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Abstract

A path in an edge-colored graph, where adjacent edges may be colored the same,
is a rainbow path if no two edges of it are colored the same. A nontrivial connected
graph G is rainbow connected if there is a rainbow path connecting any two vertices,
and the rainbow connection number of G, denoted rc(G), is the minimum number of
colors that are needed in order to make GG rainbow connected. In this paper, we will
derive a sufficient condition to guarantee that r¢(G) is a constant (here is 8) by giving
constraints to its complement graph: For a connected graph G, if G does not belong to
the following two cases: (i) diam(G) = 2,3,(ii) G contains two connected components
and one of them is trivial, then rc¢(G) < 8, where G is the complement graph of G' and
diam(QG) is the diameter of G.
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1 Introduction

All graphs in this paper are finite, undirected and simple. Let G be a nontrivial connected
graph on which is defined a coloring ¢ : E(G) — {1,2,--- ,n}, n € N, of the edges of G,
where adjacent edges may be colored the same. A path is a rainbow path if no two edges of it
are colored the same. An edge-coloring graph G is rainbow connected if any two vertices are
connected by a rainbow path. Clearly, if a graph is rainbow connected, it must be connected.
Conversely, any connected graph has a trivial edge-coloring that makes it rainbow connected;
just color each edge with a distinct color. Thus, we define the rainbow connection number
of a connected graph G, denoted rc(G), as the smallest number of colors that are needed
in order to make G rainbow connected. If G is a connected spanning subgraph of G, then
re(G) < re(Gy). Chartrand et al. obtained that r¢(G) = 1 if and only if G is complete,
and that rc¢(G) = m if and only if G is a tree, as well as that a cycle with k£ > 3 vertices
has rainbow connection number [£], a triangle has rainbow connection number 1 ([2]). Also
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notice that, clearly, rc(G) > diam(G) where diam(G) denotes the diameter of G. In an
edge-colored graph G, we use c(e) to denote the color of edge e, then for a subgraph G5 of
G, ¢(G3) denotes the set of colors of edges in Gy. We use V(G), E(G) for the set of vertices
and edges of G, respectively. For any subset X of V(G), let G[X] be the subgraph induced
by X, and E[X] the edge set of G[X]; For a set S, |S| denote the cardinality of S. A path
P, is a path with n vertices. For a connected graph G, the distance between two vertices u
and v in G, denoted by dist(u,v) is the length of a shortest path between them in G. The
eccentricity of a vertex v in G is eccq(v) = max,ey(q) dist(v, ). We follow the notation
and terminology of [1J.

In this paper, we’ll derive a sufficient condition to guarantee that r¢(G) is a constant (here
is 8) by giving constraints to its complement graph and our main result (Theorem [3.5]) is: For
a connected graph G, if G doesn’t belong to the following two cases: (i) diam/(G) = 2,3,(ii) G
contains two connected components and one of them is trivial, then rc¢(G) < 8. This provides
a new approach to investigate rc¢(G). We also discuss the remaining cases.

2 Basic results

We now give a necessary condition for an edge-colored graph to be rainbow connected.
If G is rainbow connected under some edge-coloring, then for any two cut edges (if exist)
€1 = ujug, e; = vV Vg, there must exist some 1 < ¢, 5 < 2, such that any w; — v; path must
contain edge ey, es. So we have:

Observation 2.1 If G is rainbow connected under some edge-coloring, e; and ey are any
two cut edges, then

cler) # c(ea).
The following lemma will be useful in our discussion.

Lemma 2.2 ([3]) If G is a connected graph and Hy,--- , Hy is a partition of the vertex set
of G into connected subgraphs then rc(G) < k — 1+ Zle re(H;). |

In [2], the authors derived the precise value of rainbow connection number of complete
bipartite graph K, (2 < s <t) and complete k-partite graph.

Theorem 2.3 ([2]) For integers s and t with 2 < s <'t,

re(K,,) = min{[ V], 4}.

Theorem 2.4 ([2]) Let G = Ky ny...n, be a complete k-partite graph, where k > 3 and
ny < ng <...<ng such that s = Zi-:ll n; and t = ny. Then



1 if g = 1,
re(G) =1 2 if ni, > 2 and s > t,
min{[v/t],3} ifs <t.

3 Main Results

We first investigate the rainbow connection numbers of connected complement graphs of
graphs with diameter at least 4.

Theorem 3.1 Let G be a connected graph with diam(G) > 4, if G is connected, then
re(G) < 8.

Proof. ~ We choose a vertex x with eccg(z) = diam(G) = d > 4. Let Nj(x) = {v :
dist(xz,v) = i} where 0 < ¢ < d. Then Jye,oy N&(2) is a vertex partition of V(G) with
IN&(z)| = n;. Let A= Ni(x), B =, s, oqq N&(z). For example, see figure B.1] a
graph with diam(G) = 4.
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Figure 3.1 Graphs for the example with d = 4.

So if d = 2k(k > 2), then A = Uycizg is cven NG(2); B = Uicizi1 is oaa No(2); i
d =2k +1(k = 2), then A = Uycicqs is cven NG(T), B = Uiciza is oda NG(2). Then by
the definition of complement graph, we know G[A](G[B]) contains a complete k;-partite
spanning subgraph (ko-partite spanning subgraph) where ky = [€1] (ks = [4]).

Case 1. d > 5. Then ki, ky > 3. Then by Lemma and Theorem 2.4, we have

re(G) <rce(G[A]) +re(G[B])+1<3+3+1=T.

Case 2. d = 4, that is, A = N2(x) U N&(z) U N&(z), B = Ni(z) U N&(z). So
G[A](G[B)) contains a complete 3-partite spanning subgraph K, ,.,.n, (bipartite spanning

subgraph K, ,,). So by Theorem 2.4, we have rc(G[A]) < 3.



Subcase 2.1. njy,n3 > 2. Then by Theorem 2.3] we have r¢(G[B]) < 4. Furthermore,

by Lemma 2.2 we have rc(G) < re(G[A]) +7¢(G[B]) +1<3+4+1=38.

Subcase 2.2. At least one of ny,ng is 1, say ny = 1. We give a rainbow coloring to
the subgraph G[A] using 3 colors. By the definition of complement graph, we know, in G,
there are edges between A and N}(x), we color these edges with a new color a; similarly,
there are edges between A and NZ(z), we color these edges with a new color b, the edges in
G|B] receive a new color c. It is easy to show the above coloring is rainbow, and we have
rc¢(G) < 6. Then the conclusion holds. |

With a similar argument to that of Theorem [3.1] we have:
Proposition 3.2 If G is a tree that is not a star, then rc(G) < 3.

Proof. 1t is easy to show that if G is a tree that is not a star, then G is connected. We
now use the same terminology of the argument in Theorem 3.1l Note that A and B are
independent sets in G, so G[A] and G[B] are two disjoint cliques in G, then by Lemma 2.2

we have rc(G) < 3. |

Theorem [B.1] is equivalent to the following result.

Theorem 3.3 For a connected graph G, if G is connected and diam(G) > 4, thenrc(G) < 8.
|

For a graph G with h > 2 connected components, then G contains a complete h-partite
spanning subgraph, so we have

Proposition 3.4 G is a graph with h > 2 connected components G; and n; = n(G;)(1 <
i <h), then re(G) <re(Kn, ..., )- |

Now we give our main result.

Theorem 3.5 For a connected graph G, if G doesn’t belong to the following two cases:
(1) diam(G) = 2,3,(i1) G contains two connected components and one of them is trivial,
then re(G) < 8. |

Proof. If G is connected, as diam(G) # 2,3 and clearly diam(G) # 1, by Theorem B.3], we
have rc¢(G) < 8. If G is disconnected, so it has either at least three connected components

or two nontrivial components, then by Theorem 2.3] Theorem 2.4] and Proposition B.4] we
have rc¢(G) < 4. |

4 Discussion for the remaining cases

For the remaining cases, as the complement of the complement graph of a graph G is itself,

we need to investigate rc¢(G) in two cases: (i) diam(G) = 2,3,(ii) G contains two connected
components and one of them is trivial. We use terminology same as that of Theorem [B.1l



Theorem 4.1 For a vertex x of G satisfying eccq(x) = diam(G) = 3. We have rc¢(G) <5
for three cases (i) ni=mng =mnz=1, (79) ni,ne = 1,ng > 2, (#ii) ne = 1,ny,n3 > 2. For the

remaining cases, rc(G) may be very large.

Proof. If ny = ny = n3 = 1, then G is a 4-path P, so G = 3. So we now consider the
following three cases.

Case 1. Two of ny,ny, n3 equal 1.

Subcase 1.1. ny,ny = 1. Then it is easy to show that the subgraph G[N&(x) U N} (z)U
N (z)] contains a bipartite spanning subgraph K, so by Lemma and Theorem 2.3
we have r¢(G) < re(Kap,) +1 < 5.

Subcase 1.2. ny,n3 = 1. Let ny = [{v € N§(z) : degg(v) = 1}|. Then there are nj cut
edges in G, so by Observation 2.1 we have r¢(G) > nl,.

Subcase 1.3. ng,ng = 1. With a similar argument to that of Subcase 1.2, we have
rc(G) > nj where ) = [{v € Ni(z) : deggz(v) = 1}].

Case 2. One of ny,no,n3 equals 1.

Subcase 2.1. n; = 1. With a similar argument to that of Subcase 1.2, we have
rc(G) > nb where nly = [{v € Ni(x) : degg(v) = 1}.

Subcase 2.2. ny = 1. Then it is easy to show that the subgraph G[NZ(z) U N&(x) U
NZ(x)] contains a bipartite spanning subgraph Ky, n,, so by Lemma[22 and Theorem 23]
we have 7¢(G) < re(Kiynyng) +1 < 5.

Subcase 2.3. n3 = 1. With a similar argument to that of Subcase 1.2, we have
rc(G) > n} + nb where n), = [{v € N5(z) : degs(v) = 1} with i = 1, 2.

Case 3. ny,nz,ny > 2. With a similar argument to that of Subcase 1.2, we have
rc(G) > nf where nfy, = [{v € Ni(z) : deggz(v) = 1}|.

By the above discussion, we know that rc(G) <5 for three cases (i) ny = ny = nz = 1,
(79) ni,me = 1,ng > 2, (ii1) ny = 1,n9,n3 > 2. For the remaining cases, r¢(G) can be very
large if n}(i = 1,2) is sufficiently large. |

For a graph G with diam(G) = 2. Let x be a vertex satisfying eccq(x) = diam(G).
The two cases: (i) ny = ng = ng = 1 and (i) n; = 1,ny > 2 do not hold as in both
cases G are disconnected and rc(G) are undefined. For the remaining two cases, that
is, ny > 2,no = 1, ny,ny > 2, with a similar argument to that of Theorem [4.1Il we have
re(G) > nf + 1, re(G) > nb + 1, respectively. So 7¢(G) can be very large if n/ is sufficiently
large.

If G contains two connected components, say Gi,Ga. Let ny = [{v € Gy @ degg(v) =
n—2}|. Then in G, there are ny pendant vertex and so there are n; cut edges, by Observation

2.1] we have rc¢(G) > ny. So in this case, we have r¢(G) can be very large if ny is sufficiently
large.
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