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Abstract. Parabolic differential equations with discrete state-dependent delay are stud-
ied. The approach, based on an additional condition on the delay function introduced
in [A.V. Rezounenko, Differential equations with discrete state-dependent delay: unique-
ness and well-posedness in the space of continuous functions, Nonlinear Analysis: Theory,
Methods and Applications, 70 (11) (2009), 3978-3986] is developed. We propose and study
a state-dependent analogue of the condition which is sufficient for the well-posedness of the
corresponding initial value problem on the whole space of continuous functions C. The
dynamical system is constructed in C and the existence of a compact global attractor is
proved.
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1 Introduction

Delay differential equations is one of the oldest branches of the theory of infinite di-
mensional dynamical systems - theory which describes qualitative properties of systems,
changing in time.

We refer to the classical monographs on the theory of ordinary (O.D.E.) delay equa-
tions [11, 12, 8, 2, 20]. The theory of partial (P.D.E.) delay equations is essentially less
developed since such equations are infinite-dimensional in both time (as delay equations)
and space (as P.D.E.s) variables, which makes the analysis more difficult. We refer to
some works which are close to the present research [5, 6, 4, 24] and to the monograph
[39].

A new class of equations with delays has recently attracted attention of many re-
searchers. These equations have a delay term that may depend on the state of the system,
i.e. the delay is state-dependent (SDD). Due to this type of delays such equations are
inherently nonlinear and their study has begun in the case of ordinary differential equa-
tions [21, 23, 22, 17, 33, 34, 18] (for more details see also a recent survey [13], articles
[35, 36] and references therein).

Investigations of these equations essentially differ from the ones of equations with
constant or time-dependent delays. The underlying main mathematical difficulty of the
theory lies in the fact that delay terms with discrete state-dependent delays are not
Lipschitz continuous on the space of continuous functions - the main space, on which the
classical theory of equations with delays is developed (see [38] for an explicit example of

1

http://arxiv.org/abs/1011.4488v1


the non-uniqueness and [13] for more details). It is a common point of view [13] that
the corresponding initial value problem (IVP) is not generally well-posed in the sense of
J. Hadamard [9, 10] in the space of continuous functions (C). This leads to the search
of (particular) classes of equations which may be well-posed in the space of continuous
functions (C).

Results for partial differential equations with SDD have been obtained only recently in
[25](case of distributed delays, weak solutions), [16] (mild solutions, unbounded discrete
delay), and [26] (weak solutions, bounded discrete and distributed delays).

The main goal of the present paper is to develop an alternative approach, based on
an additional condition (see (H) below) introduced in [27]. We propose and study a
state-dependent analogue of the condition which is sufficient for the well-posedness of the
corresponding initial value problem in the space C. The presented approach includes the
possibility when the state-dependent delay function does not satisfy the condition on a
subset of the phase space C, but the IVP still be well-posed in the whole space C. This
is our second goal which is to connect the approach developed for ODEs (a restriction to
a subset of Lipschitz continuous functions) and the approach [27] of a different nature.

Discussing the meaning of the main assumptions (H) and (Ĥ) (see below) for applied
problems, we hope that these assumptions are the natural mathematical expression of
the fact that many differential equations encountered in modeling real world phenomena
have a parameter (time ηign > 0 or Θℓ > 0) which is necessary to take into considerations
the time changes in the system. The changes not always can be taken into considerations
immediately. To this end, the existence of ηign > 0 or Θℓ > 0 (no matter how small
the values of ηign > 0 or Θℓ > 0 are!) makes the corresponding initial value problem
well-posed.

Having the well-posedness proved, we study the long-time asymptotic behavior of the
correspond dynamical system and prove the existence of a compact global attractor.

2 Formulation of the model with state-dependent

discrete delay

Let us consider the following parabolic partial differential equation with delay

∂

∂t
u(t, x) + Au(t, x) + du(t, x) =

(
F (ut)

)
(x), x ∈ Ω, (1)

where A is a densely-defined self-adjoint positive linear operator with domain D(A) ⊂
L2(Ω) and with compact resolvent, so A : D(A) → L2(Ω) generates an analytic semigroup,
Ω is a smooth bounded domain in Rn0, d is a non-negative constant. As usually for delay
equations, we denote by ut the function of θ ∈ [−r, 0] by the formula ut ≡ ut(θ) ≡ u(t+θ).
We denote for short C ≡ C([−r, 0];L2(Ω)). The norms in L2(Ω) and C are denoted by
|| · || and || · ||C respectively.

The (nonlinear) delay term F : C([−r, 0];L2(Ω)) → L2(Ω) has the form

F (ϕ) = B(ϕ(−η(ϕ))), (2)

where (nonlinear) mapping B : L2(Ω) → L2(Ω) is Lipschitz continuous

||B(v1)− B(v2)|| ≤ LB|| v
1 − v2||, ∀v1, v2 ∈ L2(Ω). (3)
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The function η(·) : C([−r, 0];L2(Ω)) → [0, r] ⊂ R+ represents the state-dependent

discrete delay. It is important to notice that F is nonlinear even in the case of linear B.
We consider equation (1) with the following initial condition

u|[−r,0] = ϕ ∈ C ≡ C([−r, 0];L2(Ω)). (4)

Remark 1. The results presented in this paper could be easily extended to the case of
nonlinearity F of the form F (ϕ) =

∑
k B

k(ϕ(−ηk(ϕ))) as well as to O.D.E.s, for example,
of the following form [29]

u̇(t) + Au(t) + d · u(t) = b(u(t− η(ut))), u(·) ∈ Rn, d ≥ 0. (5)

In the last case one simply needs to substitute L2(Ω) by Rn and use C ≡ C([−r, 0];Rn)
instead of C([−r, 0];L2(Ω)). The function b : Rn → Rn is locally Lipschitz continuous and
satisfies ||b(w)||Rn ≤ C1||w||Rn + Cb with C1, Cb ≥ 0; A is a matrix.

Remark 2. As an example we could consider nonlocal delay term F (see (2)) with
the following mapping

B(v)(x) ≡

∫

Ω

b(v(y))f(x− y)dy, x ∈ Ω,

where f : Ω−Ω → R is a bounded and measurable function (|f(z)| ≤Mf , ∀z ∈ Ω−Ω) and
b : R → R is a (locally) Lipschitz mapping, satisfying |b(w)| ≤ C1|w| + Cb with Ci ≥ 0.
In this case equation (1) has the form

∂

∂t
u(t, x) + Au(t, x) + du(t, x) =

∫

Ω

b(u(t− η(ut), y))f(x− y)dy, x ∈ Ω.

One can easily check that B satisfies (3) with LB ≡ LbMf |Ω|, where Lb is the Lipschitz
constant of b, and |Ω| ≡

∫
Ω
1 dx.

Another example is a (local) delay term F (see (2)) with B(v)(x) ≡ b(v(x)), x ∈ Ω.
Equation (1) has the form

∂

∂t
u(t, x) + Au(t, x) + du(t, x) = b(u(t− η(ut), x)), x ∈ Ω.

An easy calculation show that (3) is satisfied with LB ≡ Lb.

The methods used in our work can be applied to other types of nonlinear and delay
P.D.E.s (as well as O.D.E.s). We choose a particular form of nonlinear delay terms F for
simplicity and to illustrate our approach on the diffusive Nicholson’s blowflies equation
(see the end of the article for more details).

3 The existence of mild solutions

In our study we use the standard

Definition 1. A function u ∈ C([−r, T ];L2(Ω)) is called a mild solution on [−r, T ]
of the initial value problem (1), (4) if it satisfies (4) and

u(t) = e−Atϕ(0) +

∫ t

0

e−A(t−s) {F (us)− d · u(s)} ds, t ∈ [0, T ]. (6)
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Proposition 1[27]. Assume the mapping B is Lipschitz continuous (see (3)) and
delay function η(·) : C([−r, 0];L2(Ω)) → [0, r] ⊂ R+ is continuous.

Then for any initial function ϕ ∈ C, initial value problem (1), (4) has a global mild
solution which satisfies u ∈ C([−r,+∞);L2(Ω)).

The existence of a mild solution is a consequence of the continuity of F : C → L2(Ω)
(see (1)) which gives the possibility to use the standard method based on Schauder fixed
point theorem (see e.g. [39, theorem 2.1, p.46]). The solution is also global (is defined
for all t ≥ −r) since (3) implies ||F (ϕ)|| ≤ LB||ϕ||C + ||B(0)|| and one can apply, for
example, [39, theorem 2.3, p.49].

Remark 3. It is important to notice that even in the case of ordinary differential equa-
tions (even scalar) the mapping of the form F̃ (ϕ) = f̃(ϕ(−r(ϕ))) : C([−r0, 0];R) → R
has a very unpleasant property. The authors in [19, p.3] write ”Notice that the func-

tional F̃ is defined on C([−r0, 0];R), but it is clear that it is neither differentiable nor

locally Lipschitz continuous, whatever the smoothness of f̃ and r.” As a consequence, the
Cauchy problem associated with equations with such a nonlinearity ”...is not well-posed
in the space of continuous functions, due to the non-uniqueness of solutions whatever the
regularity of the functions f̃ and r” [19, p.2]. See also a detailed discussion in [13].

Remark 4. For a study of solutions to equations with a state-dependent delay in the
space C([−r, 0];E) with E not necessarily finite-dimensional Banach space see e.g. [1]

In this work we concentrate on conditions for the IVP (1), (4) to be well-posed.

4 Main results: uniqueness, well-posedness and

asymptotic bahavior

As in the previous section, we assume that η : C → [0, r] is continuous and B is Lipschitz.
Unlike to the existence of solutions, the uniqueness is essentially more delicate question
in the presence of discrete state-dependent delay (see a classical example of the non-
uniqueness in [38]).

Let us remind an important additional assumption on the delay function η, as it was
introduced in [27]:

• ∃ηign > 0 such that η ”ignores” values of ϕ(θ) for θ ∈ (−ηign, 0] i.e.

∃ ηign > 0 : ∀ϕ1, ϕ2 ∈ C : ∀θ ∈ [−r,−ηign], ⇒ ϕ1(θ) = ϕ2(θ) =⇒ η(ϕ1) = η(ϕ2).
(H)

For examples of delay functions satisfying (H) and the proof of the uniqueness of mild
solutions (given by Proposition 1) as well as the well-posedness of the IVP (1), (4) see
[27].

Remark 5. It is important to notice that, discussing the condition (H) and its depen-
dence on the value ηign, we see that in the case ηign > r, one has that the delay function η
ignores all values of ϕ(θ), ∀θ ∈ [−r, 0], so η(ϕ) ≡ const, ∀ϕ ∈ C i.e. equation (1) becomes
an equation with constant (!) delay. On the other hand, the analogue of assumption
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(H) with ηign = 0, is trivial since ϕ1(θ) = ϕ2(θ) for all θ ∈ [−r, 0] means ϕ1 = ϕ2 in C,
so η(ϕ1) = η(ϕ2).

Remark 6. It is worth mentioning that the classical case of constant delay (see
the previous remark) and the corresponding theory forms the basement for the discussed
approach, but could be mixed with the approach of non-vanishing delays. In our case the
delay η do may vanish (we do not assume the existence of r0 > 0 such that η(ϕ) ≥ r0, ∀ϕ).

In the above condition (H) the semi-interval (−ηign, 0] is fixed (we remind that the
value ηign could be arbitrary small).

Our goal is to extend the approach based on the condition (H) to a more wide class
of state-dependent delay functions where the value ηign is not a constant any more, but a
function of the state. Moreover, as an easy additional extension, we also allow the upper
bound of the delayed segment to be state-dependent. More precisely, we consider two
functions Θu,Θℓ : C → [0, r] (upper and low functions), satisfying

∀ϕ ∈ C ⇒ 0 ≤ Θℓ(ϕ) ≤ Θu(ϕ) ≤ r.

Now we are ready to introduce [29] the following state-dependent condition for the state-
dependent delay function η : C → [0, r] (c.f. (H)):

• η ”ignores” values of ϕ(θ) for θ 6∈ [−Θu(ϕ),−Θℓ(ϕ)] i.e.

∀ψ ∈ C such that ∀θ ∈ [−Θu(ϕ),−Θℓ(ϕ)] ⇒ ψ(θ) = ϕ(θ) =⇒ η(ψ) = η(ϕ). (Ĥ)

The above condition means that state-dependent delay function η ”ignores” all val-
ues of its argument ϕ outside of [−Θu(ϕ),−Θℓ(ϕ)] ⊂ [−r, 0] and this delayed segment
[−Θu(ϕ),−Θℓ(ϕ)] is state-dependent. We could illustrate this property on the picture.

-

6

time
0−r −Θℓ(ϕ)−Θu(ϕ)

θ

ϕ(θ) ψ(θ)

ψ(θ)
ϕ(θ)

-
0 r��@@

η(ψ) = η(ϕ)

?

delay

-� -�

��������*

Remark 7. One could see that (H) is a particular case of (Ĥ) with Θℓ(ϕ) ≡ ηign and
Θu(ϕ) ≡ r, ∀ϕ ∈ C.
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Examples. It is easy to present many examples of (delay) functions η, which satisfy

assumption (Ĥ). The simplest one is

η(ϕ) = p1 (ϕ(−χ(ϕ(−r))) with p1 : L
2(Ω) → [0, r] (7)

and given χ : L2(Ω) → [0, r]. Here Θℓ(ϕ) ≡ χ(ϕ(−r)) and Θu(ϕ) = r. It is easy to see
that the above delay function η (7) ignores values of ϕ at points θ ∈ (−r,−χ(ϕ(−r))) ∪
(−χ(ϕ(−r)), 0] and uses just two values of ϕ at points θ = −r, θ = −χ(ϕ(−r)). In our
notations, the delayed segment [−Θu(ϕ),−Θℓ(ϕ)] = [−r,−χ(ϕ(−r)] is state-dependent.

In the same way, one has

η(ϕ) =

N∑

k=1

pk
(
ϕ(−χk(ϕ(−r))

)
with pk, χ

k : L2(Ω) → [0, r].

In this case [−Θu(ϕ),−Θℓ(ϕ)] = [−r,−mink{χ
k(ϕ(−r))}]. A slightly more general ex-

ample is

η(ϕ) =

N∑

k=1

pk
(
ϕ(−χk(ϕ(−rk))

)
with pk, χ

k : L2(Ω) → [0, r], min rk ∈ (0, r].

Here Θu(ϕ) = max{r1, . . . , rN , χ1(ϕ(−r1)), . . . , χN (ϕ(−rN))} and
Θℓ(ϕ) = min{r1, . . . , rN , χ1(ϕ(−r1)), . . . , χN(ϕ(−rN))}.
Examples of integral delay terms are as follows

η(ϕ) =

∫ −χ1(ϕ(−r1))

−χ2(ϕ(−r2))

p1(ϕ(θ))g(θ) dθ, and η(ϕ) = p1

(∫ −χ1(ϕ(−r1))

−χ2(ϕ(−r2))

ϕ(θ)g(θ) dθ

)
.

Similar to the previous example, Θu(ϕ) = max {r1, r2, χ1(ϕ(−r1)), χ2(ϕ(−r2))} and
Θℓ(ϕ) = min {r1, r2, χ1(ϕ(−r1)), χ2(ϕ(−r2))}.

Remark 8. It is interesting to notice that an assumption similar to the existence of
upper function Θu(·) is used in [37] for ODEs with SDD (locally bounded delay). On the
other hand, an assumption similar to (H) is used in [14] for neutral ODEs (see (A4)(ii)
in [14]), but together with another assumption on SDD to be bounded from below by a
constant r0 > 0 (c.f. remark 6).

Following [27, theorem 1] we have the first result

Theorem 1. Let both upper and low functions Θu,Θℓ : C → [0, r] be continuous and
Θℓ(ϕ) > 0, ∀ϕ ∈ C. Assume the delay function η : C → [0, r] ⊂ R+ is continuous and

satisfies assumption (Ĥ); the mapping B is Lipschitz continuous (see (3)).
Then for any initial function ϕ ∈ C, initial value problem (1), (4) has an unique mild

solution u(t), t ≥ 0 (given by proposition 1).
If we define the evolution operator St : C → C by the formula Stϕ ≡ ut, where

u(t) is the unique mild solution of (1), (4) with initial function ϕ, then the pair (St, C)
constitutes a dynamical system i.e. the following properties are satisfied:

1. S0 = Id ( identity operator in C );

2. ∀ t, τ ≥ 0 =⇒ St Sτ = St+τ ;
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3. t 7→ St is a strongly continuous in C mapping;

4. for any t ≥ 0 the evolution operator St is continuous in C i.e. for any {ϕn}∞n=1 ⊂ C
such that ||ϕn − ϕ||C → 0 as n→ ∞, one has ||Stϕ

n − Stϕ||C → 0 as n→ ∞.

The proof follows the line of [27, theorem 1] taking into account that condition Θℓ(ϕ) >
0, ∀ϕ ∈ C implies that for any fixed ϕ ∈ C, due to the continuity of Θℓ : C → [0, r], there
exists a neighbourhood U(ϕ) ⊂ C such that for all ψ ∈ U(ϕ) one has Θℓ(ψ) ≥ 1

2
Θℓ(ϕ) >

0. That means that in U(ϕ) ⊂ C we have the (state-independent) condition (H) with
ηign = 1

2
Θℓ(ϕ) > 0 and all the arguments presented in [27, theorem 1] could be directly

applied to this case.

Remark 9. We do not assume that the upper and low functions Θu,Θℓ (which are

used in (Ĥ) to present the delayed segment [−Θu(ϕ),−Θℓ(ϕ)]) are the functions presenting
the smallest possible delayed segment. More precisely, it is possible that there exist two
other functions Θ̃u, Θ̃ℓ such that for all ϕ ∈ C one has 0 ≤ Θℓ(ϕ) ≤ Θ̃ℓ(ϕ) ≤ Θ̃u(ϕ) ≤

Θu(ϕ) ≤ r and the same delay η satisfies (Ĥ) with Θ̃u, Θ̃ℓ as well.

Our next step in studying the state-dependent condition (Ĥ) is an attempt to avoid
the condition Θℓ(ϕ) > 0, ∀ϕ ∈ C. We are going to consider the general case Θℓ(ϕ) ≥
0, ∀ϕ ∈ C with a non-empty set Z ≡ {ϕ ∈ C : Θℓ(ϕ) = 0} 6= ∅.

Theorem 2. Assume the mapping B is Lipschitz continuous (see (3)).

Moreover, let the following conditions be satisfied:
1) both upper and low functions Θu,Θℓ : C → [0, r] are continuous;

2) Z ≡ {ϕ ∈ C : Θℓ(ϕ) = 0} ⊂ CLL ≡

{
ϕ ∈ C : sup

t6=s

||ϕ(t)−ϕ(s)||
|t−s| ≤ L

}
;

3) delay function η : C → [0, r] ⊂ R+ is continuous and satisfies assumption (Ĥ);
4) ∀ϕ ∈ Z ⇒ η(ϕ) > 0;
5) ∃Uω(Z) ≡ {χ ∈ C : ∃ν ∈ Z : ||χ− ν||C ≤ ω}, ∃Lη > 0 : ∀ϕ, ψ ∈ Uω(Z) ⇒

|η(ϕ)− η(ψ)| ≤ Lη · ||ϕ− ψ||C .

Then for any initial function ϕ ∈ C, initial value problem (1), (4) has an unique

mild solution u(t), t ≥ 0 (given by proposition 1). Moreover, the pair (St, C) constitutes
a dynamical system (see thm 1).

Proof of theorem 2. Let us consider ϕ ∈ C which is an initial condition (see (4)). We
start with the simple case ϕ 6∈ Z. By definition of Z, we have Θℓ(ϕ) > 0. Hence we apply
the same arguments as in the proof of theorem 1 (the state-independent condition (H) is
satisfied locally).

The rest of the proof is devoted to the case ϕ ∈ Z. We remind some estimates similar
to estimates (6)-(13) in [27]. Denote by uk(t) any solution of (1),(4) with the initial
function ϕk and by u(t) any solution of (1),(4) with the initial function ϕ.

We use the variation of constants formula for parabolic equation (with Ã ≡ A+ d ·E)

u(t) = e−Ãtu(0) +

∫ t

0

e−Ã(t−τ)B(u(τ − η(uτ))) dτ, (8)
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uk(t) = e−Ãtuk((0) +

∫ t

0

e−Ã(t−τ)B(uk(τ − η(ukτ))) dτ. (9)

Using ||e−Ãt|| ≤ 1 and ||e−Ã(t−τ)|| ≤ 1, we get

||uk(t)− u(t)|| ≤ ||uk(0)− u(0)||+

∫ t

0

||B(uk(τ − η(ukτ )))−B(u(τ − η(uτ)))|| dτ

= ||ϕk(0)− ϕ(0)||+ Jk
1 (t) + Jk

2 (t), (10)

where we denote (for s ≥ 0, x ∈ Ω)

Jk
1 (s) ≡ Jk

1 (s)(x) ≡

∫ s

0

||B(uk(τ − η(ukτ)))− B(u(τ − η(ukτ)))|| dτ, (11)

Jk
2 (s) ≡ Jk

2 (s)(x) ≡

∫ s

0

||B(u(τ − η(ukτ)))−B(u(τ − η(uτ)))|| dτ. (12)

Using the Lipschitz property (3) of B, one easily gets

Jk
1 (t) ≤ LB

∫ t

0

||uk(τ − η(ukτ))− u(τ − η(ukτ ))|| dτ

≤ LBt max
s∈[−r,t]

||uk(s)− u(s)||. (13)

Estimates (13), (10) and property Jk
2 (s) ≤ Jk

2 (t) for s ≤ t ≤ t0 give

max
t∈[0,t0]

||uk(t)− u(t)|| ≤ ||ϕk(0)− ϕ(0)||+ LBt0 max
s∈[−r,t0]

||uk(s)− u(s)||+ Jk
2 (t0).

Hence

max
s∈[−r,t0]

||uk(s)− u(s)|| ≤ ||ϕk − ϕ||C + LBt0 max
s∈[−r,t0]

||uk(s)− u(s)||+ Jk
2 (t0). (14)

Now we study properties of Jk
2 which essentially differ from the ones in [27] since

(H) is not satisfied. The Lipschitz property of B implies

Jk
2 (t0) ≤ LB

∫ t0

0

||u(τ − η(ukτ ))− u(τ − η(uτ))|| dτ. (15)

Since ϕ ∈ Z, property 4) gives η(ϕ) > 0. Due to the continuity of η (see 3)),

∃Uα(ϕ) ≡ {ψ ∈ C : ||ϕ− ψ||C ≤ α} : ∀ψ ∈ Uα(ϕ) ⇒ η(ψ) ≥
3

4
η(ϕ) > 0. (16)

We choose α < ω (see property 5). By definition, a solution is strongly continuous function
(with values in L2(Ω)), hence for any two solutions u(t) and uk(t) there exist two time
moments tϕ, tϕk > 0 such that for all t ∈ (0, tϕ] one has ut ∈ Uα(ϕ) and for all t ∈ (0, tϕk ]
one has ukt ∈ Uα(ϕ).

Remark 10. More precisely, we assume that ∃Nα ∈ N such that for all k ≥ Nα

one has ϕk ∈ Uα/2(ϕ) and hence there exists time moment tϕk ∈ (0, t0] such that for all
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t ∈ (0, tϕk ] one has ukt ∈ Uα(ϕ). The last assumption (∃Nα ∈ N : ∀k ≥ Nα ⇒ ϕk ∈
Uα/2(ϕ)) is not restrictive since for the uniqueness of solutions we have ϕk = ϕ while for
the continuity with respect to initial data (see below) we have ϕk → ϕ in C.

Remark 11. It is important to notice that we take any solution from the set of
solutions of IVP (1),(4) with the initial function ϕ (and denote it by u(t)) and take any

solution from the set of solutions of IVP (1),(4) with the initial function ϕk (and denote
it by uk(t)) i.e. the values tϕ, tϕk may depend on the choice of these two solutions.

These and (16) imply that for all τ ∈ [0, t1], with t1 ≤ min{tϕ; tϕk ; 3
4
η(ϕ)} one gets

τ −η(uτ) ≤ 0, τ−η(ukτ) ≤ 0 and u(τ−η(uτ)) = ϕ(τ −η(uτ)), u(τ−η(u
k
τ)) = ϕ(τ−η(ukτ )).

Hence, see (15) and properties 2), 5),

Jk
2 (t1) ≤ LB

∫ t1

0

||ϕ(τ − η(ukτ ))− ϕ(τ − η(uτ))|| dτ ≤ LBL

∫ t1

0

|η(ukτ)− η(uτ)| dτ

≤ LBLLηt1 max
s∈[−r,t1]

||uk(s)− u(s)||.

Finally, we get (see the last estimate and (14))

(1− LBt1[1 + LLη]) max
s∈[−r,t1]

||uk(s)− u(s)|| ≤ ||ϕk − ϕ||C.

Choosing small enough t1 > 0 (to have 1− LBt1[1 + LLη] > 0) i.e.

t1 ≡ min

{
tϕ; tϕk ;

3

4
η(ϕ); qLB[1 + LLη])

−1

}
for any fixed q ∈ (0, 1), (17)

we get
max

s∈[−r,t1]
||uk(s)− u(s)|| ≤ (1− LBt1[1 + LLη])

−1||ϕk − ϕ||C. (18)

It is easy to see that (18) particularly implies the uniqueness of mild solutions to I.V.P.
(1),(4) in case when ϕk = ϕ.

It gives us the possibility to define the evolution operator St : C → C by the
formula Stϕ ≡ ut, where u(t) is the unique mild solution of (1), (4) with initial function ϕ.

Our next goal is to prove that pair (St, C) constitutes a dynamical system (see the
properties 1.− 4. as they are formulated in theorem 1). As in [27, p.3981], properties 1, 2
are consequences of the uniqueness of mild solutions. Property 3 is given by Proposition 1
since the solution is a continuous function u ∈ C([−r, T ];L2(Ω)).

Let us prove property 4. We consider any sequence {ϕk}∞k=1 ⊂ C, which converges
(in space C) to ϕ. Denote by uk(t) the (unique!) mild solution of (1),(4) with the initial
function ϕk and by u(t) the (unique!) mild solution of (1),(4) with the initial function ϕ.

One could think that (18) already provides the continuity with respect to initial data,
but there is an important technical property used in developing (18) i.e. the choice of t1
(see (17) and remark 11). In contrast to the previous study, now we have infinite set of
functions {ϕk}∞k=1 ⊂ C, so it may happen that t1 = tk1 → 0 when k → ∞.

We remind (see the text after (16)) that two time moments tϕ, tϕk > 0 have been
chosen such that for all t ∈ (0, tϕ] one has ut ∈ Uα(ϕ) and for all t ∈ (0, tϕk ] one has
ukt ∈ Uα(ϕ). Now our goal is to show that infinite number of moments tϕ, {tϕk}∞k=1

could be chosen in such a way that t2 ≡ infk∈N{tϕ, tϕk} > 0 and ut, u
k
t ∈ Uα(ϕ) for all

9



t ∈ (0, t2]. To get this, we use the standard proof of the existence of a mild solution
by a fixed point argument (see e.g. [39, p.46, thm 2.1]). More precisely, let U be an

open subset of C and F̃ : [0, b] × U → L2(Ω) be continuous. For ϕ ∈ C and any
y ∈ Y1 ≡ {y ∈ C([−r, t3];L

2(Ω)) : y(0) = ϕ(0))} we consider the extension function ŷ as
follows

ŷ(s) ≡

[
ϕ(s) for s ∈ [−r, 0];
y(t) for s ∈ (0, t3]

.

Let Y2 ≡ {y ∈ Y1 : ŷt ∈ Bδ(ϕ) for t ∈ [0, t3]}. Consider a mapping G on Y2 as follows

G(y)(t) ≡ e−Ãtϕ(0) +

∫ t

0

e−Ã(t−τ)F̃ (ŷτ ) dτ.

One can check (see [39, p.46,47, thm 2.1]), that G maps Y2 into Y2 provided t3 ≡
min{t′; b; δ/(3N); δ}. Here we use notations of [39, p.46] chosen as follows. Constants

δ > 0 and N > 0 are such that ||F̃ (ψ)|| ≤ N for all ψ ∈ Bδ(ϕ) ≡ {ψ ∈ C : ||ψ−ϕ||C ≤ δ},

||e−Ãt|| ≤ M = 1. The time moment t′ < r is chosen so that if 0 ≤ t ≤ t′ then

||ϕ(t + θ) − ϕ(θ)|| < δ/3 and ||e−Ãtϕ(0) − ϕ(0)|| < δ/3. The solution is given by a
fixed point y = G(y). For our goal it is sufficient to choose δ ≤ α and t2 ≤ t3 to get
ut, u

k
t ∈ Uα(ϕ) for all t ∈ (0, t2]. Here we use ϕk instead of ϕ when necessary. The

crucial point here is the possibility to choose t′ (and hence t3 and t2) independent of
k ∈ N . The choice of t′ < r so that if 0 ≤ t ≤ t′ then ||ϕ(t + θ) − ϕ(θ)|| < δ/3 and
||ϕk(t+ θ)−ϕk(θ)|| < δ/3 for all k ∈ N is possible due to the convergence of ϕk (to ϕ in
C). Since any convergent sequence is a pre-compact set in C, the desired property is the
equicontinuity given by the Arzela-Ascoli theorem. Now estimate (18) can be applied to
our case and this completes the proof of property 4 and theorem 2.

Discussing assumptions of theorem 2, let us present a constructive example of low
function Θℓ which satisfies assumption 2). Consider any compact and convex set KC ⊂
CLL ⊂ C. For example, for any compact and convex set K ∈ L2(Ω), the set {ϕ ∈
C : ϕ ∈ CLL, ∀θ ∈ [−r, 0] ⇒ ϕ(θ) ∈ K} is compact (by Arzela-Ascoli theorem) and
convex. First, constructing Θℓ, we set Θℓ(ϕ) = 0 for all ϕ ∈ KC . Second, we take
any p ∈ (0, r] and set Θℓ(ϕ) = p for all ϕ ∈ C such that distC(ϕ,KC) ≥ 1. Third,
for any ϕ ∈ C such that distC(ϕ,KC) ∈ (0, 1) we find an unique ϕ̂ ∈ KC such that
distC(ϕ,KC) = ||ϕ − ϕ̂||C. Such ϕ̂ ∈ KC exists by the classical Weierstrass theorem
since f(ψ) ≡ distC(ϕ, ψ) : Kc → (0, 1) is continuous (ϕ is fixed) and KC is compact. The
uniqueness of ϕ̂ follows from the convexity of KC . Finally, we set Θ

ℓ(ϕ) = p ·distC(ϕ, ϕ̂) ∈
(0, p) for all ϕ ∈ C : distC(ϕ,KC) ∈ (0, 1). By construction, Θℓ satisfies 2).

As for asymptotic behavior, we study of the long-time behavior of the dynamical
system (St, C), constructed in theorems 1 and 2. Similar to [27, theorem 2] we have the
following result.

Theorem 3. Assume all the assumptions of theorems 1 or 2 are satisfied and addition-
ally mapping B (see (2)) is bounded. Then the dynamical system (St, C) has a compact
global attractor A which is a compact set in all spaces Cδ ≡ C([−r, 0];D(Aδ)), ∀δ ∈ [0, 1

2
).

Lemma. Let all the assumptions of theorem 2 be satisfied. Then the global attractor
A (see theorem 3) is a subset of CLL̃ (c.f. condition 2 in theorem 2).

10



Remark 12. Lemma gives a possibility to consider system (1), (4) with a state-
dependent delay function η which does not ignore values of its argument ϕ for all points
ϕ ∈ A i.e. no information is lost on the global attractor A.

Proof of lemma. Consider any solution ut ∈ A. Let us denote f(t) ≡ F (ut) and prove
that f is Hölder continuous.

We will need the following property, proved in [27, estimate (29) with δ = 0]

||u(t1)− u(t2)|| ≤ L0|t1 − t2|
1/2 (19)

for any solution, belonging to the ball of dissipation (particularly, for any solution belong-
ing to the attractor). Here L0 is independent of solution u.

One can check that

||f(t1)− f(t2)|| ≤ LB · ||u(t1 − η(ut1))− u(t2 − η(ut2))||. (20)

Using (19), the Lipschitz property of η (see 5 in theorem 2), we get from (20) that

||f(t1)− f(t2)|| ≤ LBL0 · |t1 − η(ut1)− (t2 − η(ut2))|
1/2

≤ LBL0 · (|t1 − t2|+ |η(ut1)− η(ut2)|)
1/2 ≤ [ using 5 in theorem 2 ] ≤

≤ LBL0 · (|t1 − t2|+ Lη||ut1 − ut2 ||)
1/2 ≤ [ using (19) ] ≤

≤ LBL0 ·
(
|t1 − t2|+ LηL0|t1 − t2|

1/2
)1/2

.

≤ LBL0 ·
(
|t1 − t2|

1/2 + (LηL0)
1/2|t1 − t2|

1/4
)
.

Finally, for |t1 − t2| < 1 one has

||f(t1)− f(t2)|| ≤ LBL0 ·
{
1 + (LηL0)

1/2
}
|t1 − t2|

1/4. (21)

Let us consider ∀ψ ∈ A. It is well-known that the attractor consists of whole trajec-
tories i.e. us ∈ A, ∀s ∈ R. We take any t0 > r > 0 and get ϕ ∈ A such that St0ϕ = ψ.

Consider the variation of constants formula for parabolic equation (with Ã ≡ A + d · E
see (8))

u(t) = e−Ãtϕ(0) +

∫ t

0

e−Ã(t−τ)F (uτ ) dτ. (22)

The first term in the above formula (22) is Lipschitz for t > t0 due to the standard

estimate ||e−Ãt1v − e−Ãt2v|| ≤ (t1e)
−1||v|| · |t1 − t2|, 0 < t1 < t2. Moreover it is uniformly

Lipschitz for any v = ϕ(0), ϕ ∈ A since ||e−Ãt1ϕ(0),−e−Ãt2ϕ(0), || ≤ (re)−1||v|| · |t1− t2| ≤
(re)−1C(0) · |t1 − t2|, r < t1 < t2. Here ||ϕ(0)|| ≤ C(0) due to the dissipativeness of the
dynamical system (St;C) (for more details see [27, estimate (23)]).

To prove that the second term in (22) is Lipschitz for t > t0 we need the following

Proposition [15, lemma 3.2.1]. Let Ã be a sectorial operator in Banach space X.
Assume function f : (0, T ) → X is locally Hölder continuous and

∫ ρ

0
||f(s)||X ds <∞ for

some ρ > 0. Denote by Φ(t) ≡
∫ t

0
e−Ã(t−s)f(s) ds. Then function Φ(·) is continuous on

[0, T ), continuously differentiable on (0, T ), Φ(t) ∈ D(Ã) for 0 < t < T and dΦ(t)/dt +

ÃΦ(t) = f(t) for 0 < t < T and Φ(t) → 0 in X as t→ 0+.
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Remark 13. Our operator Ã is sectorial since any self-adjoint densely defined
bounded from below operator in a Hilbert space is sectorial (see e.g. [15, example 2,
p.26]).

We apply the above proposition to f(t) ≡ F (ut) and use (21). The property∫ ρ

0
||f(s)||X ds < ∞ for some ρ > 0 follows from the dissipativeness ||u(t)|| ≤ C(0),

the continuity of F : C → L2(Ω) and the strong continuity of mild solution u. One
uses the continuous differentiability of Φ on [t0 − r, t0] ⊂ (0, T ) which implies that
maxt∈[t0−r,t0] ||Φ

′(t)|| ≡ MΦ;1 < ∞. In our case Φ represents the second term in (22)
which is proved to be Lipschitz continuous with Lipschitz constant MΦ;1 independent of
u. The proof of lemma is complete.

Remark 14. One can also easily extend the method developed here to the case of
non-autonomous nonlinear delay terms, for example, using another nonlinear function
b̂ : R × R → R (see remark 2) instead of b to have

(
F̂ (t, ut)

)
(x) = b̂(t, u(t− η(ut), x)) or(

F̂ (t, ut)
)
(x) =

∫
Ω
b̂(t, u(t− η(ut), y))f(x− y)dy in equation (1).

As an application we can consider the diffusive Nicholson’s blowflies equation (see e.g.
[31] with state-dependent delays. More precisely, we consider equation (1) where −A
is the Laplace operator with the Dirichlet boundary conditions, Ω ⊂ Rn0 is a bounded
domain with a smooth boundary, the function f (see remark 2) can be, for example,
f(s) = 1√

4πα
e−s2/4α, as in [30] (for the non-local in space variable nonlinearity) or Dirac

delta-function to get the local in space variable nonlinearity, the nonlinear function b is
given by b(w) = p · we−w. Function b is bounded, so for any continuous delay function

η, satisfying (Ĥ), the conditions of theorems 1,2 are valid. As a result, we conclude that
the initial value problem (1),(4) is well-posed in C and the dynamical system (St, C) has
a global attractor (theorem 3).

Acknowledgement. The author wishes to thank I.D. Chueshov and H.-O.Walther
for useful discussions of an early version of the manuscript.
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