
V0

(V0 × S)/∆α◦ϕ
V0

(S × S)/∆
ϕk,l0,j

V0

∐p−1
t=0 (V0 × S)/∆

ϕk,l0,j◦cvt

V0

∐p−1
t=0 (V0 × S)/∆

ϕk,l0,j◦cvt◦ϕ

V0

(S × S)/∆
ϕk,li,j
Vi

(i 6= 0) (V0 × S)/∆
urkj
〈z〉 (V0 × S)/∆

urlj
〈u0〉

(S × S)/∆
umj
〈u0〉

∐p−1
t=0 (V0 × S)/∆

umj
〈ztu0〉

∐p−1
t=0 (V0 × S)/∆

umj

〈zr−1us
−1t

0 〉

(S × S)/∆
umj
〈ui〉

(i 6= 0) V0 × S V0 × S
17



By comparing the size, we see that the transitive V0-S-subbisets in the first two rows of
the above table are isomorphic to each other, and those in the third and fourth rows are
isomorphic to each other. Among the transitive subbisets in the first two rows, we can
determine isomorphic pairs by the extendability of the associated maps. In the column V0Y ,

the maps α|V0 are extendable, while ϕk,l0,j ◦ cvt are nonextendable. On the other hand, in the

column ϕY , the maps α ◦ ϕ are nonextendable, while the maps ϕk,l0,j ◦ cvt ◦ ϕ are extendable
if t = 0 and nonextentable if t 6= 0. Thus

(V0 × S)/∆
α|V0
V0

∼= (V0 × S)/∆
ϕk,l0,j◦ϕ

V0
,

(V0 × S)/∆α◦ϕ
V0

∼= (V0 × S)/∆
ϕk,l0,j

V0
,

(V0 × S)/∆
ϕk,l0,j◦cvt

V0
∼= (V0 × S)/∆

ϕk,l0,j◦cvt′ ◦ϕ

V0
(t, t′ 6= 0).

Similarly,

(V0 × S)/∆
urkj
〈z〉

∼= (V0 × S)/∆
umj

〈zr−1〉
,

(V0 × S)/∆
umj
〈u0〉

∼= (V0 × S)/∆
urlj
〈u0〉

,

(V0 × S)/∆
umj
〈ztu0〉

∼= (V0 × S)/∆
umj

〈zr−1us
−1t′

0 〉
(t, t′ 6= 0).

Note that the numerical relations observed in Remark 5.3 guarantees that the numbers of
transitive V0-S-subbisets in the above list of isomorphisms do match up. This shows that
for each ϕ ∈ AutF(V0), there is an element g ∈ NG(V0) which realizes ϕ and such that
g ∈ Sym(J) respects the above list of isomorphisms of transitive V0-S-bisets. Schematically,
g can be represented as follows:

[α]︷ ︸︸ ︷
• • • • • • • •

[ϕk,l0,j ]︷ ︸︸ ︷
(◦ ∗ ∗) · · · (◦ ∗ ∗) | · · ·

[ϕk,lp,j ]︷ ︸︸ ︷
(• • •) · · · (• • •)

[u0→umj ]
︷ ︸︸ ︷
(◦ ◦ ◦ ∗ ∗ ∗ ∗ ∗ ∗) · · · (◦ ◦ ◦ ∗ ∗ ∗ ∗ ∗ ∗) | · · ·

[α]︷ ︸︸ ︷
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

[ϕk,l0,j ]︷ ︸︸ ︷
(• ∗ ∗) · · · (• ∗ ∗) | · · ·

[ϕk,lp,j ]︷ ︸︸ ︷
(◦ ◦ ◦) · · · (◦ ◦ ◦)

[u0→umj ]
︷ ︸︸ ︷
(• • • ∗ ∗ ∗ ∗ ∗ ∗) · · · (• • • ∗ ∗ ∗ ∗ ∗ ∗) | · · ·

where g sends solid dots, circles and asterisks in the first row to solid dots, circles and
asterisks in the second row, respectively, inside each compartment divided by vertical lines.
In particular, the images of AutF(Vi)(1 ≤ i ≤ n) in Sym(J) merge left S-orbits of J of
different sizes into a single H-orbit. Together with the transitivity of the image of AutF(S)
in Sym(J) on the singleton left S-orbits, this shows that H is transitive on the whole index
set J . �

Appendix A. Coefficients of characteristic idempotents

In this section, we determine some coefficients of characteristic idempotents. The reason
why we include this section in the paper is two-fold. First, as characteristic idempotents are
determined by imposing only one additional idempotency condition [4, 5.5, 5.6] on virtual
characteristic bisets with coefficients in Z(p), this can be done without much effort using
Proposition 4.5 and Theorem 5.2. More importantly, the information contained in this
section can be useful for testing conjectures on the behavior of characteristic idempotents.
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We follow Ragnarsson’s notation [4, 5] in this section. Let F be a saturated fusion system
on a finite p-group S. Let ω = ωF be the characteristic idempotent of F . As for characteristic
bisets, let

ω = ω0 + ω1 + · · · ,

where

ωr =
∑

P≤S
|S:P |=pr

∑

[P,ϕ]

c[P,ϕ](ω)[P, ϕ]
S
S.

(c[P,ϕ](ω) denotes the coefficient of the basis element [P, ϕ] for ω.) Then the idempotency
condition tells us that

∑

[ϕ]∈HomF (P,S)/∼(S,S)

c[P,ϕ] =

{
1, if P = S

0, if P < S

Using this, it is easy to see that

ω0 = c0
∑

[α]∈OutF (S)

[S, α]SS,

where c0 =
1

|OutF (S)|
.

Proposition A.1. Let F be a saturated fusion system on a finite p-group S. Let {Pi | 1 ≤
i ≤ n} be the set of subgroups of S of index p. For each 1 ≤ i ≤ n, let {ϕi,j : Pi → S |
0 ≤ j ≤ mi} be a set of representatives of ∼(S,S)-equivalence classes of F-morphisms with
domain Pi such that ϕi,0 = ιPi, the inclusion map Pi →֒ S. Let

d
(e)
i = |{1 ≤ j ≤ mi | ϕi,j is extendable}|,

d
(n)
i = |{1 ≤ j ≤ mi | ϕi,j is nonextendable}|.

Then

ω1 =
∑

i,j s.t.

ϕi,j extendable

c
(e)
i [Pi, ϕi,j]

S
S +

∑

i,j s.t.

ϕi,j nonextendable

c
(n)
i [Pi, ϕi,j]

S
S,

where

c
(e)
i = −

d
(n)
i

d
(e)
i + pd

(n)
i

c0, c
(n)
i =

d
(e)
i

d
(e)
i + pd

(n)
i

c0.

Proof. By Proposition 4.5, we have

ω1 =
∑

i,j s.t.
ϕi,j extendable

c
(e)
i [Pi, ϕi,j] +

∑

i,j s.t.
ϕi,j nonextendable

c
(n)
i [Pi, ϕi,j]

where c
(e)
i , c

(n)
i ∈ Z(p) such that

c
(n)
i = c0 + pc

(e)
i .

The coefficients of ω1 are determined by the idempotency condition:

d
(e)
i c

(e)
i + d

(n)
i c

(n)
i = 0 (1 ≤ i ≤ n).
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Solving these equations for c
(e)
i , we get

c
(e)
i = −

d
(n)
i

d
(e)
i + pd

(n)
i

c0.

Then

c
(n)
i =

d
(e)
i

d
(e)
i + pd

(n)
i

c0. �

For the next proposition, we use the notations of §5.

Proposition A.2. Let p be an odd prime and let S be an extraspecial group of order p3 and
exponent p. Let F be a saturated fusion system on S such that all subgroups of S of order
p2 are F-radical. Then

ω1 =−
c0

1 + p

∑

Vi∼=FVj
(k,l)∈Λei

[Vi, ψ
k,l
i,j ]

S
S +

c0
1 + p

∑

Vi∼=FVj
(k,l)∈Λni

[Vi, ϕ
k,l
i,j ]

S
S,

ω2 =
p

p3 − 1

∑

1≤m≤p−1

[z, zm]−
p

(p+ 1)(p3 − 1)

∑

0≤i≤p
1≤m≤p−1

[ui, z
m]

−
p

(p+ 1)(p3 − 1)

∑

0≤j≤p
1≤m≤p−1

[zm, umj ] +
∑

0≤i≤p

(
1

p3 − 1
−

ric0
p+ 1

) ∑

Vi∼=FVj
1≤m≤p−1

[ui, u
m
j ]

+
1

p3 − 1

∑

0≤i≤p

∑

Vi 6∼=FVj
1≤m≤p−1

[ui, u
m
j ].

where [ξ, ζ ] := [〈ξ〉, ϕ] with ϕ : 〈ξ〉 → 〈ζ〉 such that ϕ(ξ) = ζ.

Proof. By Proposition A.1,

ω1 =
∑

Vi∼=FVj
(k,l)∈Λei

c
(e)
i [Vi, ψ

k,l
i,j ]

S
S +

∑

Vi∼=FVj
(k,l)∈Λni

c
(n)
i [Vi, ϕ

k,l
i,j ]

S
S,

where

c
(e)
i = −

d
(n)
i

d
(e)
i + pd

(n)
i

c0, c
(n)
i =

d
(e)
i

d
(e)
i + pd

(n)
i

c0.

So we only need to compute d
(e)
i , d

(e)
i to determine ω1. By Lemma 5.1, we have

d
(e)
i = |{ψk,li,j | Vi

∼=F Vj, (k, l) ∈ Λei}| = |V F
i |(p− 1)ri =

1

c0
,

d
(n)
i = |{ϕk,li,j | Vi

∼=F Vj, (k, l) ∈ Λni }| = |V F
i |(p− 1)ri =

1

c0
.

So

c
(e)
i = −

c0
1 + p

=: c1, c
(n)
i =

c0
1 + p

.
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Now we determine ω2. By the proof of Theorem 5.2,

ω2 =
∑

1≤m≤p−1

c
(z,zm)
2 [z, zm] +

∑

0≤i≤p
1≤m≤p−1

c
(ui,z

m)
2 [ui, z

m]

+
∑

0≤j≤p
1≤m≤p−1

c
(z,umj )

2 [z, umj ] +
∑

0≤i,j≤p
1≤m≤p−1

c
(ui,u

m
j )

2 [ui, u
m
j ],

where

c
(z,zm)
2 = c

(z,z)
2 =: c

(z)
2 ,

c
(ui,u

m
j )

2 =

{
c
(ui,ui)
2 =: c

(ui)
2 , if Vi ∼=F Vj

c
(ui)
2 + ric0 + pric1, if Vi 6∼=F Vj ,

c
(z,umj )

2 = pc
(z)
2 + (f − rj)

∑

Vi∼=FVj

c1 + f
∑

Vi 6∼=FVj

c1,

c
(ui,zm)
2 =

1

p
c
(ui)
2 −

f − ri
p

c0 − (f − ri)c1.

The coefficients of ω2 are determined by the idempotency condition:

0 =
∑

1≤m≤p−1

c
(z,zm)
2 +

∑

0≤j≤p
1≤m≤p−1

c
(z,umj )

2 ,

0 =
∑

1≤m≤p−1

c
(ui,z

m)
2 +

∑

0≤j≤p
1≤m≤p−1

c
(ui,u

m
j )

2 (0 ≤ i ≤ p).

Solving these equations, we get

c
(z)
2 =

p

p3 − 1
, c

(ui)
2 =

1

p3 − 1
−

ri
p+ 1

c0.

Then

c
(ui,umj )

2 =
1

p3 − 1
(if Vi 6∼=F Vj),

c
(z,umj )

2 = c
(ui,zm)
2 = −

p

(p + 1)(p3 − 1)
. �
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