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FUNCTIONAL EQUATIONS FOR WENG’S ZETA FUNCTIONS FOR (G,P )/Q

YASUSHI KOMORI

Abstract. It is shown that Weng’s zeta functions associated with arbitrary semisimple al-
gebraic groups defined over the rational number field and their maximal parabolic subgroups
satisfy the functional equations.

1. Introduction

Recently, Lin Weng introduced a new class of abelian zeta functions associated to a pair of
reductive algebraic group G and its maximal parabolic subgroup P , which are related with constant
terms of Eisenstein series. In this paper, we simply refer to these zeta functions as Weng’s zeta
functions. These are motivated by and closely related to non-abelian zeta functions called “high
rank zeta functions” associated with algebraic number fields, which were also introduced by Weng
himself from a viewpoint of Arakelov geometry based on Iwasawa’s interpretation and Tate’s
Fourier analysis on adéles. High rank zeta functions are generalizations of the Dedekind zeta
functions and in fact, rank one zeta functions coincide with the Dedekind zeta functions up to
constant multiples. Hence the study of Weng’s zeta functions is not only interesting itself but
also suggestive for the study of the Dedekind zeta functions. The profound background, the path
to the discovery, and the development of Weng’s zeta functions are detailed in his elaborated
papers [10–13].

One of the most significant properties for Weng’s zeta functions is the behavior of their zeros.
Weng conjectured that for any pair (G,P ), Weng’s zeta functions satisfy certain functional equa-
tions and the Riemann hypothesis, as is expected or shown for various kinds of zeta functions. In
fact, in some special cases, it was shown in [4,6–9] that they satisfy standard functional equations
and the Riemann hypothesis.

In this paper, we establish the functional equations in arbitrary semisimple cases in a unified
way. We will see that the functional equations are governed by the involutions on the Weyl groups
(see the last paragraph of Section 3 and Lemma 5.3).

Since the proofs known so far for the Riemann hypothesis for Weng’s zeta functions essentially
use the functional equations, our result will be a first and important step toward a comprehensive
proof of the general Riemann hypothesis. Furthermore we give the explicit forms of Weng’s zeta
functions and the precise description of the centers for the functional equations (see (2.3)), by
which these zeta functions will become more accessible than before.

This paper is organized as follows. In Section 2, we give basic facts about root systems and
state the main results. In Section 3, to explain the idea of the general proof, we demonstrate the
proof of the functional equation in a simple example, which also explains the symbols used in the
next sections. In Section 4, we show some statements about properties of Weyl groups and subsets
of roots. The last section is devoted to the proof of the general functional equations.

Acknowledgement: The author would like to thank Lin Weng, Masatoshi Suzuki and Hiroyuki
Ochiai for fruitful discussion and critical reading of the manuscript. Thanks are also due to Kohji
Matsumoto and Hirofumi Tsumura for valuable comments.

2. Weng’s zeta functions and their functional equations

We first fix notation and summarize basic facts about root systems and Weyl groups. See [1–3]
for the details. Let V be an r-dimensional real vector space equipped with an inner product
〈·, ·〉. Let Φ ⊂ V be a root system of rank r and ∆ = {α1, . . . , αr}, its fundamental system. Let
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α∨ = 2α/〈α, α〉 be the coroot associated with α ∈ Φ. Let Λ = {λ1, . . . , λr} be the fundamental
weights satisfying 〈α∨

i , λj〉 = δij . Let Φ+ be the corresponding positive system of Φ and Φ− = −Φ+

so that Φ = Φ+ ∪ Φ−. Let

(2.1) ρ =
1

2

∑

α∈Φ+

α =

r
∑

j=1

λj

be the Weyl vector. Let htα∨ = 〈ρ, α∨〉 be the height of α∨.
Let W be the Weyl group generated by simple reflections σj : V → V for αj . For w ∈ W , let

l(w) = |Φw| be the length of w, where Φw = Φ+ ∩ w−1Φ−. Let w0 be the longest element of W .
Then we have w2

0 = id, w0∆ = −∆ and w0Φ+ = Φ−.
Let Aut(Φ) be the group of automorphisms of V which preserves Φ. Then W ⊂ Aut(Φ) and

W is a normal subgroup of Aut(Φ). Let Γ be the Dynkin diagram of Φ and Aut(Γ), the group
of automorphisms of Γ. We identify Aut(Γ) with a group of permutations of indices {1, . . . , r}.
We also regard Aut(Γ) ⊂ Aut(Φ) in a natural way. For ̟ ∈ Aut(Γ), we have ̟∆ = ∆ and
̟Φ+ = Φ+. In fact, by use of the simple transitivity of W on positive systems, it is easily shown
that Aut(Φ) = Aut(Γ)⋉W . Since −w0∆ = ∆, we have − id = ̟0w0 for some ̟0 ∈ Aut(Γ). We
see that ̟2

0 = id.
In the following, we fix p with 1 ≤ p ≤ r. Let Φp be the root system normal to λp. A

fundamental system of Φp is given by ∆p = ∆ \ {αp}. Let Φp+ = Φp ∩ Φ+ ⊂ Φ+ be the
corresponding positive system of Φp. Let

(2.2) ρp =
1

2

∑

α∈Φp+

α.

Note that ρp 6=
∑r

j 6=p λj in general. Let Wp be the Weyl group of Φp. Let wp be the longest

element of Wp. Then we have w2
p = id, wp∆p = −∆p and wpΦp+ = Φp−.

Let N be the set of all positive integers. Throughout this paper, we use the constants

(2.3) cp = 2〈λp − ρp, α
∨
p 〉 ∈ N,

which are important quantities describing the critical lines of Weng’s zeta functions. Note that

(2.4) cp = cq

for q ∈ Aut(Γ)p.
Following [12, 13], we introduce Weng’s zeta function associated with a semisimple algebraic

group G of rank r defined over the rational number field Q and its maximal parabolic subgroup
P . Let Φ be the root system of G, and p be the index for which a simple root αp ∈ ∆ corresponds
to P . Similarly we use the index q corresponding to another maximal parabolic subgroup Q. For
the details of Weng’s zeta functions, see [12, 13] and the references therein.

Let ξ(s) = π−s/2Γ(s/2)ζ(s), where ζ is the Riemann zeta function. The poles of ξ(s) are simple
and on s = 0, 1 with their residues being −1, 1 respectively. Moreover we have the functional
equation ξ(1− s) = ξ(s). Then the period ωG

Q (λ;T ) for G over Q is defined as follows.

Definition 2.1 (Periods [13, p.12, Fact E′]). For λ, T ∈ V ,

ωG
Q (λ;T ) =

∑

w∈W

e〈wλ−ρ,T 〉

(

∏

α∈∆

1

〈wλ − ρ, α∨〉

)(

∏

α∈Φw

ξ(〈λ, α∨〉)

ξ(〈λ, α∨〉+ 1)

)

,(2.5)

ωG
Q (λ) = ωG

Q (λ; 0).(2.6)

Put ∆p = ∆ \ {αp} = {β1, . . . , βr−1} and s = 〈λ− ρ, α∨
p 〉. Let

(2.7) ω
G/P
Q (s;T ) = Res

〈λ−ρ,β∨

1
〉=0

· · · Res
〈λ−ρ,β∨

r−1
〉=0

ωG
Q (λ;T ).

Then we have the explicit form of ω
G/P
Q (s;T ).
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Proposition 2.2. ω
G/P
Q (s;T ) is independent of the ordering of ∆p and is given by

ω
G/P
Q (s;T ) =

∑

w∈W
∆p⊂w−1(∆∪Φ−)

e〈w(ρ+sλp)−ρ,T 〉

(

∏

α∈(w−1∆)\∆p

1

〈λp, α∨〉s+ htα∨ − 1

)

×

(

∏

α∈Φw\∆p

ξ(〈λp, α
∨〉s+ htα∨)

)(

∏

α∈(−Φw)

1

ξ(〈λp, α∨〉s+ htα∨)

)

,

(2.8)

From this proposition, we see that ω
G/P
Q (s;T ) is a sum of rational functions of ξ functions.

Weng’s zeta function ξ
G/P
Q;o (s;T ) is defined by multiplying the minimal numbers of ξ functions

such that all the denominators are cancelled. To describe the minimal ξ factor, we need the
following: for (k, h) ∈ Z2,

(2.9) Mp(k, h) = max
w∈W

∆p⊂w−1(∆∪Φ−)

(

♯{α ∈ w−1Φ− | 〈λp, α
∨〉 = k, htα∨ = h− 1}

− ♯{α ∈ w−1Φ− | 〈λp, α
∨〉 = k, htα∨ = h}

)

.

Theorem 2.3.

(2.10) ξ
G/P
Q;o (s;T ) = ω

G/P
Q (s;T )

∞
∏

k=0

∞
∏

h=2

ξ(ks+ h)Mp(k,h).

Note that Mp(k, h) 6= 0 for only finitely many pairs (k, h) and the infinite products in this
theorem should be understood as finite products.

Now we have the following functional equations for ξ
G/P
Q;o (s;T ).

Theorem 2.4 (Functional Equations).

ξ
G/P
Q;o (−cp − s;̟0T ) = ξ

G/P
Q;o (s;T )

= ξ
G/Q
Q;o (s;̟T ),

(2.11)

where ̟ ∈ Aut(Γ) with q = ̟p.

From the view point of the classical symmetry s ↔ 1−s, we arrive at the following normalization
and functional equations, which immediately follow from Theorem 2.4.

Definition 2.5 (Normalized Weng’s zeta function).

(2.12) ξ
G/P
Q (s) = ξ

G/P
Q;o (s− (cp + 1)/2; 0).

Theorem 2.6 (Functional Equations).

ξ
G/P
Q (1− s) = ξ

G/P
Q (s)

= ξ
G/Q
Q (s),

(2.13)

where q ∈ Aut(Γ)p.

Conjecture 2.7 (Riemann Hypothesis [12,13]). All zeros of the zeta function ξ
G/P
Q (s) lie on the

central line ℜs =
1

2
.

In the cases A1, A2, B2 and G2, this conjecture was already confirmed in [6–9].

Remark 2.8. In [5], a weak version of Conjecture 2.7 is proved in arbitrary root systems. Further-
more in [5, Corollary 8.7], a case-by-case investigation shows that the maximum in the definition
(2.9) is attained by the longest element w0, and hence we have

(2.14) Mp(k, h) = ♯{α ∈ Φ+ | 〈λp, α
∨〉 = k, htα∨ = h−1}−♯{α ∈ Φ+ | 〈λp, α

∨〉 = k, htα∨ = h}.

In particular,

(2.15) Mp(0, h) = ♯{α ∈ Φp+ | htα∨ = h− 1} − ♯{α ∈ Φp+ | htα∨ = h}.
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Thus we obtain

(2.16) ξ
G/P
Q;o (s;T ) = ω

G/P
Q (s;T )

r−1
∏

j=1

ξ(dj)

∞
∏

k=1

∞
∏

h=2

ξ(ks+ h)Mp(k,h),

where dj (1 ≤ j ≤ r − 1) are the degrees of the Weyl group Wp (see [3] for the details).

3. Example

To explain the idea and to clarify the roles of the symbols appearing in this paper, we give an
example in the case of type A2 (i.e. G = SL(3)) and p = 1.

Let ∆ = {α1, α2} be a fundamental system and Φ+ = {α1, α2, α1 + α2}, the corresponding
positive system, and ρ = α1 + α2. Let {λ1, λ2} be the fundamental weights. The Weyl group is
given by

(3.1) W = {id, σ1, σ2, σ1σ2, σ2σ1, σ1σ2σ1 = σ2σ1σ2 = w0},

where w0 is the longest element. We have Φ1+ = {α2} and the longest element w1 = σ2 of the
Weyl group of Φ1.

Put λ = ρ+ s1λ1 + s2λ2.

w−1∆ Φw = Φ+ ∩ w−1Φ− w0ww1

id {α1, α2} ∅ σ2σ1

σ1 {−α1, α1 + α2} {α1} σ1

σ2 {α1 + α2,−α2} {α2} σ1σ2σ1

σ2σ1 {α2,−α1 − α2} {α1, α1 + α2} id
σ1σ2 {−α1 − α2, α1} {α2, α1 + α2} σ1σ2

σ1σ2σ1 = w0 {−α1,−α2} {α1, α2, α1 + α2} = Φ+ σ2

From the above table, we obtain

(3.2) ωG
Q (λ) =

1

s1s2
+

1

(−s1 − 2)(s1 + s2 + 1)

ξ(s1 + 1)

ξ(s1 + 2)
+

1

(s1 + s2 + 1)(−s2 − 2)

ξ(s2 + 1)

ξ(s2 + 2)

+
1

s2(−s1 − s2 − 3)

ξ(s1 + 1)ξ(s1 + s2 + 2)

ξ(s1 + 2)ξ(s1 + s2 + 3)
+

1

(−s1 − s2 − 3)s1

ξ(s2 + 1)ξ(s1 + s2 + 2)

ξ(s2 + 2)ξ(s1 + s2 + 3)

+
1

(−s2 − 2)(−s1 − 2)

ξ(s1 + 1)ξ(s2 + 1)ξ(s1 + s2 + 2)

ξ(s1 + 2)ξ(s2 + 2)ξ(s1 + s2 + 3)
.

By putting s1 = s and taking the residue at s2 = 0, we obtain

(3.3) ω
G/P
Q (s) = Res

s2=0
ωG
Q (λ) =

1

s
+ 0 +

1

(s+ 1)(−2)

1

ξ(2)

+
1

(−s− 3)

ξ(s+ 1)ξ(s+ 2)

ξ(s+ 2)ξ(s+ 3)
+

1

(−s− 3)s

ξ(s+ 2)

ξ(2)ξ(s+ 3)

+
1

(−2)(−s− 2)

ξ(s+ 1)ξ(s+ 2)

ξ(s+ 2)ξ(2)ξ(s+ 3)
.

By multiplying the formal common ξ factor

(3.4) F1(s) = ξ(−s− 1)ξ(−1)ξ(−s− 2) = ξ(s+ 2)ξ(2)ξ(s+ 3),

we define

(3.5) Z1(s) = F1(s)ω
G/P
Q (s)

=
1

s
ξ(s+ 2)ξ(2)ξ(s+ 3) + 0 +

1

(s+ 1)(−2)
ξ(s+ 2)ξ(s+ 3)

+
1

(−s− 3)
ξ2ξ(s+ 1)ξ(s+ 2) +

1

(−s− 3)s
ξ(s+ 2)2

+
1

(−2)(−s− 2)
ξ(s+ 1)ξ(s+ 2).
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It can be directly checked that

(3.6) Z1(−3− s) = Z1(s),

where the term corresponding to w is exchanged for that corresponding to w0ww1. Note that
2ρ1 = α2 and

(3.7) c1 = 2〈λ1 − ρ1, α
∨
1 〉 = 3.

We have shown that Z1(s) satisfies the functional equation. It is, however, not Weng’s zeta
function because F1(s) is not the minimal ξ factor. To obtain Weng’s zeta function, we need the

minimal ξ factor such that all the true denominators are cancelled in ω
G/P
Q (s). It is read off from

(3.3) as

(3.8) ξ(2)ξ(s+ 3) =
F1(s)

D1(s)
,

where D1(s) = ξ(s+ 2), which itself satisfies the functional equation

(3.9) D1(−3− s) = D1(s).

Due to the symmetries (3.6) and (3.9), we conclude that Weng’s zeta function

(3.10) ξ
G/P
Q;o (s) =

( F1(s)

D1(s)

)

ω
G/P
Q (s) =

Z1(s)

D1(s)

satisfies the functional equation

(3.11) ξ
G/P
Q;o (−3− s) = ξ

G/P
Q;o (s).

Note that in (3.8), we see that ξ(2) = ξ(d1), where d1 = 2 is the degree of the Weyl group of type
A1.

In general cases, this procedure works well and we prove the functional equations in the following
sections in this strategy. As we remarked in the introduction, we see that the map ι : W → W
defined by w 7→ w0wwp plays an important role in (3.6); ι is an involution, namely ι2 = id, and
governs the functional equations at the level of the Weyl group.

4. Preliminaries

In this section, we prove some statements about root systems which is used in the proof of the
functional equations.

Lemma 4.1.

(4.1) cpλp − wpρ = ρ.

Proof. For α ∈ Φp+, we have wpα ∈ Φp− ⊂ Φ− by the definition of wp. For α ∈ Φ+ \ Φp+, we
have wpα ∈ Φ+ since α is of the form apαp + · · · with ap > 0 and wpα = apαp + · · · remains
positive. Hence we obtain

(4.2) Φwp
= Φ+ ∩ w−1

p Φ− = Φ+ ∩ (−wpΦ+) = Φp+

and

(4.3) wpρ = ρ−
∑

α∈Φwp

α = ρ−
∑

α∈Φp+

α = ρ− 2ρp.

By the property σkΦp+ = (Φp+ \ {αk}) ∪ {−αk} for k 6= p, we have

(4.4) σkρp = ρp − αk = ρp − 〈ρp, α
∨
k 〉αk,

which implies 〈ρp, α∨
k 〉 = 1. Therefore

(4.5) ρp =

r
∑

k=1

〈ρp, α
∨
k 〉λk =

∑

k 6=p

λk + 〈ρp, α
∨
p 〉λp = ρ+ 〈ρp − λp, α

∨
p 〉λp.

Combining (4.3) and (4.5), we have

(4.6) cpλp − wpρ = ρ+ (cp + 2〈ρp − λp, α
∨
p 〉)λp = ρ.



6 YASUSHI KOMORI

�

Lemma 4.2. (1) For w ∈ W , ∆p ⊂ w−1(∆ ∪ Φ−) if and only if ∆p ⊂ wpw
−1w0(∆ ∪ Φ−).

(2) For w ∈ W and ̟ ∈ Aut(Γ) with q = ̟p, ∆p ⊂ w−1(∆ ∪ Φ−) if and only if ∆q ⊂
̟w−1̟−1(∆ ∪Φ−).

Proof. (1) We see that ∆p ⊂ wpw
−1w0(∆ ∪ Φ−) is equivalent to −∆p ⊂ w−1(−∆ ∪ Φ+) and

hence to ∆p ⊂ w−1(∆ ∪Φ−).
(2) It follows from ̟∆p = ∆q, ̟∆ = ∆ and ̟Φ− = Φ−.

�

For w ∈ W and (k, h) ∈ Z2, let

Np,w(k, h) = ♯{α ∈ w−1Φ− | 〈λp, α
∨〉 = k, htα∨ = h},

Np(k, h) = ♯{α ∈ Φ | 〈λp, α
∨〉 = k, htα∨ = h}.

(4.7)

We note that Np,w(k, h) 6= 0 for finite numbers of pairs (k, h) ∈ Z2 and that for (k, h) ∈ Z2 with
k ≥ 1 or h ≥ 1,

Np,w(k, h) = ♯{α ∈ Φ+ ∩w−1Φ− | 〈λp, α
∨〉 = k, htα∨ = h},

Np(k, h) = ♯{α ∈ Φ+ | 〈λp, α
∨〉 = k, htα∨ = h}

(4.8)

because α ∈ Φ is either α ∈ Φ+ or α ∈ Φ−.
Consider the character of the dual Lie algebra ignoring the Cartan subalgebra

(4.9) X(ν) =
∑

α∈Φ

eα
∨

(ν)

for ν ∈ V , where

(4.10) eα
∨

(ν) = e〈ν,α
∨〉

as usual. Then

(4.11) X(tλp + ρ) =
∑

α∈Φ

e〈λp,α
∨〉t+htα∨

=

∞
∑

k=−∞

∞
∑

h=−∞

Np(k, h)e
kt+h.

Note that for ν ∈ V and w ∈ Aut(Φ),

(4.12) X(ν) = X(wν).

Lemma 4.3. (1) For (k, h) ∈ Z2,

(4.13) Np(k, kcp − h) = Np(k, h).

(2) For (k, h) ∈ Z2 and q ∈ Aut(Γ)p,

(4.14) Np(k, h) = Nq(k, h).

Proof. (1) We have

(4.15) X((cp + t)λp − ρ) = X(tλp + wpρ) = X(wp(tλp + ρ)) = X(tλp + ρ)

by Lemma 4.1. Hence (4.13) by comparing the coefficients.
(2) Since for ̟ ∈ Aut(Φ) such that q = ̟p,

(4.16) X(tλp + ρ) = X(̟(tλp + ρ)) = X(tλq + ρ),

we have (4.14).
�

Lemma 4.4. (1) For (k, h) ∈ Z2,

(4.17) Np(k, h)−Np,w0wwp
(k, kcp − h) = Np,w(k, h).

(2) For (k, h) ∈ Z2 and ̟ ∈ Aut(Γ) with q = ̟p,

(4.18) Np,w(k, h) = Nq,̟w̟−1(k, h).
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Proof. (1) Since

Φ = w−1Φ− ∪ w−1Φ+

= w−1Φ− ∪ wp(wpw
−1w0)Φ−,

(4.19)

we have

X(tλp + ρ) =
∑

α∈w−1Φ−

eα
∨

(tλp + ρ) +
∑

α∈wp(w0wwp)−1Φ−

eα
∨

(tλp + ρ)

=
∑

α∈w−1Φ−

eα
∨

(tλp + ρ) +
∑

α∈(w0wwp)−1Φ−

eα
∨

((cp + t)λp − ρ).
(4.20)

By comparing this with (4.11), we obtain (4.17).
(2) We have

(4.21)
∑

α∈w−1Φ−

eα
∨

(tλp + ρ) =
∑

α∈̟w−1̟−1Φ−

eα
∨

(̟(tλp + ρ)) =
∑

α∈(̟w̟−1)−1Φ−

eα
∨

(tλq + ρ),

which implies (4.18).
�

5. Proof of the functional equations

Proof of Proposition 2.2. Put the coordinate

(5.1) λ =

r
∑

k=1

(1 + sk)λk = ρ+

r
∑

k=1

skλk,

so that for α∨ =
∑r

k=1 akα
∨
k ,

(5.2) 〈λ− ρ, α∨〉 =
r

∑

k=1

aksk.

For w ∈ W , the corresponding term in (2.5) besides the exponential factor is calculated as

(5.3) Aw =

(

∏

α∈∆

1

〈wλ − ρ, α∨〉

)(

∏

α∈Φw

ξ(〈λ, α∨〉)

ξ(〈λ, α∨〉+ 1)

)

=

(

∏

α∈∆

1

〈wλ, α∨〉 − 1

)(

∏

α∈Φw∩∆p

1

〈λ, α∨〉 − 1

)

×

(

∏

α∈Φw∩∆p

(〈λ, α∨〉 − 1)ξ(〈λ, α∨〉)

ξ(〈λ, α∨〉+ 1)

)(

∏

α∈Φw\∆p

ξ(〈λ, α∨〉)

ξ(〈λ, α∨〉+ 1)

)

=

(

∏

α∈(w−1∆∪Φw)∩∆p

1

〈λ, α∨〉 − 1

)(

∏

α∈(w−1∆)\∆p

1

〈λ, α∨〉 − 1

)

×

(

∏

α∈Φw∩∆p

(〈λ, α∨〉 − 1)ξ(〈λ, α∨〉)

ξ(〈λ, α∨〉+ 1)

)(

∏

α∈Φw\∆p

ξ(〈λ, α∨〉)

ξ(〈λ, α∨〉+ 1)

)

.

In order to put sp = s and take all the residues at sk = 0 for k 6= p in (5.3), first we consider
the third factor of the last member of (5.3). For αk ∈ Φw ∩∆p, we have

(5.4)
(〈λ, α∨

k 〉 − 1)ξ(〈λ, α∨
k 〉)

ξ(〈λ, α∨
k 〉+ 1)

=
skξ(sk + 1)

ξ(sk + 2)
=

1

ξ(2)
+ o(sk)

when sk → 0.
In the last factor, for α ∈ Φw \∆p, we have

(5.5)
ξ(〈λ, α∨〉)

ξ(〈λ, α∨〉+ 1)
=

ξ(〈λp, α
∨〉s+ htα∨)

ξ(〈λp, α∨〉s+ htα∨ + 1)
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when sk = 0 for k 6= p and sp = s. If 〈λp, α
∨〉 = 0, then α ∈ Φp+ \ ∆p and hence htα∨ ≥ 2.

Thus we see that (5.5) is finite if 〈λp, α
∨〉 = 0, due to htα∨ ≥ 2. Moreover it is also finite for

appropriate s ∈ C if 〈λp, α
∨〉 6= 0.

We consider the second factor of the last member of (5.3). When sk = 0 for k 6= p and sp = s,
we have

(5.6) 〈λ, α∨〉 − 1 = 〈λ− ρ, α∨〉+ htα∨ − 1 = 〈λp, α
∨〉s+ htα∨ − 1.

Since for α ∈ (w−1∆) \∆p, htα
∨ 6= 1 or 〈λp, α

∨〉 6= 0 holds, (5.6) does not vanish identically.
The first factor is calculated as

(5.7)
∏

α∈(w−1∆∪Φw)∩∆p

1

〈λ, α∨〉 − 1
=

∏

αk∈(w−1∆∪Φw)∩∆p

1

sk
.

Hence from (5.4), (5.5), (5.6) and (5.7), we see that when we take all the residues, only the terms
with ∆p ⊂ w−1∆ ∪ Φw survive and the others vanish. In the former cases, we obtain

(5.8) Res
sk=0
k 6=p

Aw =

(

∏

α∈(w−1∆)\∆p

1

〈λp, α∨〉s+ htα∨ − 1

)

×

(

∏

α∈Φw∩∆p

1

ξ(2)

)(

∏

α∈Φw\∆p

ξ(〈λp, α
∨〉s+ htα∨)

ξ(〈λp, α∨〉s+ htα∨ + 1)

)

,

which does not depend on the ordering of ∆p.
Note that ∆p ⊂ w−1∆ ∪ Φw if and only if ∆p ⊂ w−1(∆ ∪ Φ−). If we put sp = s and take all

the residues at sk = 0 for k 6= p in (2.5), we get

ω
G/P
Q (s;T ) =

∑

w∈W
∆p⊂w−1(∆∪Φ−)

e〈w(ρ+sλp)−ρ,T 〉

(

∏

α∈(w−1∆)\∆p

1

〈λp, α∨〉s+ htα∨ − 1

)

×

(

∏

α∈Φw∩∆p

1

ξ(2)

)(

∏

α∈Φw\∆p

ξ(〈λp, α
∨〉s+ htα∨)

ξ(〈λp, α∨〉s+ htα∨ + 1)

)

=
∑

w∈W
∆p⊂w−1(∆∪Φ−)

e〈w(ρ+sλp)−ρ,T 〉

(

∏

α∈(w−1∆)\∆p

1

〈λp, α∨〉s+ htα∨ − 1

)

×

(

∏

α∈Φw\∆p

ξ(〈λp, α
∨〉s+ htα∨)

)(

∏

α∈Φw

1

ξ(〈λp, α∨〉s+ htα∨ + 1)

)

=
∑

w∈W
∆p⊂w−1(∆∪Φ−)

e〈w(ρ+sλp)−ρ,T 〉

(

∏

α∈(w−1∆)\∆p

1

〈λp, α∨〉s+ htα∨ − 1

)

×

(

∏

α∈Φw\∆p

ξ(〈λp, α
∨〉s+ htα∨)

)(

∏

α∈(−Φw)

1

ξ(〈λp, α∨〉s+ htα∨)

)

,

(5.9)

where in the last equality, we used the functional equation for ξ(s). �

Let

(5.10) Fp(s) =
∏

α∈Φ−

ξ(〈λp, α
∨〉s+ htα∨),

and define

(5.11) Zp(s;T ) = Fp(s)ω
G/P
Q (s;T ).

Then we have the following proposition.
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Proposition 5.1 (Functional Equations).

Zp(−cp − s;̟0T ) = Zp(s;T )

= Zq(s;̟T ),
(5.12)

where ̟ ∈ Aut(Γ) with q = ̟p.

To show this proposition, we need the explicit form of Zp(s;T ).

Proposition 5.2.

Zp(s;T ) =
∑

w∈W
∆p⊂w−1(∆∪Φ−)

e〈w(ρ+sλp)−ρ,T 〉

(

∏

α∈(w−1∆)\∆p

1

〈λp, α∨〉s+ htα∨ − 1

)

×

(

∏

α∈(w−1Φ−)\∆p

ξ(〈λp, α
∨〉s+ htα∨)

)

.

(5.13)

Proof. Since

Φ− \ (−Φw) = Φ− \ (Φ− ∩ w−1Φ+)

= Φ− \ w−1Φ+

= Φ− ∩ w−1Φ−,

(5.14)

we have

(5.15) Zp(s;T ) =
∑

w∈W
∆p⊂w−1(∆∪Φ−)

e〈w(ρ+sλp)−ρ,T 〉

(

∏

α∈(w−1∆)\∆p

1

〈λp, α∨〉s+ htα∨ − 1

)

×

(

∏

α∈(Φw\∆p)∪(Φ−∩w−1Φ−)

ξ(〈λp, α
∨〉s+ htα∨)

)

.

Using

(Φw \∆p) ∪ (Φ− ∩ w−1Φ−) = ((Φ+ ∩ w−1Φ−) \∆p) ∪ (Φ− ∩w−1Φ−)

= ((Φ+ ∩ w−1Φ−) ∪ (Φ− ∩ w−1Φ−)) \∆p

= w−1Φ− \∆p,

(5.16)

we arrive at (5.13). �

Let

fp,w(s) =
∏

α∈(w−1∆)\∆p

1

〈λp, α∨〉s+ htα∨ − 1
,(5.17)

gp,w(s) =
∏

α∈(w−1Φ−)\∆p

ξ(〈λp, α
∨〉s+ htα∨),(5.18)

so that

(5.19) Zp(s;T ) =
∑

w∈W
∆p⊂w−1(∆∪Φ−)

e〈w(ρ+sλp)−ρ,T 〉fp,w(s)gp,w(s).

Lemma 5.3. For w ∈ W and ̟ ∈ Aut(Γ) with q = ̟p,

fp,w(−cp − s) = fp,w0wwp
(s), gp,w(−cp − s) = gp,w0wwp

(s),(5.20)

fp,̟−1w̟(s) = fq,w(s), gp,̟−1w̟(s) = gq,w(s).(5.21)
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Proof. Fix w ∈ W . Then for a subset A ⊂ Φ with A = ∆ or Φ−, we have w0A = −A and

−wp(w
−1A \∆p) = (wpw

−1(−A)) \ (wp(−∆p))

= (wpw
−1w0A) \∆p.

(5.22)

Let

(5.23) S(A; s; p, w) = {〈λp, α
∨〉s+ htα∨ | α ∈ (w−1A) \∆p}

be a set of affine linear functionals of the form as+b with a, b ∈ N∪{0} which admits duplications.
Then we have

fp,w(s) =
∏

as+b∈S(∆;s;p,w)

1

as+ b− 1
,(5.24)

gp,w(s) =
∏

as+b∈S(Φ−;s;p,w)

1

ξ(as+ b)
.(5.25)

Using the formula (5.22) and Lemma 4.1, we have

S(A;−cp − s; p, w) = {〈λp, α
∨〉(−cp − s) + htα∨ | α ∈ (w−1A) \∆p}

= {〈λp,−wpα
∨〉s+ 〈cpλp − wpρ,−wpα

∨〉 | α ∈ (w−1A) \∆p}

= {〈λp, β
∨〉s+ 〈ρ, β∨〉 | β ∈ (wpw

−1w0A) \∆p}

= S(A; s; p, w0wwp),

(5.26)

which implies (5.20).
For (5.21), using ̟∆p = ∆q and ̟A = A, we have

S(A; s; p,̟−1w̟) = {〈λp, α
∨〉s+ htα∨ | α ∈ (̟−1w−1̟A) \∆p}

= {〈̟λp, ̟α∨〉s+ ht̟α∨ | α ∈ (̟−1w−1̟A) \∆p}

= {〈λq, β
∨〉s+ htβ∨ | β ∈ (w−1A) \∆q}

= S(A; s; q, w).

(5.27)

�

Proof of Proposition 5.1. For w ∈ W , we have by Lemma 4.1,

〈w(ρ+ (−cp − s)λp)− ρ,̟0T 〉 = 〈w(ρ− cpλp)− wsλp − ρ,−w0T 〉

= 〈−wwpρ− wwpsλp − ρ,−w0T 〉

= 〈w0wwp(ρ+ sλp)− ρ, T 〉.

(5.28)

Hence using Proposition 5.2 and Lemma 5.3, we obtain

(5.29) Zp(−cp − s;̟0T )

=
∑

w∈W
∆p⊂w−1(∆∪Φ−)

e〈w(ρ+(−cp−s)λp)−ρ,̟0T 〉fp,w(−cp − s)gp,w(−cp − s)

=
∑

w∈W
∆p⊂w−1(∆∪Φ−)

e〈w0wwp(ρ+sλp)−ρ,T 〉fp,w0wwp
(s)gp,w0wwp

(s)

=
∑

v∈W
∆p⊂wpv

−1w0(∆∪Φ−)

e〈v(ρ+sλp)−ρ,T 〉fp,v(s)gp,v(s),

which implies the first equality of (5.12) by Lemma 4.2 (1).
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As for the second equality, we have by Lemmas 5.3 and 4.2 (2),

Zq(s;̟T ) =
∑

w∈W
∆q⊂w−1(∆∪Φ−)

e〈̟
−1w(ρ+sλq)−ρ,T 〉fq,w(s)gq,w(s)

=
∑

w∈W
∆q⊂w−1(∆∪Φ−)

e〈̟
−1w̟(ρ+sλp)−ρ,T 〉fp,̟−1w̟(s)gp,̟−1w̟(s)

=
∑

v∈W
∆q⊂̟v−1̟−1(∆∪Φ−)

e〈v(ρ+sλp)−ρ,T 〉fp,v(s)gp,v(s).

(5.30)

�

From Proposition 5.2, we see that Zp(s;T ) has no ξ functions in the denominator of each term.
In fact, it is too much multiplied; Zp(s;T ) can be factorized by some ξ functions and should be

divided by them in order to obtain Weng’s zeta function ξ
G/P
Q;o (s;T ).

Let

(5.31) Hp,w(s) =

(

∏

α∈Φw\∆p

ξ(〈λp, α
∨〉s+ htα∨)

)(

∏

α∈Φw

1

ξ(〈λp, α∨〉s+ htα∨ + 1)

)

,

which is the term corresponding to w in ω
G/P
Q (s;T ) (see Proposition 2.2). Since

∏

α∈Φw\∆p

ξ(〈λp, α
∨〉s+ htα∨) = ξ(s+ 1)Np,w(1,1)

∏

α∈Φw\∆

ξ(〈λp, α
∨〉s+ htα∨)

= ξ(s+ 1)Np,w(1,1)
∞
∏

k=0

∞
∏

h=2

ξ(ks+ h)Np,w(k,h),

(5.32)

and

∏

α∈Φw

ξ(〈λp, α
∨〉s+ htα∨ + 1) =

∞
∏

k=0

∞
∏

h=1

ξ(ks+ h+ 1)Np,w(k,h)

=

∞
∏

k=0

∞
∏

h=2

ξ(ks+ h)Np,w(k,h−1),

(5.33)

we have the expression

(5.34) Hp,w(s) = ξ(s+ 1)Np,w(1,1)
∞
∏

k=0

∞
∏

h=2

ξ(ks+ h)Np,w(k,h)−Np,w(k,h−1).

From this expression, we see that if Np,w(k, h)−Np,w(k, h−1) < 0, then ξ(ks+h)Np,w(k,h−1)−Np,w(k,h)

appears in the denominator of the term Hp,w(s). Let δ(a) = a if a > 0, and δ(a) = 0 otherwise.

In order to describe the minimal ξ factor that cancels all the denominators of ω
G/P
Q (s;T ), we

introduce

(5.35) M̃p(k, h) = max
w∈W

∆p⊂w−1(∆∪Φ−)

δ(Np,w(k, h− 1)−Np,w(k, h))

for (k, h) ∈ Z2 and we define Dp(s) by

(5.36) Dp(s) =

∞
∏

k=0

∞
∏

h=2

ξ(ks+ h)Np(k,h−1)−M̃p(k,h).
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By use of the definition (5.10), we see

Fp(s) =
∏

α∈Φ+

ξ(〈λp, α
∨〉s+ htα∨ + 1)

=

∞
∏

k=0

∞
∏

h=1

ξ(ks+ h+ 1)Np(k,h)

=

∞
∏

k=0

∞
∏

h=2

ξ(ks+ h)Np(k,h−1)

(5.37)

and

(5.38) Dp(s) = Fp(s)

∞
∏

k=0

∞
∏

h=2

ξ(ks+ h)−M̃p(k,h),

so that Fp(s)/Dp(s) is the minimal ξ factor. Note that (2.9) is rewritten as

(5.39) Mp(k, h) = max
w∈W

∆p⊂w−1(∆∪Φ−)

(Np,w(k, h− 1)−Np,w(k, h)).

Lemma 5.4. (1) For (k, h) ∈ Z2 with h ≥ 1,

(5.40) Mp(k, h) = M̃p(k, h).

(2) For (k, h) ∈ Z2,

(5.41) Np(k, kcp − h)−Mp(k, kcp − h+ 1) = Np(k, h− 1)−Mp(k, h).

(3) For (k, h) ∈ Z2,

(5.42) Mp(k, h) = Mq(k, h),

where q ∈ Aut(Γ)p.

Proof. (1) Note that ∆p ⊂ (∆ ∪ Φ−). For l ≥ 0, we have

(5.43) Np,id(k, l) = ♯{α ∈ Φ− | 〈λp, α
∨〉 = k, htα∨ = l} = 0,

which implies

(5.44) Np,id(k, h− 1)−Np,id(k, h) = 0.

Hence δ(x) can be replaced by x in M̃p(k, h).
(2) From Lemma 4.4 (1), we have

(5.45) Mp(k, kcp − h+ 1)

= max
w∈W

∆p⊂w−1(∆∪Φ−)

(Np,w(k, kcp − h)−Np,w(k, kcp − h+ 1))

= max
w∈W

∆p⊂w−1(∆∪Φ−)

(Np(k, h)−Np(k, h− 1)−Np,w0wwp
(k, h) +Np,w0wwp

(k, h− 1)).

Hence by Lemmas 4.2 (1) and 4.3 (1),

(5.46) Np(k, kcp − h)−Mp(k, kcp − h+ 1)

= Np(k, h)− max
w∈W

∆p⊂w−1(∆∪Φ−)

(Np(k, h)−Np(k, h− 1)−Np,w0wwp
(k, h) +Np,w0wwp

(k, h− 1))

= Np(k, h− 1)− max
w∈W

∆p⊂w−1(∆∪Φ−)

(Np,w0wwp
(k, h− 1)−Np,w0wwp

(k, h))

= Np(k, h− 1)−Mp(k, h).

(3) By Lemmas 4.2 (2) and 4.4 (2), we have the result.
�
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Proof of Theorem 2.3. Since by (5.38), Fp(s)/Dp(s) is the minimal ξ factor for ω
G/P
Q (s;T ), we

have (2.10) by Lemma 5.4 (1) and the expression

(5.47) ξ
G/P
Q;o (s;T ) =

( Fp(s)

Dp(s)

)

ω
G/P
Q (s;T ).

�

Lemma 5.5.

Dp(−cp − s) = Dp(s)

= Dq(s),
(5.48)

where q ∈ Aut(Γ)p.

Proof. We show the first equality. We use

D(0) =

∞
∏

h=2

ξ(h)Np(0,h−1)−Mp(0,h),(5.49)

D(1)(s) =

∞
∏

k=1

∞
∏

h=2

ξ(ks+ h)Np(k,h−1)−Mp(k,h)(5.50)

=
∞
∏

k=1

∞
∏

h=−∞

ξ(ks+ h)Np(k,h−1)−Mp(k,h),

since Np,w(k, h − 1) = 0 and Mp(k, h) = 0 for k ≥ 1 and h ≤ 1. Note that Dp(s) = D(0)D(1)(s).

It is sufficient to show D(1)(−cp − s) = D(1)(s). We have

D(1)(−cp − s) =
∞
∏

k=1

∞
∏

h=−∞

ξ(−kcp − ks+ h)Np(k,h−1)−Mp(k,h)

=

∞
∏

k=1

∞
∏

h=−∞

ξ(ks+ kcp − h+ 1)Np(k,h−1)−Mp(k,h)

=

∞
∏

k=1

∞
∏

h=−∞

ξ(ks+ h)Np(k,kcp−h)−Mp(k,kcp−h+1).

(5.51)

By Lemma 5.4 (2), we obtain

(5.52) D(1)(−cp − s) =

∞
∏

k=1

∞
∏

h=−∞

ξ(ks+ h)Np(k,h−1)−Mp(k,h) = D(1)(s)

and hence the result.
The second equality of (5.48) follows from the definition (5.36) and Lemmas 4.3 (2) and 5.4

(3). �

Proof of Theorem 2.4. By (5.47) and (5.11), we rewrite

(5.53) ξ
G/P
Q;o (s;T ) =

( Fp(s)

Dp(s)

)

ω
G/P
Q (s;T ) =

Zp(s;T )

Dp(s)
.

Then the functional equation follows from Proposition 5.1 and Lemma 5.5. �
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