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ON THE ZEROS OF WENG ZETA FUNCTIONS

FOR CHEVALLEY GROUPS

HASEO KI, YASUSHI KOMORI, AND MASATOSHI SUZUKI

Abstract. We prove that all but finitely many zeros of Weng’s zeta function for a
Chevalley group defined over Q are simple and on the critical line.

1. Introduction

Weng zeta functions are new objects in the theory of zeta functions arose from the
theory of (periods of) Eisenstein series of reductive algebraic groups G defined over Q.
They are defined for every standard maximal parabolic subgroup P of G. Roughly Weng
zeta functions are linear combinations of products of the complete Riemann zeta-function
with rational function coefficients, but they have amazing structures that may come from
their origin. We start from the most simple example.

Let G = SL(2), P = B = P1,1 = {
(
∗ ∗
0 ∗

)
} ⊂ G and K = SO(2). (In this case, the

Borel subgroup B coincides with the maximal parabolic subgroup P .) Let H be the
upper half plane. Usual non-holomorphic Eisenstein series attached to this pair (G,P )
is defined by the series

E(s, z) =
∑

γ∈P (Z)\G(Z)

ℑ (γz)s

for z ∈ H, Re(s) > 1, and then it is continued meromorphically to the whole complex C.
To understand the integral ∫

F
E(s, z) dµ(z)

in a suitable sense is a fundamental problem for the theory of harmonic analysis on
SL(2,Z)\H, where F is a standard fundamental domain of the action of G(Z) = SL(2,Z)
on H. Usually the above integral is studied by using the analytic truncation

ΛτE(s, z) =

{
E(s, z), y 6 eτ , z ∈ F ,

E(s, z) − (ys + ζ̂(2s−1)

ζ̂(2s)
y1−s), y > eτ , z ∈ F .

For every τ > 0 we have
∫

F
ΛτE(s, z) dµ(z) =

eτ(s−1)

s− 1
− e−τs

s

ζ̂(2s − 1)

ζ̂(2s)
.

(Therefore
∫
F E(s, z) dµ(z) = 0 if 0 < ℜ(s) < 1.) Multiplying by s(s − 1)ζ̂(2s) on both

sides, we define

Z(s, τ) = s(s− 1) · ζ̂(2s) ·
∫

F
ΛτE(s, z) dµ(z)

= eτ(s−1) s ζ̂(2s)− e−τs (s− 1) ζ̂(2s − 1).
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for τ > 0. The functional equation of E(z, s) derives Z(s, τ) = Z(1−s, τ) automatically,
but we mention that the functional equation of E(z, s) coming from the symmetry of
the Weyl group of SL(2).

A remarkable fact is that all zeros of Z(s, τ) lie on the line ℜ(s) = 1/2 and simple
for every fixed τ > 0 (see [11, 14]). Weng zeta functions are of a generalization of the
specialization of Z(s, τ) for τ = 0.

Let G be a connected semisimple algebraic group defined over Q endowed with a
maximal (Q-)split torus T . Let Φ be the root system with respect to (G,T ). Fix a Borel
subgroup B of G containing T . Then it determines the fundamental system ∆ of Φ.

Let X∗(T ) be the group of characters of T defined over Q that is a free module of
rank r = dimT . Let a∗0 = X∗(T )⊗R and a0 = Hom(X∗(T ),R). Then a0 and a∗0 are real
vector spaces of dimension r. The root system Φ is a finite subset of X∗(T ), therefore it
is canonically embedded in a∗0. For every simple root α ∈ ∆, we have the coroot α∨ ∈ a0.

Let E(λ, g) = EG/B(1, λ, g) be Langlands’ Eisenstein series for λ ∈ a∗0 ⊗ C ≃ Cr and
g ∈ G(A). By using J. Arthur’s truncation operators Λτ acting on a space of automorphic
forms (see [2] and also [1]), we obtain the well-defined integral

∫

G(Q)\G(A)
ΛτE(λ, g) dg

for sufficiently regular τ ∈ a0. It is often called the period of E(λ, g). The integral can
be calculated explicitly by using the root system Φ and its Weyl group W of Φ:

∫

G(Q)\G(A)
ΛτE(λ, g) dg

= v
∑

w∈W

e〈wλ−ρ,τ〉
∏

α∈∆

1

〈wλ− ρ, α∨〉M(w, λ),

where v is the volume of {∑α∈∆ aαα
∨ | 0 6 aα < 1}, ρ is the half sum of all positive roots

and M(w, λ) are usual (unnormalized) intertwining operators M(w, λ) : IB(λ) → IB(wλ)
for λ ∈ a∗0 ⊗ C and w ∈ W . If G is a split semisimple group, we have

M(w, λ) =
∏

α∈Φw

ζ̂(〈λ, α∨〉)
ζ̂(〈λ, α∨〉+ 1)

,

where Φw = Φ+∩w−1Φ− (see Chapter 5 of Langlands [15], Jaquet-Lapid-Rogawski [8]).

Note that we assumed that G is split. Standing on the above formula for the period

of E(λ, g), Weng introduced the “period” ω
(G,T )
Q,B : a∗0 ⊗ C ≃ Cr → C by

ω
(G,T )
Q,B (λ) =

∑

w∈W

∏

α∈∆

1

〈wλ− ρ, α∨〉
∏

α∈Φw

ζ̂(〈λ, α∨〉)
ζ̂(〈λ, α∨〉+ 1)

.

In this definition, we ignored the volume v, and took τ = 0 in the right hand side of the
above formula of periods of Eisenstein series. We do not know τ = 0 is regular or not in

general. Therefore we should note that ω
(G,T )
Q,B may not be a period of Eisenstein series

in a rigorous meaning. However, we will find that ω
(G,T )
Q,B itself is an interesting object

apart from its origin. For instance, a priori, there is no obvious reason for the restriction
τ = 0. But we find that τ = 0 is a special point for the distribution of zeros of Weng

zeta functions after a study of τ -version ω
(G,T )
Q,B (λ; τ) (see A.4 of [24] for details).

From the point of view for the theory of periods of automorphic functions, it is natural
to consider more general “period” by replacing ζ̂ by (completed) L-functions attached
to Dirichlet characters or automorphic representations. However we restrict our interest

only on the above ω
(G,T )
Q,B for the simplicity of arguments.
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By definition, the period ω
(G,T )
Q,B (λ) has a large symmetry with respect to the Weyl

group, but it is a r-variable function in general (r = dimT ). A priori there is no

obvious way to derive a single-variable function from ω
(G,T )
Q,B (λ) preserving the symmetry

of the Weyl group. A discovery of Weng was that there is a canonical way to derive a

(conjecturally) nice single-variable function from ω
(G,T )
Q,B (λ) if we use a standard maximal

parabolic subgroup of G. The key fact is the bijection

∆ = {α1, · · · , αℓ} → {maximal parabolic subgroups P}
αj 7→ Pj

We denote by αP the simple root corresponding to the standard maximal parabolic
subgroup P . Following Weng, we define

ω
(G,T )
Q,P/B(s) = Res

λ
ω
(G,T )
Q,B (λ) (s = 〈λ− ρ, α∨

P 〉),

where Res
λ

means taking residues along (r − 1) many hyperplanes

〈λ− ρ, β∨〉 = 0, β ∈ ∆ \ {αP }.
Then zeta functions for ((G,T );P/B)/Q are defined by

ζ̂P (s) := ζ̂
(G,T )
Q,P/B(s) :=

∏

k,h

ζ̂(ks + h) · ω(G,T )
Q,P/B(s),

where
∏

k,h ζ̂(ks+h) is the “minimal” finite product of ζ̂(ks+h) in the sense that ζ̂P (s)

has no ζ̂(as+ b) or ζ̂(c) in its denominators.

Remark The functions ω
(G,T )
Q,P/B(λ), ω

(G,T )
Q,P/B(s), ζ̂P (s) are written as ωG

Q(λ), ω
G/P
Q (s),

ξ
G/P
Q, o (s) respectively in [24] and [13].

Here we mention several examples of ζ̂P (s). Let Pn1,n2 ⊂ SL(n) be the maximal
parabolic subgroup attached to n = n1 + n2. Then we find that

ζ̂
SL(n)
Q,Pn−1,1

(s) = ζ̂
SL(n)
Q,P1,n−1

(s) =

n∑

h=1

Qh(s)

Ph(s)
· ζ̂(s+ h),

where Ph, Qh are polynomials satisfying degPh 6 n − 1, degQh < degPh (see also
section 4). For example,

ζ̂
SL(2)
Q,P1,1

(s) =
ζ̂(s + 2)

s
− ζ̂(s+ 1)

s+ 2
,

ζ̂
SL(3)
Q,P2,1

(s) =

(
ζ̂(2)

s
− 1

2(s+ 1)

)
ζ̂(s+ 3)− ζ̂(s+ 2)

s(s+ 3)
−
(

ζ̂(2)

s+ 3
− 1

2(s + 2)

)
ζ̂(s+ 1).

In the following examples, each term of ζ̂P (s) consists of the product of several ζ̂(s):

ζ̂
SL(4)/P2,2

Q,P2,2
(s) = R1(s) ζ̂(s+ 3)ζ̂(s+ 4) +R2(s) ζ̂(s+ 3)2

+R3(s) ζ̂(s+ 1)ζ̂(s+ 3) +R4(s) ζ̂(s+ 2)2 +R5(s) ζ̂(s + 2)ζ̂(s+ 3),

ζ̂
Sp(4)
Q,Pshort

(s) = R1(s) ζ̂(s + 3)ζ̂(2s+ 2) +R2(s) ζ̂(s+ 2)ζ̂(2s + 2)

+R3(s) ζ̂(s+ 2)ζ̂(2s + 1) +R4(s) ζ̂(s+ 1)ζ̂(2s + 1),

ζ̂G2
Q,Plong

(s) = R1(s) ζ̂(s+ 3)ζ̂(2s + 2)ζ̂(3s+ 3) +R2(s) ζ̂(s+ 2)ζ̂(2s + 1)ζ̂(3s+ 1)

+R3(s) ζ̂(s+ 1)ζ̂(2s + 2)ζ̂(3s + 2) +R4(s) ζ̂(s+ 1)ζ̂(2s+ 1)ζ̂(3s + 2)

+R5(s) ζ̂(s+ 1)ζ̂(2s + 1)ζ̂(3s + 1) +R6(s) ζ̂(s+ 1)ζ̂(2s+ 2)ζ̂(3s + 3),

where Ri’s are certain rational functions. For more examples, see Appendix B of [24]
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By definition, ζ̂P (s) are meromorphic functions in C having only finitely many poles.

In addition Weng observed that ζ̂P (s) satisfy standard functional equations for several
examples of ((G,T );P/B), and conjectured that it holds for general pairs (if G is a
classical semisimple group at least):

Conjecture 1 There exists c = c((G,T );P/B) ∈ Q such that ζ̂P (−c− s) = ζ̂P (s).

The conjectural functional equation derives the corresponding Riemann hypothesis:

Conjecture 2 All zeros of ζ̂P (s) lie on the critical line ℜ(s) = −c/2.

As for Conjecture 1, initially, Weng proved it for SL(n) (n = 2, 3, 4, 5), Sp(4), SO(8)
and G2. Successively, H. Kim-Weng proved the case of (SL(n), Pn−1,1) for arbitrary
n > 2 (unpublished). Finally, the second author established the conjectural functional

equations of ζ̂P (s) for general ((G,T );P/B), and determined the value c((G,T );P/B)
explicitly in [13]. As for Conjecture 2, its validity was known for ten examples of
((G,T );P/B), namely, G = SL(n) (n = 2, 3, 4, 5), Sp(4), G2 and their arbitrary maxi-
mal parabolic subgroup P , and further, the simplicity of zeros were also known for these
pairs ([11,12,14,19–21]). This is surprising, because a linear combination of zeta functions
has a lot of off-line zeros in general even if it has a functional equation (e.g. [5, 6, 17]).

Roughly, the known proof of Conjecture 2 for the above special cases consists of two
parts. The first one is to show that all but finitely many zeros of ζ̂P (s) lie on the critical
line, and the second one is to remove the possibility of off-line zeros. Methods for these
two parts have different nature. We may say that the first part is of the problem for the
zeros of higher position, and the other part is of the problem for low-lying zeros. The
latter problem is difficult and interesting than the former one as well as in the theory of
classical zeta/L-functions. In fact, the proof of the first part for the above ten examples
were improved and unified in [12], unfortunately we still need a numerical computation
for the latter part. In the present paper, we prove the following result for the first part
of Conjecture 2 by generalizing the method of [12] and by using the theory of [13]:

Theorem 1.1 (Weak Riemann Hypothesis) Let G be a Chevalley group defined over Q,
in other words, G is a connected semisimple algebraic group defined over Q endowed with
a maximal (Q-)split torus T . Let B be a Borel subgroup of G containing T . Let P be a
maximal parabolic subgroup of G defined over Q containing B.

Then all but finitely many zeros of ζ̂
(G,T )
Q,P/B(s) are simple and on the critical line of its

functional equation.

Remark Similar results hold if we replace ζ̂(s) by a suitable (completed) L-function,

because we use only standard analytic properties of ζ̂(s) in the proof.

Remark It is expected that ζ̂
(G,T )
Q,P/B(s) has no zeros outside the critical line as well as

in known cases G = SL(n) (n = 2, 3, 4, 5), Sp(4), G2 that correspond to root systems of
type An (n = 1, 2, 3, 4), C2(≃ B2) and G2. However we have no idea how to prove it in
general.

We note that the known proof of Conjecture 2 about ten examples mentioned just

before Theorem 1.1 depends on explicit formulas of ζ̂
(G,T )
Q,P/B(s) presented by Weng (see

[24]). On the other hand, the method of the proof of the functional equation in [13] is
completely abstract, and hence it does not depend on an individual root system. In this
paper, we will prove the above main theorem in such a way that we refine the proof of

the Riemann hypothesis of ζ̂
(G,T )
Q,P/B(s) demonstrated in [12, 14, 19–21] by using terms of

the abstract root system as well as in the proof of the functional equations in [13].

The paper is organized as follows. In section 2, we rewrite zeta functions ζ̂
(G,T )
Q,P/B(s)

in terms of abstract root systems, and define zeta functions more rigorously. In section
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3, we sketch the outline of the proof of Theorem 1.1. In section 4, we briefly review the
story of the proof of Theorem 1.1 restricting on the most simple cases (SL(n), Pn−1,1).
In sections 5 to 7, we carry out the scheme of section 3 without proofs of lemmas and
propositions. The section that the proof of each lemma or proposition is accomplished
is mentioned here. In section 8, we prepare further notations and auxiliary lemmas for
the proofs of results in sections 5 to 7. Finally, in sections 9 to 15, we fill the details of
proofs of lemmas and propositions in sections 5 to 7, and complete the proof of Theorem
1.1.

2. Definition of Weng zeta functions for (G,P )

2.1. Root system and the Weyl group. Let V be a r-dimensional real vector space
equipped with an inner product 〈·, ·〉. Let Φ ⊂ V be a (reduced) root system of rank
r and ∆ = {α1, · · · , αr}, its fundamental system. Let α∨ = 2α/〈α,α〉 be the coroot
associated with α ∈ Φ. Let Λ = {λ1, · · · , λr} be the set of fundamental weights satisfying
〈λi, α

∨
j 〉 = δij . Let Φ+ be the corresponding positive system of Φ and Φ− = −Φ+ so

that Φ = Φ+ ∪ Φ−. Let

ρ =
1

2

∑

α∈Φ+

α =
r∑

j=1

λj

be the Weyl vector. Let htα∨ = 〈ρ, α∨〉 be the height of α∨.
Let W be the Weyl group generated by simple reflections σj = σαj

: V → V attached
to simple roots αj ∈ ∆. We denote the identity of W by id. For w ∈ W , we put

Φw = Φ+ ∩ w−1Φ−

and let l(w) = |Φw| be the length of w. Let w0 be the longest element of W . Then we
have w2

0 = id, w0∆ = −∆ and w0Φ
+ = Φ−.

We fix an integer p with 1 6 p 6 r. Let Φp be the root system normal to the
fundamental weight λp. A fundamental system of Φp is given by ∆p = ∆ \ {αp}. Let
Φ+
p = Φ+∩Φp (⊂ Φ+) be the corresponding positive system of Φp. Then Φp = Φ+

p ∪Φ−
p

with Φ−
p = −Φ+

p . Let

ρp =
1

2

∑

α∈Φ+
p

α.

Let Wp be the subgroup of W generated by simple reflections {σj = σαj
|αj ∈ ∆p}. Let

wp be the longest element of Wp. Then w2
p = id, wp∆p = −∆p and wpΦ

+
p = Φ−

p .

Definition 2.1 Define the subset Wp of W by

Wp := {w ∈ W | ∆p ⊂ w−1(∆ ∪ Φ−)}.

Clearly id, w0, wp belong to Wp. The condition

∆p ⊂ w−1(∆ ∪ Φ−) (2.1)

plays an important role in several places of the proof of Theorem 1.1.

To describe the functional equation, we introduce the constants

cp = 2 〈λp − ρp, α
∨
p 〉 (2.2)

as well as [13]. Then cp is a positive integer for every 1 6 r 6 p.
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2.2. Definition of Weng zeta functions in terms of abstract root system.

Let G be a connected semisimple algebraic group and let g be its Lie algebra of G. Let
T be a maximal torus of G, and let gα = {X ∈ g |Ad(t)X = α(t)X} for each character
α ∈ X∗(T ). Then the set Φ = Φ(G,T ) = {α ∈ X∗(T ) | gα 6= ∅} is finite, and makes
a root system (in the vector space X∗(T ) ⊗ R). Conversely, for a given root system
Φ, there exists a connected semisimple algebraic group G = G(Φ) defined over a prime
field having Φ as its root system with respect to a split maximal torus T of G by the
fundamental theorem of Chevalley. The group G(Φ) is called a Chevalley group of type
Φ (or split group, since it has a maximal torus which is split over the prime field).

Therefore we can deal with Weng zeta functions for Chevalley groups defined over Q

by using the language of abstract root systems only. Now we define Weng zeta functions
again in terms of abstract root systems.

Let ζ(s) be the Riemann zeta function, and let

ζ̂(s) = π−s/2Γ(s/2)ζ(s),

ξ(s) = s(s− 1)ζ̂(s) = s(s− 1)π−s/2Γ(s)ζ(s).

Note that Weng [24] and Komori [13] use the notation ξ(s) to indicate our ζ̂(s) as well
as Langlands [15] et al.

Definition 2.2 (Periods for (Φ,∆)) Let Φ be an irreducible root system and let ∆ be a
fundamental system of Φ. For λ ∈ V , we define

ωΦ
∆(λ) =

∑

w∈W

∏

α∈∆

1

〈wλ− ρ, α∨〉
∏

α∈Φw

ζ̂(〈λ, α∨〉)
ζ̂(〈λ, α∨〉+ 1)

.

Here we understand that the second product equals 1 if Φw = Φ+ ∩ w−1Φ− = ∅.
Definition 2.3 (Periods for (Φ,∆, p)) Let Φ be an irreducible root system of rank r with
a fundamental system ∆ = {α1, · · · , αr}. Let 1 6 p 6 r. Take the coordinate of V as

λ =

r∑

j=1

(1 + sj)λj = ρ+

r∑

j=1

sjλj (λ ∈ V )

so that 〈λ − ρ, α∨〉 = ∑r
j=1 ajsj for α∨ =

∑r
j=1 ajα

∨
j , and write ∆p = {β1, · · · , βr−1}.

Then we define ωp : C → C by

ωp(s) = ωΦ
∆,p(s) = Res

〈λ−ρ,β∨
1 〉=0

· · · Res
〈λ−ρ,β∨

r−1〉=0
ωΦ
∆(λ)

= Res
s1=0

· · · Res
sp−1=0

Res
sp+1=0

· · · Res
sr=0

ωΦ
∆(λ),

(2.3)

where the variable sp is written as s.

Remark The function ωp(s) is well defined, since it does not depend on the ordering
of the set of simple roots ∆p by Proposition 2.2 of [13].

Remark Let G = G(Φ) be a Chevalley group, and let B a Borel subgroup containing the
maximal split torus T . Let P (⊃ B) be a maximal parabolic subgroup of G corresponding

to the simple root αp. Then functions ωΦ
∆(λ) and ωΦ

∆,p(s) are the periods ω
(G,T )
Q,B (λ) and

ω
(G,T )
Q,P/B

(s) respectively.

Definition 2.4 For w ∈ Wp and (k, h) ∈ Z2, we define

Np,w(k, h) = ♯{α ∈ w−1Φ− | 〈λp, α
∨〉 = k, htα∨ = h},

Np(k, h) = ♯{α ∈ Φ | 〈λp, α
∨〉 = k, htα∨ = h}
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and

Mp(k, h) = max
w∈Wp

(
Np,w(k, h − 1)−Np,w(k, h)

)
.

If k > 1 or h > 1, we have

Np,w(k, h) = ♯{α ∈ Φw | 〈λp, α
∨〉 = k, htα∨ = h},

Np(k, h) = ♯{α ∈ Φ+ | 〈λp, α
∨〉 = k, htα∨ = h},

because a root α ∈ Φ is either α ∈ Φ+ or α ∈ Φ−.

Definition 2.5 (Weng zeta function for (Φ,∆, p)) Using the above notation, we define

ζ̂p(s) = ζ̂ Φ
∆,p(s) = ωp(s)

∞∏

k=0

∞∏

h=2

ζ̂(ks+ h)Mp(k,h).

Remark Note that Mp(k, h) = 0 except for finitely many pairs of integers (k, h). The

function ζ̂p(s) coincides with the zeta function ξ
G/P
Q,o (s) of [24] if Φ is the root system

attached to (G,T ) and αp corresponds to the maximal parabolic P . Moreover, we find
that the numbers I(G/P ) and J(G/P ) defined in [24, section 2] are given by

I(G/P ) =
∑

(k,h)∈Z2, k 6=0

Mp(k, h), J(G/P ) =
∑

h∈Z

Mp(0, h),

because the product
∏∞

k=0

∏∞
h=2 ζ̂(ks+h)Mp(k,h) is minimal in the sense that it eliminates

all ζ̂(as+ b) and ζ̂(c) appearing in the denominators of ωp(s) ([13]).

Remark We will have Mp(k, h) = Np,w0(k, h− 1)−Np,w0(k, h) in Corollary 8.7 below.

Theorem 2.6 (Komori, Theorem 2.4 of [13]) Let cp be the constant defined in (2.2).

Then ζ̂p(s) satisfies the functional equation

ζ̂p(s) = ζ̂p(−cp − s).

Remark See Appendix 2 for table of numbers cp. The numbers cp can be interpreted
geometrically in terms of the first Chern class of tangent bundles on a homogeneous
space or an index of a homogeneous space. See Appendix 3 for details.

Now the reformulation of Theorem 1.1 in terms of ζ̂p(s) is obvious, thus we omit
such a direct reformulation of Theorem 1.1. See Theorem 7.4 and Theorem 7.5 that are
reformulations of Theorem 1.1 in terms of entire functions ξp(s) defined below.

3. Outline of the proof

Define the entire function ξp(s) = Q(s) ζ̂p(s) by multiplying a suitable polynomial.

1. At first we construct an entire function εp(s) satisfying

(⋆) ξp(s) = εp(s)± εp(−cp − s).

Here the sign ± depends on the degree of Q(s). The formula (⋆) plays a central role
on the current line of the proof. More precisely, Theorem 1.1 is reduced to a study of
the location of zeros of εp(s) by (⋆), and fortunately, it is less hard to investigate the

zeros of εp(s) than ζ̂p(s). A kind of the formula (⋆) was used in every (known) proof

of the Riemann hypothesis of ζ̂p(s) for G = SL(n) (n=2,3,4,5), Sp(4), G2. This step is
described more precisely in section 5.

2. Successively we investigate the location of the zeros of εp(s). The aim of this second
step is to show that

(i) the number of zeros of εp(s) in ℜ(s) > −cp/2 is finitely many,
(ii) in a left half-plane, εp(s) has no zero in a region ℜ(s) 6 −κ log(|ℑ(s)|+ 10).
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This step is described more precisely in section 6.

3. Finally we prove Theorem 1.1 by using the results of the second step. The main
tool of this step is the Hadamard product formula of εp(s). Essentially this part is a
modification of the method which was established in [12] by the first author. This step
is described more precisely in section 7.

The most essential part of our proof of Theorem 1.1 is in the second step. To complete
the proof of the second step, we need a detailed study of a structure of Z-grading of
root systems Φ (or Lie(G)) induced from fundamental weights λP . We review the flow
from the first step to the second step in the next section by taking up the cases of
(SL(n), Pn−1,1) as an example.

The first step is established by an algebraic way via the general theory of root systems
and Weyl groups attached to maximal parabolic subgroups P . The argument of the final
step is achieved by a purely analytic way. Frequently, basic analytic properties of ζ(s)
will be used in demonstrating Theorem 1.1.

4. Cases of (SL(n), Pn−1,1)

Let P = Pn−1,1 =
{(

A B
0 D

)
∈ SL(n) |A ∈ GL(n − 1), D ∈ GL(1)

}
be the standard

maximal parabolic subgroup of G = SL(n) attached to the partition n = (n−1)+1. For
these special cases, Theorem 1.1 was established by Weng (unpublished) after the work
of the first author [12]. As a review of the proof of general cases, we sketch the proof of
Theorem 1.1 for these special cases restricting it on the first and the second step.

Let B be the standard Borel subgroup consisting of upper triangular matrices, and let
T be the standard split torus in B, that is, the torus consisting of diagonal matrices. The
root system Φ associated with T is of type An−1, and is realized as Φ+ = {ei − ej | 1 6

i < j 6 n}, where {ei | 1 6 i 6 n} is the standard orthonormal basis of Rn. The set of
simple roots ∆ associated with B is ∆ = {α1 := e1 − e2, · · · , αn−1 := en−1 − en}, and
the half sum of positive roots is

ρ =
1

2

(
(n − 1)e1 + (n− 3)e2 + · · · − (n− 3)en−1 − (n − 1)en

)
.

The Weyl group W is identified with the symmetric group on n letters Sn by the con-
vention w(ei− ej) = ew(i)− ew(j) (w ∈ Sn). The longest element w0 of W is given by the

permutation
(

1 2 ··· n
n n−1 ··· 1

)
, and −w0ρ = ρ. The maximal parabolic subgroup P = Pn−1,1

corresponds to the simple root αn−1 = en−1 − en, and has the Levi decomposition
P = MN with M ≃ GL(n − 1). We have

Φ+
P = Φ+

n−1 = {ei − ej | 1 6 i < j 6 n− 1}, ∆P = ∆n−1 = {α1, · · · , αn−2},

ρP = ρn−1 =
1

2

(
(n− 2)e1 + (n− 4)e2 + · · · − (n− 4)en−2 − (n− 2)en−1

)
,

and the fundamental weight corresponding to P is

λP = λn−1 =
1

n
(e1 + · · ·+ en−1 − (n− 1)en).

The Weyl group WP = Wn−1 is the subgroup of W which corresponds to the symmetric
group on (n − 1) letters {1, 2, · · · , n − 1}. The longest element wP = wn−1 of WP is

given by the permutation
(

1 2 ··· n−1
n−1 n−2 ··· 1

)
, and −wP ρP = ρP .

Comparing with general cases, structures of (Φ+ \ Φ+
P ) ∩ w−1Φ± and Φ+

P ∩ w−1Φ±

(w ∈ W ) in the present case are rather simple, therefore it is not hard to find that∏n−1
h=2 ζ̂(h) · ζ̂(s + n) is the minimal product of zeta functions and zeta values which
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eliminates all zeta functions and zeta values in the denominator of each term of ω
(G,T )
Q,P/B(s).

Hence we have

ζ̂P (s) = ω
(G,T )
Q,P/B(s)

n−1∏

h=2

ζ̂(h) · ζ̂(s+ n).

More precisely, we obtain

ζ̂P (s) =

n∑

h=1

Rh(s) ζ̂(s+ h)

with rational functions

Rh(s) =
∑

w∈WP

|(Φ+\Φ+
P

)∩w−1Φ+|=h−1

Cw

∏

α∈(w−1∆)\ΦP

1

〈λP , α∨〉s+ htα∨ − 1
,

where WP = {w ∈ W |w∆P ⊂ ∆ ∪ Φ−} and

Cw =
∏

α∈(w−1∆)∩(ΦP \∆P )

1

htα∨ − 1
ζ̂(2)|∆

+
P
∩w−1Φ+|

∏

α∈(Φ+
P
\∆P )∩w−1Φ+

ζ̂(htα∨ + 1)

ζ̂(htα∨)
.

The constant cp appearing in the functional equation (2.2) is calculated as follows:

cP = 2〈λP − ρP , α
∨
P 〉 = n.

We have Rh(−n − s) = Rh(s) for every 1 6 h 6 n by considering the involution
w 7→ w0wwP of WP according to [13]. Hence we obtain the functional equation

ζ̂P (s) = ζ̂P (−n− s).

by using the functional equation of ζ̂(s). Define

ξP (s) =

n∏

k=0

(s + k) · ζ̂P (s).

Then we find that ξP (s) is an entire function, and each

Ph(s) :=
1

(s+ h)(s + h− 1)
Rh(s)

n∏

k=0

(s+ k) (1 6 h 6 n)

is a polynomial. Set

εP (s) =





n∑

h=n/2

Ph(s)ξ(s+ h), n is even,

n∑

h=(n+3)/2

Ph(s)ξ(s+ h) +
1

2
Pn+1

2
(s)ξ

(
s+

n+ 1

2

)
, n is odd

with ξ(s) = s(s− 1)ζ̂(s). Then we have

ξP (s) = εP (s) + (−1)n−1εP (−n− s)

by the functional equation of ζ̂P (s). This is the formula (⋆) of section 3.
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By definition, we have

εP (s) =





P2(s)ξ(s+ 2), n = 2,

Pn(s)ξ(s + n)


1 +

n−1∑

h=n/2

Ph(s)

Pn(s)

ξ(s+ h)

ξ(s + n)


,

n > 2 is even,

Pn(s)ξ(s + n)


1 +

n−1∑

h=(n+3)/2

Ph(s)

Pn(s)

ξ(s+ h)

ξ(s+ n)
+

1

2

Pn+1
2
(s)

Pn(s)

ξ
(
s+ n+1

2

)

ξ(s+ n)


,

n is odd.

It is well known that ξ(s) has no zeros in the right half plane ℜ(s) > 1. Thus ξ(s + n)
has no zeros in the right half plane ℜ(s) > −n/2. Furthermore |ξ(s + h)/ξ(s + n)| < 1
for ℜ(s) > −(h+ n− 1)/2 (see Lemma 9.1 below). Therefore, if

degPn(s) > degPh(s) + 1 for every 1 < h < n,

we can conclude that the number of zeros of εP (s) in the right half plane ℜ(s) > −n/2.
This is 2 (i) of section 3. It is not hard to find that degPh(s) 6 n−3 for every 1 < h < n
(n > 3) (see Lemma 10.1). Therefore assuming degPn(s) = n − 2, we have the above
inequality, but it is not trivial to know the degree of Pn(s) for general n > 2 even if it
may be the actual situation. By definition of Pn(s), it is equivalent to the nonvanishing

of the Q-linear combination of products of special values of ζ̂(s):

∑

w∈WP

|(Φ+\Φ+
P

)∩w−1Φ+|=n−1

Cw

∏

α∈(w−1∆)\ΦP
|(w−1∆)\ΦP |=1

1

〈λP , α∨〉 6= 0,

and it is highly nontrivial. Fortunately, this problem can be solved by using the volume
formula of [23, section 4.7] (see the proof of Lemma 10.3 in section 10). In contrast with
2 (i), 2 (ii) is provided easily by using the Stirling formula for the gamma function.

5. The first step of the proof of Theorem 1.1

5.1. A modification to entire functions. The zeta function ζ̂Φ∆,p(s) is meromorphic
on C and has finitely many poles. In order to prove Theorem 1.1, we consider the entire

function ξΦ∆,p(s) which is a polynomial multiple of ζ̂Φ∆,p(s).

At first, we recall formula (2.8) of [13]:

ωΦ
∆,p(s) =

∑

w∈Wp

∏

α∈(w−1∆)\∆p

1

〈λp, α∨〉s+ htα∨ − 1

×
∏

α∈Φw\∆p

ζ̂(〈λp, α
∨〉s+ htα∨)

∏

α∈(−Φw)

ζ̂(〈λp, α
∨〉s+ htα∨)−1.

Here we understand that each product equals 1 if its index set is empty.

Definition 5.1 We define the product of zeta functions

Fp(s) :=
∏

α∈Φ−

ζ̂(〈λp, α
∨〉s+ htα∨),

and the meromorphic function

Zp(s) := Fp(s)ω
Φ
∆,p(s).
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Then we have

Zp(s) =
∑

w∈Wp

fp,w(s) gp,w(s),

with rational functions fp,w and products of zeta functions gp,w:

fp,w(s) =
∏

α∈(w−1∆)\∆p

1

〈λp, α∨〉s + htα∨ − 1
,

gp,w(s) =
∏

α∈(w−1Φ−)\∆p

ζ̂(〈λp, α
∨〉s+ htα∨),

since Φ− \ Φw = Φ− ∩ w−1Φ− and (Φw \∆p) ∪ (Φ− \ Φw) = (w−1Φ−) \∆p.

We modify the above formula of gp,w so that all coefficients 〈λp, α
∨〉 of s in gp,w will

be nonnegative integers. We see that gp,w(s) is

∏

α∈(w−1Φ−)∩Φ−

ζ̂(〈λp, α
∨〉s + htα∨)

∏

α∈((w−1Φ−)∩Φ+)\∆p

ζ̂(〈λp, α
∨〉s+ htα∨)

=
∏

α∈(w−1Φ−)∩Φ−

ζ̂(1− 〈λp, α
∨〉s− htα∨)

∏

α∈((w−1Φ−)∩Φ+)\∆p

ζ̂(〈λp, α
∨〉s+ htα∨)

=
∏

α∈(w−1Φ−)∩Φ−

ζ̂(〈λp,−α∨〉s+ ht (−α∨) + 1)
∏

α∈((w−1Φ−)∩Φ+)\∆p

ζ̂(〈λp, α
∨〉s+ htα∨)

=
∏

α∈(w−1Φ+)∩Φ+

ζ̂(〈λp, α
∨〉s+ htα∨ + 1)

∏

α∈((w−1Φ−)∩Φ+)\∆p

ζ̂(〈λp, α
∨〉s+ htα∨)

for each w ∈ Wp by using the functional equation ζ̂(s) = ζ̂(1− s). Then all coefficients
〈λp, α

∨〉 in the last line are nonnegative integers:

gp,w(s) =
∏

α∈Φw\∆p

ζ̂(〈λp, α
∨〉s + htα∨)

∏

α∈Φ+\Φw

ζ̂(〈λp, α
∨〉s+ htα∨ + 1) (5.1)

for each w ∈ Wp. Note that Φ+ \ Φw = Φ+ ∩ w−1Φ+. Define

δα,w =

{
1 if α ∈ w−1Φ+,

0 if α ∈ w−1Φ−.
(5.2)

Then formula (5.1) is written as

gp,w(s) = ζ̂(2)|∆p∩w−1Φ+|
∏

α∈Φ+\∆p

ζ̂(〈λp, α
∨〉s+ htα∨ + δα,w).

We define entire functions X̃p,w(s) by replacing ζ̂(s) of gp,w by ξ(s):

X̃p,w(s) = ξ(2)|∆p∩w−1Φ+|
∏

α∈Φ+\∆p

ξ(〈λp, α
∨〉s+ htα∨ + δα,w). (5.3)

Obviously, we have

X̃p,w(s) = 2|∆p∩w−1Φ+|gp,w(s)

×
∏

α∈Φ+\∆p

(
〈λp, α

∨〉s+ htα∨ + δα,w

)(
〈λp, α

∨〉s+ htα∨ + δα,w − 1
)
.
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Define the polynomial Qp(s) by

Qp(s) =
∏

w∈Wp


2|∆p∩w−1Φ+|

∏

α∈(w−1∆)\∆p

(
〈λp, α

∨〉s+ htα∨ − 1
)

×
∏

α∈Φ+\∆p

(
〈λp, α

∨〉s+ htα∨ + δα,w

)(
〈λp, α

∨〉s+ htα∨ + δα,w − 1
)



Definition 5.2 Under the above notation, we define

Xp(s) := Qp(s)Zp(s).

By definitions Xp(s) is an entire function having the form

Xp(s) =
∑

w∈Wp

Q̃p,w(s) X̃p,w(s),

where Q̃p,w(s) are polynomials given by

Q̃p,w(s) =
∏

w 6=v∈Wp


2|∆p∩v−1Φ+|

∏

α∈(v−1∆)\∆p

(
〈λp, α

∨〉s + htα∨ − 1
)

×
∏

α∈Φ+\∆p

(
〈λp, α

∨〉s+ htα∨ + δα,v

)(
〈λp, α

∨〉s + htα∨ + δα,v − 1
)

 .

Remark Note that the polynomial Qp(s) is not minimal in a sense that the polynomial

of the lowest degree such that Q(s)Zp(s) has no poles. In fact Q̃p,w(s) (w ∈ Wp) has a

lot of common divisors as well as X̃p,w(s).

Now we modify X̃p,w(s) and Q̃p,w(s) a little. Define

Cp,w = ξ(2)|∆p∩w−1Φ+|
∏

α∈Φ+
p \∆p

ξ(htα∨ + δα,w), (5.4)

Xp,w(s) =
∏

α∈Φ+\Φ+
p

ξ(〈λp, α
∨〉s+ htα∨ + δα,w)

and
Qp,w(s) = Cp,wQ̃p,w(s).

Then we have
X̃p,w(s) = Cp,wXp,w(s)

and
Xp(s) =

∑

w∈Wp

Qp,w(s)Xp,w(s).

Lemma 5.3 Let cp be the number defined in (2.2). Let w0 (resp. wp) be the longest
element of W (resp. Wp). Then the functional equations

X̃p,w(−cp − s) = X̃p,w0wwp(s),

Q̃p,w(−cp − s) = ǫp Q̃p,w0wwp(s),

Qp(−cp − s) = ǫpQp(s),

hold for every w ∈ Wp for a suitable choice of sign ǫp ∈ {±1} depending only on p. In
particular we have the functional equation

Xp(−cp − s) = ǫpXp(s).

Proof. This is a consequence of Lemma 5.3 of [13]. �
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5.2. Decomposition of Xp(s). The aim of this part is a construction of an entire
function Ep(s) satisfying

Xp(s) = Ep(s) + ǫpEp(−cp − s),

where ǫp is the sign of Lemma 5.3.

Definition 5.4 For w ∈ Wp, we define the number lp(w) by

lp(w) =
∑

α∈Φ+\Φ+
p

(1− δα,w) = |(Φ+ \ Φ+
p ) ∩ w−1Φ−|.

Remark Compare lp(w) with the length l(w) = |Φ+ ∩ w−1Φ−| of w ∈ W .

Lemma 5.5 Let wp be the longest element of Wp. Then we have

lp(w) + lp(w0wwp) = |Φ+ \ Φ+
p |

for every w ∈ Wp.

Proof. We have

|(Φ+ \Φ+
p ) ∩ (w0wwp)

−1Φ−| = |wp(Φ
+ \Φ+

p ) ∩ w−1Φ+| = |(Φ+ \Φ+
p ) ∩w−1Φ+|.

Hence we obtain

lp(w) + lp(w0wwp) = |(Φ+ \ Φ+
p ) ∩ w−1Φ−|+ |(Φ+ \ Φ+

p ) ∩ (w0wwp)
−1Φ−|

= |(Φ+ \ Φ+
p ) ∩ w−1Φ−|+ |(Φ+ \ Φ+

p ) ∩ w−1Φ+| = |Φ+ \ Φ+
p |

for every w ∈ Wp. �

Definition 5.6 We divide the subset Wp of W into three parts:

Wp = W+
p ∐ W−

p ∐ W0
p,

where ∐ means the disjoint union, and

W+
p := {w ∈ Wp | lp(w) < |Φ+ \Φ+

p |/2 },
W−

p := {w ∈ Wp | lp(w) > |Φ+ \Φ+
p |/2 },

W0
p := {w ∈ Wp | lp(w) = |Φ+ \Φ+

p |/2 }.

Note that W0
p = ∅ is possible, and

w0 W
−
p wp = W+

p , w0W
0
p wp = W0

p.

by Lemma 5.5.

Definition 5.7 Define

Ep(s) =
∑

w∈W+
p

Qp,w(s)Xp,w(s) +
1

2

∑

w∈W0
p

Qp,w(s)Xp,w(s).

Here we understand that the second sum equals zero if the subset W0
p is empty.

Proposition 5.8 We have

Xp(s) = Ep(s) + ǫpEp(−cp − s),

where ǫp is the sign of Lemma 5.3.

Proof. This is obvious by the above definitions and lemmas. �

The decomposition of Proposition 5.8 is useful for our proof of Theorem 1.1 (the weak
Riemann hypothesis). However we do not know whether this choice of Ep(s) is best

possible for the Riemann hypothesis for ζ̂P (s).



14 H. KI, Y. KOMORI, AND M. SUZUKI

5.3. Reduction of Xp(s). By definition of Qp,w(s) and Xp,w(s), component terms
Qp,w(s)Xp,w(s) of Xp(s) have a lot of “common factors”. Now we define “the greatest
common divisor” of these terms.

Definition 5.9 Define

Dp(s) =

∞∏

k=1

∞∏

h=2

ξ(ks+ h)Np(k,h−1)−Mp(k,h),

Rp(s) = g.c.d {Qp,w(s) | w ∈ Wp},
where “g.c.d” means the monic polynomial of the maximal degree which divides all poly-
nomials Qp,w(s) in the polynomial ring C[s].

Remark The above definition of Dp(s) is different from the one of [13], since we use

the notation ξ(s) = s(s− 1)π−s/2Γ(s/2)ζ(s) in this article.

Definition 5.10 Define

ξp(s) =
Xp(s)

Rp(s)Dp(s)
, εp(s) =

Ep(s)

Rp(s)Dp(s)
.

We have

ξp(s) = εp(s)± εp(−cp − s).

The entire function ξp(s) equals the zeta function ζ̂p(s) times a polynomial. Hence
Theorem 1.1 is equivalent to the statement that all but finitely many zeros of ξp(s) lie
on the line ℜ(s) = −cp/2.

6. The second step of the proof Theorem 1.1

Roughly the second step is a consequence of the result that Xp,id(s) is dominant in
ℜ(s) > −cp/2 and Xp,id(s)/Dp(s) has no zeros in ℜ(s) > −cp/2, since

Ep(s) =
[ ∑

w∈W‡
p

Qw(s)
]
·Xp,id(s) ·

[
1 +

∑

w∈Wp\W
‡
p

2lp(w)6|Φ+\Φ+
p |

Rw(s)
Xp,w(s)

Xp,id(s)

]
,

where W
‡
p is a subset of Wp defined below and Rw(s) are some rational functions. The

analytic behavior of Ep(s) in the right half-plane ℜ(s) > −cp/2 is less difficult than that
of the left.

6.1. Behavior of Ep(s) in a right half-plane. In this part we construct the dominant
term of εp(s) in a right half-pane via Ep(s) of Definition 5.7.

Lemma 6.1 Let {v1 = id, v2, · · · , vl} be the left minimal coset representative of Wp:

W =
l⊔

j=1

vjWp.

Then lp(w) depends only on the coset vjWp.

Proof. For w ∈ vjWp, we have lp(w) = |(Φ+ \ Φ+
p ) ∩ w−1Φ−| = |w(Φ+ \ Φ+

p ) ∩ Φ−| =
|vj(Φ+ \Φ+

p ) ∩ Φ−| = |(Φ+ \ Φ+
p ) ∩ v−1

j Φ−| = lp(vj). �

Lemma 6.2 Let w0 be the longest element of W . We have

lp(id) = 0, lP (w0) = |Φ+ \ Φ+
p |.

In other words the minimum value and the maximum value of lp(w) are attained by the
identity element id and the longest element w0 respectively.
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Proof. We have lp(id) = |(Φ+ \Φ+
p )∩Φ−| = 0 and lp(w0) = |(Φ+ \Φ+

p )∩Φ+| = |Φ+ \Φ+
p |

by definition of lp(w). �

Lemma 6.3 Define

W‡
p = {w ∈ Wp | lp(w) = 0}

Then id ∈ W
‡
p and

W‡
p = {w ∈ Wp | (Φ+ \ Φ+

p ) ∩ w−1Φ+ = (Φ+ \ Φ+
p )}.

In particular Xp,w(s) = Xp,id(s) for every w ∈ W
‡
p.

Proof. This lemma immediately follows from Definition 5.4 and (5.3). �

By Lemmas 6.1, 6.2 and 6.3

W‡
p = Wp ∐ v2Wp ∐ · · · vmWp,

for some 1 6 m < l (= |W/Wp|).
Definition 6.4 (the dominant term in a right half-plane) We define

X‡
p(s) := Xp,id(s), Q‡

p(s) :=
∑

w∈W‡
p

Qp,w(s).

By definition

X‡
p(s) = Xp,id(s) =

∏

α∈Φ+\Φ+
p

ξ(〈λp, α
∨〉s+ htα∨ + 1) =

∞∏

k=1

∞∏

h=2

ξ(ks+ h)Np(k,h−1).

The following two propositions assert that

Q‡
p(s)X

‡
p(s) =

( ∑

w∈W‡
p

Qp,w(s)
) ∏

α∈Φ+\Φ+
p

ξ(〈λp, α
∨〉s+ htα∨ + 1)

is the dominant term of Ep(s) in a right half-plane.

Proposition 6.5 We have

degQ‡
p(s) > degQp,w(s) + 1

for every w ∈ (W+
p ∪W0

p) \W‡
p.

Proposition 6.6 We have
∣∣∣∣∣
Xp,w(s)

X‡
p(s)

∣∣∣∣∣ < 1 for ℜ(s) > −cp
2

and ∣∣∣∣∣
Xp,w(s)

X‡
p(s)

∣∣∣∣∣ 6 1 for ℜ(s) = −cp
2

for every w ∈ Wp \W‡
p.

The dominant term X‡
p(s) has the following property.

Proposition 6.7 Let Dp(s) be the function defined in Definition 5.9. Then

X‡
p(s)

Dp(s)
6= 0 for ℜ(s) > −cp

2
.

Furthermore, there exists a positive function δ(t) defined on the real line satisfying

δ(t) log |t| → ∞ (|t| → ∞) such that X‡
p(s)/Dp(s) has no zero in ℜ(s) > −cp/2 − δ(t).
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Remark By a known result [22, p.135] obtained by Vinogradov’s method, we could
take δ(t) such that

δ(t) ≪ 1

(log t)2/3(log log t)1/3

as t → ∞.

We prove Proposition 6.5 in section 10, and Propositions 6.6 and 6.7 in section 9.
These three propositions derive the following result.

Proposition 6.8 The number of zeros of εp(s) lying in right half-plane ℜ(s) > −cp/2
is finitely many at most. Furthermore, there exists a positive function δ(t) on the real
line satisfying δ(t) log |t| → ∞ (|t| → ∞) such that the number of zeros of εp(s) in
ℜ(s) > −cp/2− δ(t) is finitely many at most.

Proof. We have
Ep(s) = Q‡

p(s)X
‡
p(s)[1 + rp(s)] (6.1)

with

rp(s) =
∑

w∈W+
p \W‡

p

Qp,w(s)

Q‡
p(s)

· Xp,w(s)

X‡
p(s)

+
1

2

∑

w∈W0
p

Qp,w(s)

Q‡
p(s)

· Xp,w(s)

X‡
p(s)

Define

Dp =
{
s ∈ C

∣∣∣
∑

w∈W+
p \W‡

p

∣∣∣∣∣
Qp,w(s)

Q‡
p(s)

∣∣∣∣∣+
1

2

∑

w∈W0
p

∣∣∣∣∣
Qp,w(s)

Q‡
p(s)

∣∣∣∣∣ > 1
}
.

Then Dp is a bounded region in C by Proposition 6.5. Therefore we have

|rp(s)| < 1 for ℜ(s) > −cp
2

with s 6∈ Dp, (6.2)

by Proposition 6.6. Hence Proposition 6.7 and (6.2) implies Proposition 6.8. �

The final proposition of the second step is about the zero-free region of Ep(s) on a left
half-plane.

Proposition 6.9 There exists a positive real number κ such that Ep(s) has no zeros in
the region ℜ(s) 6 −κ log(|ℑ(s)|+ 10).

This will be proved in section 11 by using the Stirling formula. Combining Propositions
6.8 and 6.9, we find that all but finitely many zeros of εp(s) lie in the region

{
s = σ + it ∈ C

∣∣∣−κ log(|t|+ 10) < σ < −cp
2

}
.

7. The third step of the proof Theorem 1.1

The final step of the proof of (the front half of) Theorem 1.1 consists of three parts.
The first one is about the number of zeros of εp(s) in a given region. The second one is
the Hadamard factorization formula of εp(s). The third one is an application of a result
of de Bruijn [3, p.215] (see also Lemma 3.1 of [12]) which was established by the first
author in [12].

Proposition 7.1 Let T > 1, and σ > cp/2. Denote by N(T ;σ) the number of zeros of
εp(s) in the region

−σ < ℜ(s) < −cp/2 − δ(t), 0 < ℑ(s) < T.

Then there exist a positive number σL > 0 such that

N(T ;σL) = C1 T log T + C2 T +O(log T )

for some positive real number C1 > 0 and real number C2, and

N(T ; +∞) = C1 T log T + C3 T +O(log2 T )

for some real number C3.
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Thus we have N(T ; +∞) − N(T ;σL) = O(T ). Also, we can justify this by applying
and modifying the method in [22, p.230]. This will be proved in section 12.

Proposition 7.2 Define
Wp(z) = εp(−cp/2 + iz).

Then it has the product formula

Wp(z) = ω eαzV (z)W1(z)W2(z),

where ω is a nonzero real number, α is a real number, V (z) is a polynomial having no
zeros in ℑ(z) > 0 except for purely imaginary zeros,

W1(z) =
∞∏

n=1

[(
1− z

ρn

)(
1 +

z

ρ̄n

)]
,

W2(z) =
∞∏

n=1

[(
1− z

ηn

)(
1 +

z

η̄n

)]

with ℜ(ρn) > 0, ℜ(ηn) > 0 and 0 < δ(t) < ℑ(ρn) < σL + 1 < ℑ(ηn) < κ log(ℜ(ηn) + 10)
for every n > 1. Here δ(t) is the function of Proposition 6.8, κ is the positive number of
Proposition 6.9, and σL is the positive number of Proposition 7.1. The products W1 and
W2 converge uniformly on every compact subset in C.

This will be proved in section 13 by using Proposition 7.1.

Proposition 7.3 (Proposition 3.1 of [12]) Let W (z) be a function in C. Suppose that
W (z) has the product factorization

W (z) = h(z) eαz
∞∏

n=1

[(
1− z

ρn

)(
1 +

z

ρ̄n

)]
,

where h(z) is a nonzero polynomial having N many zeros counted with multiplicity in the
lower half-plane, α ∈ R, ℑ(ρn) > 0 (n = 1, 2, · · · ), and the product converges uniformly

in any compact subset of C. Then, W (z) +W (z̄) and W (z)−W (z̄) has at most N pair
of conjugate complex zeros counted with multiplicity.

Now we achieve the following goal which is an immediate consequence of Propositions
7.2 and 7.3. Note that the realness of the exponent α of Proposition 7.2 is crucial.

Theorem 7.4 (Weak Riemann Hypothesis for ξp) There exists a bounded region Bp such
that all zeros of ξp(s) outside Bp lie on the line ℜ(s) = −cp/2.

By studying of the behavior of the argument of εp(−cp/2 + it) (t > 0), we obtain the
following additional result.

Theorem 7.5 (Simple zeros of ξp) There exists a bounded region B′
p(⊃ Bp) such that

all zeros of ξp(s) outside B′
p lie on the line ℜ(s) = −cp/2 and simple.

This will be proved in section 14. Theorems 7.4 and 7.5 imply the main result Theorem
1.1 because of Chevalley’s fundamental theorem.

8. Preliminaries for proof of Propositions 6.6 and 6.7

In this section, we prepare several lemmas for the proof of Propositions 6.6 and 6.7.
Indeed, Lemmas 8.1, 8.4 and 8.15 will play an important role for it. The condition (2.1)
in Definition 2.1 is essential for Lemma 8.1.

For integers k and l, we define

Σp(k) = {α ∈ Φ | 〈λp, α
∨〉 = k},

Σp(k, h) = {α ∈ Φ | 〈λp, α
∨〉 = k, htα∨ = h}.
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They are not empty for finitely many (k, h). The set of positive roots Φ+ is decomposed
into the disjoint union

Φ+ \Φ+
p =

∞⊔

k=1

Σp(k), Σp(k) =

∞⊔

h=1

Σp(k, h).

By definition, Np(k, h) is the cardinality of Σp(k, h).

Lemma 8.1 Let w ∈ Wp. Let α be a positive root. Suppose that α ∈ (Φ+ \Φ+
p )∩w−1Φ−

and α+ αj ∈ Φ+ \ Φ+
p for some αj ∈ ∆p. Then α+ αj ∈ (Φ+ \ Φ+

p ) ∩ w−1Φ−.

Note. Besides α ∈ (Φ+ \Φ+
p )∩w−1Φ− and α+αp ∈ Φ+ \Φ+

p does not imply α+αp ∈
(Φ+ \ Φ+

p ) ∩ w−1Φ− in general.

Proof. It suffices to show that w(α+αj) ∈ Φ− under the assumption. By the assumption
and the definition of Wp, we have wα ∈ Φ− and wαj ∈ ∆ ∪ Φ−. If wαj ∈ Φ−, we have
w(α + αj) ∈ Φ−, since α+ αj is a root. If wαj ∈ ∆, we also have wα + wαj ∈ Φ−. In
fact, it is impossible that wαj ∈ ∆ and wα + wαj ∈ Φ+, since wα ∈ Φ−. In each case,
we have w(α + αj) ∈ Φ−. �

Lemma 8.2 Let α be a positive root in Φ+ \Φ+
p . Suppose that 〈ρp, α∨〉 < 0. Then there

exists αj ∈ ∆p such that α∨+α∨
j ∈ (Φ+ \Φ+

p )
∨. In particular, there exists αj ∈ ∆p such

that α∨ + α∨
j ∈ ((Φ+ \ Φ+

p ) ∩ w−1Φ−)∨, if 〈ρp, α∨〉 < 0 for α ∈ (Φ+ \ Φ+
p ) ∩ w−1Φ−.

Proof. By 〈ρp, α∨〉 < 0, there exists αj ∈ ∆p such that 〈αj , α
∨〉 < 0, since

2ρp =
∑

β∈Φ+
p

β =
r∑

j=1
j 6=p

njαj (nj ∈ Z>0).

Thus 〈α∨
j , α

∨〉 < 0 by α∨
j = 2αj/〈αj , αj〉. Hence α∨ + α∨

j is a positive root in Φ∨,

([7, §9]). Moreover α∨ +α∨
j is a positive root in (Φ+ \Φ+

p )
∨, since α∨ ∈ (Φ+ \Φ+

p )
∨ and

α∨
p ∈ Φ+

p . The second statement follows from the first statement and Lemma 8.1. �

Lemma 8.3 Let k > 1. Then

(1) Np(k, h) = Np(k, kcp − h) for every h > 1, and
(2) Np(k, h) 6 Np(k, h+ 1) if 2h+ 1 6 kcp.

Proof. See Proposition 1 of [16]. See also Lemma 4.3 (1) of [13] for (1). �

Lemma 8.4 Let k and h be positive integers. Write

Σp(k, h) = {β1, · · · , βN} (N = Np(k, h))

if Σp(k, h) is not empty. Suppose that k > 1 and 2h+1 6 kcp. Then there exists simple
roots αj1 , · · · , αjN (not necessary distinct) such that

• αjn ∈ ∆p (1 6 n 6 N),
• β∨

n + α∨
jn

∈ (Φ+ \Φ+
p )

∨ (1 6 n 6 N), and

• β∨
m + α∨

jm 6= β∨
n + α∨

jn (m 6= n).

Proof. See the proof of Lemma 8.15. �

Lemma 8.5 Let k > 1 and w ∈ Wp. Then Np,w(k, h) 6 Np,w(k, h + 1) if 2h+ 1 6 kcp.
In particular, Mp(k, h) = 0 if 2h− 1 6 kcp

Proof. This is a consequence of Lemmas 8.1 and 8.4. �

Lemma 8.6 Let k > 1. Then we have

Mp(k, h) =

{
0 if 2h− 1 6 kcp,

Np(k, h − 1)−Np(k, h) if 2h− 1 > kcp.
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Proof. We put

D(1)
p (s) =

∞∏

k=1

∞∏

h=2

ξ(ks+ h)Np(k,h−1)−Mp(k,h)

(cf. Definition 5.9). Then we have

D(1)
p (s) =

∞∏

k=1

∏

h6(kcp+1)/2

ξ(ks+ h)Np(k,h−1)

×
∏

h>(kcp+1)/2

ξ(ks+ h)Np(k,h−1)−Mp(k,h)

by Lemma 8.5. On the other hand, we have

D(1)
p (−cp − s) =

∞∏

k=1

∏

h<(kcp+1)/2

ξ(ks + h)Np(k,h)−Mp(k,kcp−h+1)

×
∏

h>(kcp+1)/2

ξ(ks+ h)Np(k,h)

by using Lemma 4.3 (1) of [13]. Because of D
(1)
p (−cp − s) = D

(1)
p (s) by Lemma 5.5

of [13], we have Mp(k, h) = Np(k, h− 1)−Np(k, h) for h > (kcp + 1)/2. �

Corollary 8.7 In the definition of Mp(k, h), the longest element w0 attains the maximum

max
w∈Wp

(Np,w(k, h− 1)−Np,w(k, h)) .

Proof. This is a consequence of Lemmas 8.3 and 8.6, since Np(k, h) = Np,w0(k, h). �

Let α̃ be the highest root of Φ+. Define integers k1, · · · , kr by

α̃ =

r∑

i=1

kiαi (ki > 0). (8.1)

For a positive integer k with Σp(k) 6= ∅, a lowest root α−
p (k) for Σp(k) is the root such

that β−α−
p (k) is a (possibly empty) sum of simple roots for every β ∈ Σp(k). A highest

root α+
p (k) for Σp(k) is defined by a similarly way. Lowest roots and highest roots always

exist and are unique if Σp(k) is not empty ([4, Proposition 1.4.2]).

Lemma 8.8 (Lemma 1.4.5 of [4]) Let k be a positive integer. Then Σp(k) is not empty
if and only if 1 6 k 6 kp, where kp is the number defined in (8.1).

Lemma 8.9 (Lemma 1.4.6 of [4]) Suppose that 1 6 k 6 kp. Let wp be the longest element
of Wp, i.e., wp∆p = −∆p. Then we have α−

p (1) = αp and wpα
−
p (k) = α+

p (k).

For a positive integer k with Σp(k) 6= ∅, we write

α±
p (k)

∨ = kα∨
p + γ±p (k)

∨ (γ±p (k)
∨ ∈ Q+(∆∨

p )),

where Q+(∆∨
p ) =

∑r
j=1 Z>0α

∨
j . Then the heights ht γ+p (k)

∨ and ht γ−p (k)
∨ are non-

negative, since they must be written as a combination of simple roots α∨
j ∈ ∆∨

p with
nonnegative integer coefficients. We define

~±k = ht γ±p (k)
∨ = 〈ρ, γ±p (k)∨〉 (8.2)

for 1 6 k 6 kp. For an element α ∈ Σp(h), the height ht (α−kαp)
∨ is called the (p-)level

of α. In this terminology, ~+k (resp. ~−k ) is the highest (resp. lowest) level of Σp(k). Note
that γ−p (1) = 0, since α−

p (1) = αp.

Lemma 8.10 For every 1 6 k1 < k2 6 kp, we have ~+k1 6 ~+k2 .
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Proof. We have α+
p (k2)

∨ − α+
p (k1)

∨ ∈ Φ∨ by Corollary 1.2 of [10] and

α+
p (k2)

∨ − α+
p (k1)

∨ = (k2 − k1)α
∨
p + (γ+p (k2)

∨ − γ+p (k1)
∨).

Therefore γ+p (k2) − γ+p (k1) ∈ Q+(∆p), since k2 − k1 > 0 and γ+p (k) ∈ Q+(∆p). This

implies the result by definition of ~+k . �

Lemma 8.11 Let wp be the longest element of Wp. Then we have

γ−p (k) − wpγ
+
p (k) = kγ+p (1).

In particular, wpγ
+
p (1) = −γ+p (1) and γ+p (k)− wpγ

−
p (k) = k γ+p (1).

Proof. We have wpα
−
p (k)

∨ = α+
p (k)

∨ = kα∨
p + γ+p (k)

∨. Therefore

α−
p (k)

∨ = wp(wpα
−
p (k)

∨) = kwpα
∨
p + wpγ

+
p (k)

∨

= kα+
p (1)

∨ + wpγ
+
p (k)

∨ = kα∨
p + kγ+p (1)

∨ +wpγ
+
p (k)

∨

Hence kα∨
p + γ−p (k)

∨ = kα∨
p + kγ+p (1)

∨ + wpγ
+
p (k)

∨. This implies the assertion. �

Lemma 8.12 Let cp be the number of (2.2). Then we have

cp = 2 + ~+1 = 1 + htα+
p (1)

∨ = 1 + ht (wpα
∨
p ),

where wp is the longest element of Wp.

Proof. We have

cp = 2〈λp − ρp, α
∨
p 〉 = 2− 〈2ρp, α∨

p 〉 = 2− 〈ρ− wpρ, α
∨
p 〉

= 1 + 〈wpρ, α
∨
p 〉 = 1 + 〈ρ,wpα

∨
p 〉 = 1 + 〈ρ, α∨

p + γ+p (1)
∨〉

= 2 + 〈ρ, γ+p (1)∨〉 = 2 + ~+1 .

Then the second (resp. the third) equality of Lemma 8.12 follows from definition of ~+1
(resp. Lemma 8.9). �

Lemma 8.13 Let k > 1. We have 2h = kcp +m if 2〈ρp, α∨〉 = m ∈ Z for α ∈ Σp(k, h).
In particular if α ∈ Σp(k, h) for h < kcp/2 (resp. h > kcp/2), 〈ρp, α∨〉 < 0 (resp. > 0).

Proof. Because of cpλp = 2ρ− 2ρp from the proof of Lemma 4.1 of [13], we have

2htα∨ − 〈λp, α
∨〉 cp = 2htα∨ − 〈2ρ− 2ρp, α

∨〉 = 2 〈ρp, α∨〉.
This implies the assertion by definition of Σp(k, h). �

Lemma 8.14 Let 1 6 k 6 kp and let ~±k be numbers in (8.2). We have

~+k + ~−k = k ~+1 .

Therefore we have

k + 1 6 htα∨ 6 kcp − k − 1 (k > 2) and 1 6 htα∨ 6 cp − 1 (k = 1)

for α ∈ Σp(k) if cp > 3, and ~+k 6 h+k+1 6 (k + 1)~+1 − 1.

Remark If cp = 2, α+
p (1) = α−

p (1) = αp by Lemma 8.12. Hence Φ is of type A1, and
the case k > 2 does not appear.

Proof. We note that

ht (wpγ
∨) = −ht γ∨

for every γ∨ ∈ Q+(∆∨
p ). In fact, we have

ht γ∨ = 〈ρp, γ∨〉 = 〈wpρp, wpγ
∨〉 = −〈ρp, wpγ

∨〉 = −ht (wpγ
∨)
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for γ∨ ∈ Q+(∆∨
p ), since 〈ρp, α∨

i 〉 = 1 for i 6= p from the proof of Lemma 4.1 in [13].
Therefore we have

k + ~−k = ht (α−
p (k))

∨ = ht (wpα
+
p (k)

∨) = ht (wp(kα
∨
p + γ+p (k)

∨))

= k ht (wpα
∨
p ) + ht (wpγ

+
p (k)

∨) = k ht (wpα
∨
p )− ht (γ+p (k))

∨

= k(1 + ~+1 )− ~+k .

Here we used Lemmas 8.11 and 8.12. This implies Lemma 8.14. �

Lemma 8.15 Let 1 6 k 6 kp. Then Σp(k) is divided into the disjoint union

Σp(k) =

Mk⊔

m=1

Lm(k)

satisfying the following conditions:

(1) α±
p (k) ∈ L1(k) and |L1(k)| = htα+

p (k)
∨ − htα−

p (k)
∨ + 1,

(2) |L1(k)| > |L2(k)|, |L3(k)|, . . . , |LMk
(k)| > 1,

(3) we have

Lm(k)∨ = {βm(k)∨} ∪ {βm(k)∨ +

J∑

j=1

αm,j(k)
∨ | 1 6 J 6 |Lm(k)| − 1}

for some βm(k) ∈ Σp(k) (1 6 m 6 M) with β1(k) = α−
p (k), and for some

αm,j(k) ∈ ∆p (1 6 m 6 Mk, 1 6 j 6 |Lm(k)| − 1),
(4) k + ~−k = ht β1(k)

∨ < htβ2(k)
∨ 6 htβ3(k)

∨ 6 · · · 6 ht βM (k)∨ 6 kcp/2,

(5) ht β̃m(k)∨ = kcp − htβ∨
m (1 6 m 6 Mk), where

β̃m(k)∨ = β∨
m +

|Lm(k)|−1∑

j=1

αm,j(k)
∨.

Proof. At first we note that the problem is reduced to the cases of irreducible root
systems with Σp(1) by using results of section 1.4 of [4]. Then we see that the assertions
of Lemmas 8.4 and 8.15 for Σp(1) hold by constructing explicitly the required disjoint
union directly. See Appendix 1. �

9. Proof of Propositions 6.6 and 6.7

9.1. Proof of Proposition 6.6.

Lemma 9.1 Let a, b be real numbers satisfying a 6 b. Then
∣∣∣∣

ξ(s+ a)

ξ(s + b+ 1)

∣∣∣∣ < 1 for ℜ(s) > −a+ b

2

and ∣∣∣∣
ξ(s+ a)

ξ(s+ b+ 1)

∣∣∣∣ = 1 for ℜ(s) = −a+ b

2
.

Proof. This is equivalent to |ξ(s+(a−b−1)/2)| < |ξ(s−(a−b−1)/2)| for ℜ(s) > 1/2 by
shifting s+(a+ b+1)/2 to s, and it holds by applying Theorem 4 of [14] to F (s) = ξ(s)
and c = (a − b − 1)/2. The second statement immediately follows from the functional
equation for ξ(s). �

Now we prove Proposition 6.6. We recall

X‡
p(s) = Xp,id(s) =

∏

α∈Φ+\Φ+
p

ξ(〈λp, α
∨〉s+ htα∨ + 1). (9.1)
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by Lemma 6.3. From (5.3) and (9.1), we have

Xp,w(s)

X‡
p(s)

=
∏

α∈(Φ+\Φ+
p )∩w−1Φ−

ξ(〈λp, α
∨〉s+ htα∨)

ξ(〈λp, α∨〉s+ htα∨ + 1)
. (9.2)

Using the notation of Lemma 8.15, we define

Lm(k)w = Lm(k) ∩ w−1Φ−

and put Λw(k) = {m | 1 6 m 6 Mk, Lm(k)w 6= ∅}. In addition, we define

hm(k) = max{htα∨ | α ∈ Lm(k)}, hm,w(k) = min{htα∨ | α ∈ Lm(k)w}.
for m ∈ Λw(k). Note that hm(k) is attained by one of α ∈ Lm(k)w by Lemma 8.2. Then
the right-hand side of (9.2) equals

kp∏

k=1

∏

m∈Λw(k)

hm(k)∏

hm=hm,w(k)

ξ(ks+ hm)

ξ(ks+ hm + 1)
=

kp∏

k=1

∏

m∈Λw(k)

ξ(ks+ hm,w(k))

ξ(ks+ hm(k) + 1)

by Lemma 8.2 and Lemma 8.15 (3). Now, by Lemma 9.1, we have
∣∣∣∣
ξ(ks+ hm,w(k))

ξ(ks+ hm(k) + 1)

∣∣∣∣ < 1 for ℜ(s) > −hm,w(k) + hm(k)

2k
.

for every m ∈ Λw(k). We have

hm,w(k) + hm(k)

2k
>

cp
2
,

for every m ∈ Λw(k), since hm,w(k) > htβm(k)∨ = kcp − hm(k) by Lemma 8.15 (5).
Also, we obtain ∣∣∣∣

ξ(ks+ hm,w(k))

ξ(ks+ hm(k) + 1)

∣∣∣∣ < 1 for ℜ(s) = −cp
2
.

unless hm,w(k) + hm(k) = kcp. If hm,w(k) + hm(k) = kcp,∣∣∣∣
ξ(ks+ hm,w(k))

ξ(ks+ hm(k) + 1)

∣∣∣∣ = 1 for ℜ(s) = −cp
2
.

Now we complete the proof of Proposition 6.6 �

Thus, we see that Proposition 6.6 follows from Lemma 8.15 whose the essential part
is due to Lemmas 8.1 and explicit descriptions of root systems.

9.2. Proof of Proposition 6.7. We have

Dp(s) =
∞∏

k=1

∏

h6(kcp+1)/2

ξ(ks + h)Np(k,h−1)
∏

h>(kcp+1)/2

ξ(ks+ h)Np(k,h).

by Lemma 8.6. Hence we have

X‡
p(s)

Dp(s)
=

∞∏

k=1

∏

h>(kcp+1)/2

ξ(ks+ h)Np(k,h−1)−Np(k,h). (9.3)

Note that Np(k, h−1)−Np(k, h) > 0 by Lemma 8.3. (This non-negativity should be hold
by the construction of Mp(k, h).) It is well-known that ξ(s) 6= 0 for ℜ(s) > 1. Therefore,
ξ(ks + h) 6= 0 for ℜ(s) > (1 − h)/k. On the other hand, we have (1 − h)/k 6 −cp/2,
since kcp and h are both integers. If kcp is odd, h > (kcp + 1)/2 implies (1 − h)/k 6

−cp/2 − 1/(2k) < −cp/2. Hence X‡
p(s)/Dp(s) 6= 0 for ℜ(s) > −cp/2. If kcp is even,

h > (kcp + 1)/2 implies (1 − h)/k 6 −cp/2. It also derives X‡
p(s)/Dp(s) 6= 0 for

ℜ(s) > −cp/2. We complete the proof of Proposition 6.7. �

Thus, Proposition 6.7 is a simple consequence of Lemma 8.6. As well as Proposition
6.6, the essential part of Lemma 8.6 is due to Lemmas 8.1 and 8.4.
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10. Proof of Proposition 6.5

The most essential part of the proof of Proposition 6.5 is the volume formula (Theo-

rem) of [23, section 4.7] which will be used in the proof of Lemma 10.3 below.

Lemma 10.1 Let w ∈ Wp. If |w−1∆ \ Φp| = 1, the set Φ+ \ Φ+
p equals to either

(Φ+ \ Φ+
p ) ∩ w−1Φ+ or (Φ+ \ Φ+

p ) ∩ w−1Φ−.

Proof. We show that Φ+∩w(Φ+ \Φ+
p ) = w(Φ+ \Φ+

p ) or Φ−∩w(Φ+ \Φ+
p ) = w(Φ+ \Φ+

p )
if |∆ \ wΦp| = 1. Suppose |∆ \ wΦp| = 1, and denote by αw the only one simple root
in ∆ \ wΦp. Then αw belongs to Φ+ ∩ w(Φ+ \Φ+

p ) or Φ+ ∩ w(Φ− \Φ−
p ), and hence αw

belongs to Φ+ ∩w(Φ+ \ Φ+
p ) or −αw belongs to Φ− ∩ w(Φ+ \ Φ+

p ).

Put ∆+
w = ∆ ∩ wΦ+

p and ∆−
w = ∆ ∩ wΦ−

p so that

∆ = ∆+
w ∪∆−

w ∪ {αw}
(disjoint). Then we claim ∆+

w = ∆ ∩ w∆p. In fact ∆+
w ⊃ ∆ ∩ w∆p is obvious. An

arbitrary α ∈ ∆+
w has the form

α =
∑

j 6=p

njwαj (nj > 0, wαj ∈ Φ− ∪∆),

since w∆p ⊂ Φ− ∪ ∆. The right-hand side decomposes into two parts according to
wαj ∈ Φ− or wαj ∈ ∆:

α =
∑

j 6=p

wαj∈Φ−

njwαj +
∑

j 6=p
wαj∈∆

njwαj .

We note that the left-hand side is a simple root. Therefore, α should be one of ∆∩w∆p,
and hence ∆+

w = ∆ ∩w∆p.
Now we prove the assertion of the lemma by using a different way according to two

cases wαp ∈ Φ+ or wαp ∈ Φ−.
First we deal with the case wαp ∈ Φ+. Assume αw ∈ Φ+ ∩w(Φ+ \Φ+

p ). Then we will

have a contradiction unless Φ− ∩w(Φ+ \Φ+
p ) = ∅. If Φ− ∩w(Φ+ \Φ+

p ) 6= ∅, there exists
at least one simple root αk such that

−αk ∈ Φ− ∩ w(Φ+ \ Φ+
p ). (10.1)

Actually we have
∑

i

aiw
−1(−αi) = w−1(−

∑

i

aiαi) = bpαp +
∑

j 6=p

bjαj (bp > 0, ai, bj > 0)

for −∑i aiαi ∈ Φ− ∩w(Φ+ \ Φ+
p ). Hence we have

w−1(−αk) = b′pαp +
∑

j 6=p

b′jαj (b′p > 0, , b′j > 0)

for at least one αk, since w−1(−αi) ∈ Φ.
The simple root αk belongs to one of ∆+

w , ∆−
w or {αw}. If αk ∈ ∆+

w , we have αk ∈
∆ ∩ w∆p ⊂ Φ+ ∩ wΦ+. This contradicts (10.1). If αk ∈ ∆−

w , we have αk ∈ Φ+ ∩ wΦ−
p .

This contradicts (10.1). If αk = αw, we have αk = αw ∈ Φ+∩w(Φ+\Φ+
p ) by assumption.

This also contradicts (10.1). Hence Φ−∩w(Φ+\Φ+
p ) = ∅ which implies Φ+∩w(Φ+\Φ+

p ) =

w(Φ+ \ Φ+
p ).

On the other hand, we have Φ− ∩w(Φ+ \Φ+
p ) = w(Φ+ \Φ+

p ) if we assume that −αw

belongs to Φ− ∩w(Φ+ \ Φ+
p ) by a way similar to the above.

Finally we deal with the case wαp ∈ Φ−. We show that (Φ+\Φ+
p )∩w−1Φ− = (Φ+\Φ+

p )

by induction on k for Σp(k) if wαp ∈ Φ− (i.e. αp ∈ (Φ+ \ Φ+
p ) ∩ w−1Φ−). By Lemma

8.1, we have Σp(1) ⊂ (Φ+ \ Φ+
p ) ∩ w−1Φ− if wαp ∈ Φ−. Suppose that

∑
p(k − 1) ⊂
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(Φ+ \ Φ+
p ) ∩ w−1Φ− for 1 < k 6 kp. Let α−

p (k) be the lowest element of Σp(k). Then
there exists β ∈ Σp(k − 1) such that

α−
p (k)

∨ = β∨ + α∨
p ,

since (α−
p (k)

∨ − α∨
j )

∨ is not a root for any j 6= p by the lowest property of α−
p (k)

∨. We

have wαp ∈ Φ− by the first assumption and wβ ∈ Φ− by the assumption of induction.
Therefore wα−

p (k) = (wβ∨ + wα∨
p )

∨ ∈ Φ−, i.e. α−
p (k) ∈ (Φ+ \ Φ+

p ) ∩ w−1Φ−. Hence

Σp(k) ⊂ (Φ+ \ Φ+
p ) ∩ w−1Φ− by Lemma 8.1. �

Lemma 10.2 We have

{w ∈ W‡
p | |

(
w−1∆

)
\ Φp| = 1} = {w ∈ Wp | ∆p ⊂ w−1(∆p ∪ Φ−

p )}.
Proof. At first we prove the the left-hand side is contained in the right-hand side. We
have

{w ∈ W‡
p | |

(
w−1∆

)
\ Φp| = 1} = {w ∈ Wp | lp(w) = 0, ∆p ⊂ w−1(∆ ∪ Φ−)}.

by definition of W
‡
p in Lemma 6.3. Recall that lp(w) depends only on the coset wWp

(Lemma 6.1). Let W p be the set of minimal coset representatives of W/Wp. If vp ∈ W p,
it implies vpΦ+

p ⊂ Φ+. Thus lp(w) = 0 is equivalent to vpΦ+ = Φ+, and also vp = id.

Hence W‡
p ⊂ Wp. On the other hand, if w ∈ Wp, ∆p∩w−1(∆∪Φ−) = ∆p∩w−1(∆p∪Φ−

p ),

and |
(
w−1∆

)
\ Φp| = 1 is equivalent to

(
w−1∆

)
\ Φp = {w−1αp}. Hence we obtain

the desired consequence. The opposite inclusion is obtained by tracing back the above
argument. �

Lemma 10.3 Let Cp,w be real numbers defined in (5.4). Define real numbers Dp,w by

1

Dp,w
= 2|∆p∩w−1Φ+|

∏

α∈(w−1∆)∩(Φp\∆p)

(htα∨ − 1)

×
∏

α∈Φ+
p \∆p

(htα∨ + δα,w)(htα
∨ + δα,w − 1),

(10.2)

where δα,w is defined in (5.2). Then

∑

w∈W
‡
p

|(w−1∆)\Φp|=1

1

〈λp, α∨
w〉

Cp,wDp,w 6= 0, (10.3)

where αw is the only one element of (w−1∆) \ Φp.

Proof. We first prove

Res
λ=ρ

ωΦ
∆(λ)

=
∑

w∈W

∆⊂w−1(∆∪Φ−)

ζ̂(2)−|∆∩w−1Φ−|
∏

α∈(w−1∆)\∆

1

htα∨ − 1

∏

α∈(Φ+\∆)∩w−1Φ−

ζ̂(htα∨)

ζ̂(htα∨ + 1)

(10.4)
holds for an arbitrary reduced root system Φ (which is not necessary irreducible) and
its fundamental system ∆. If Φ is not irreducible and its irreducible decomposition
is Φ = Φ1 ∐ · · · ∐ Φm, we find that Res

λ=ρ
ωΦ
∆(λ) =

∏m
i=1 Res

λ=ρi
ωΦi

∆i
(λ), ∆i = ∆ ∩ Φi,

ρi =
1
2

∑
α∈Φ+∩Φi

α and (10.4) holds for each component, since the Weyl group W (Φ) of
Φ decomposes into

W (Φ) = W (Φ1)× · · · ×W (Φm).

We apply (10.4) to Φp, ∆p and ρp later.
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We have

Res
λ=ρ

ωΦ
∆(λ) = Res

s=0
ωΦ
∆,p(s)

by (2.3). Therefore, it is enough to show that Res
s=0

ωΦ
∆,p(s) equals to the right-hand side

in (10.4). By (2.8) in [13] we have

ωΦ
∆,p(s) =

∑

w∈Wp

ζ̂(2)−|∆p∩w−1Φ−|
∏

α∈(w−1∆)∩(Φp\∆p)

1

htα∨ − 1

∏

α∈(Φ+
p \∆p)∩w−1Φ−

ζ̂(htα∨)

ζ̂(htα∨ + 1)

×
∏

α∈(w−1∆)\Φp

1

〈λp, α∨〉s+ htα∨ − 1

∏

α∈(Φ+\Φ+
p )∩w−1Φ−

ζ̂(〈λp, α
∨〉s+ htα∨)

ζ̂(〈λp, α∨〉s+ htα∨ + 1)
.

Here we note that

(1) ∆ ∩ ((w−1∆) \ Φp) = {αp} ∩ (w−1∆) =

{
{αp}, if αp ∈ w−1∆,

∅, otherwise,

and

(2) ∆ ∩ ((Φ+ \Φ+
p ) ∩ w−1Φ−) =

{
{αp}, if αp ∈ w−1Φ−,

∅, otherwise.

In addition, (1) and (2) do not occur simultaneously. Using these facts together with
the fact that 〈λp, α

∨
p 〉 = 1, we obtain that Res

s=0
ωΦ
∆,p(s) is

∑

w∈Wp

αp∈w−1∆

ζ̂(2)−|∆p∩w−1Φ−|
∏

α∈(w−1∆)∩(Φp\∆p)

1

htα∨ − 1

∏

α∈(Φ+
p \∆p)∩w−1Φ−

ζ̂(htα∨)

ζ̂(htα∨ + 1)

× 1

〈λp, α∨
p 〉

∏

α∈(w−1∆)\(Φp∪{αp})

1

htα∨ − 1

∏

α∈(Φ+\Φ+
p )∩w−1Φ−

ζ̂(htα∨)

ζ̂(htα∨ + 1)

+
∑

w∈Wp

αp∈w−1Φ−

ζ̂(2)−|∆p∩w−1Φ−|

ζ̂(2)〈λp, α∨
p 〉

∏

α∈(w−1∆)∩(Φp\∆p)

1

htα∨ − 1

∏

α∈(Φ+
p \∆p)∩w−1Φ−

ζ̂(htα∨)

ζ̂(htα∨ + 1)

×
∏

α∈(w−1∆)\Φp

1

htα∨ − 1

∏

α∈(Φ+\Φ+
p ∪{αp})∩w−1Φ−

ζ̂(htα∨)

ζ̂(htα∨ + 1)

=
∑

w∈Wp

αp∈w−1∆

ζ̂(2)−|∆∩w−1Φ−|
∏

α∈(w−1∆)\∆

1

htα∨ − 1

∏

α∈(Φ+\∆)∩w−1Φ−

ζ̂(htα∨)

ζ̂(htα∨ + 1)

+
∑

w∈Wp

αp∈w−1Φ−

ζ̂(2)−|∆∩w−1Φ−|
∏

α∈(w−1∆)\∆

1

htα∨ − 1

∏

α∈(Φ+\∆)∩w−1Φ−

ζ̂(htα∨)

ζ̂(htα∨ + 1)
.

Hence we obtain (10.4).

We recall Cp,w in (5.4). We claim

∑

w∈W
‡
p

|(w−1∆)\Φp|=1

1

〈λp, α∨
w〉

Cp,wDp,w =
∏

α∈Φ+
p

ζ̂(htα∨ + 1) · Res
λ=ρp

ω
Φp

∆p
(λ). (10.5)
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We justify this as follows. We have

Cp,wDp,w = ζ̂(2)|∆p∩w−1Φ+|
∏

α∈(w−1∆)∩(Φp\∆p)

1

htα∨ − 1

∏

α∈Φ+
p \∆p

ζ̂(htα∨ + δα,w).

by definitions of Cp,w and Dp,w. Therefore
∑

w∈W
‡
p

|(w−1∆)\Φp|=1

1

〈λp, α∨
w〉

Cp,wDp,w

=
∑

w∈W
‡
p

|(w−1∆)\Φp|=1

ζ̂(2)|∆p∩w−1∆|

〈λp, α∨
w〉

∏

α∈(w−1∆)∩(Φp\∆p)

1

htα∨ − 1

×
∏

α∈(Φ+
p \∆p)∩w−1Φ+

ζ̂(htα∨ + 1)
∏

α∈(Φ+
p \∆p)∩w−1Φ−

ζ̂(htα∨),

since |∆p ∩ w−1Φ+| = |∆p ∩ w−1∆| if w ∈ Wp. If w ∈ Wp, we have

(w−1∆) ∩ (Φp \∆p) = (w−1∆p) \∆p; ∆p ∩ w−1∆ = ∆p ∩ w−1∆p.

Moreover, if w ∈ Wp, we have

(Φ+
p \∆p) ∩ w−1Φ+ = (Φ+

p \∆p) ∩ w−1Φ+
p

(Φ+
p \∆p) ∩ w−1Φ− = (Φ+

p \∆p) ∩ w−1Φ−
p ,

since

(Φ+
p \∆p) ∩ w−1Φ+ =

(
(Φ+

p \∆p) ∩ w−1Φ+
p

)
∪
(
(Φ+

p \∆p) ∩ w−1(Φ+ \ Φ+
p )
)

(Φ+
p \∆p) ∩ w−1Φ− =

(
(Φ+

p \∆p) ∩ w−1Φ−
p

)
∪
(
(Φ+

p \∆p) ∩ w−1(Φ− \ Φ−
p )
)
,

and
(Φ+

p \∆p) ∩ w−1(Φ+ \ Φ+
p ) = ∅, (Φ+

p \∆p) ∩ w−1(Φ− \Φ−
p ) = ∅

for w ∈ Wp. Hence, by Lemma 10.2 and the fact that 〈λp, w
−1α∨

p 〉 = 〈wλp, α
∨
p 〉 = 1 for

w ∈ Wp, we obtain
∑

w∈W
‡
p

|(w−1∆)\Φp|=1

1

〈λp, α∨
w〉

Cp,wDp,w

=
∑

w∈Wp

∆p⊂w−1(∆p∪Φ−
p )

ζ̂(2)|∆p∩w−1∆p|

〈λp, w−1α∨
p 〉

∏

α∈(w−1∆p)\∆p

1

htα∨ − 1

×
∏

α∈(Φ+
p \∆p)∩w−1Φ+

p

ζ̂(htα∨ + 1)
∏

α∈(Φ+
p \∆p)∩w−1Φ−

p

ζ̂(htα∨)

=
∑

w∈Wp

∆p⊂w−1(∆p∪Φ−
p )

ζ̂(2)|∆p∩w−1∆p|
∏

α∈(w−1∆p)\∆p

1

htα∨ − 1

×
∏

α∈(Φ+
p \∆p)∩w−1Φ+

p

ζ̂(htα∨ + 1)
∏

α∈(Φ+
p \∆p)∩w−1Φ−

p

ζ̂(htα∨).

With this formula, we obtain (10.5) by applying (10.4) to Φp, ∆p and ρp.
By the theorem of [23, section 4.7], the right-hand side of (10.5) is positive, in particu-

lar, it is not equal to zero. In fact, it should be a product of special values of the Riemann
zeta function and volumes of several (truncated) domains corresponding to irreducible
components of Φp. Hence (10.3) follows. We complete the proof of Lemma 10.3. �
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Proof of Proposition 6.5. Using real numbers Cp,w and Dp,w defined in (5.4) and
(10.2), respectively, we have

Qp,w(s) = Cp,w

∏

v∈Wp
v 6=w


2|∆p∩v−1Φ+|

∏

α∈(v−1∆)\∆p

(
〈λp, α

∨〉s+ htα∨ − 1
)

×
∏

α∈Φ+\∆p

(
〈λp, α

∨〉s + htα∨ + δα,v

)(
〈λp, α

∨〉s+ htα∨ + δα,v − 1
)



= Cp,w

∏

v∈Wp
v 6=w


D−1

p,v

∏

α∈(v−1∆)\Φp

(
〈λp, α

∨〉s+ htα∨ − 1
)

×
∏

α∈Φ+\Φ+
p

(
〈λp, α

∨〉s+ htα∨ + δα,v

)(
〈λp, α

∨〉s+ htα∨ + δα,v − 1
)



= Q∗
p(s)


Cp,wDp,w

∏

α∈(w−1∆)\Φp

1

〈λp, α∨〉s + htα∨ − 1

×
∏

α∈Φ+\Φ+
p

1

(〈λp, α∨〉s + htα∨ + δα,w)(〈λp, α∨〉s + htα∨ + δα,w − 1)


 ,

where Q∗
p(s) is the polynomial

Q∗
p(s) =

∏

v∈Wp


D−1

p,v

∏

α∈(v−1∆)\Φp

(
〈λp, α

∨〉s+ htα∨ − 1
)

×
∏

α∈Φ+\Φ+
p

(
〈λp, α

∨〉s+ htα∨ + δα,v

)(
〈λp, α

∨〉s+ htα∨ + δα,v − 1
)

 .

In particular, we have

Q‡
p(s) =

∑

v∈W‡
p

Qp,v(s)

= Q∗
p(s)

∑

v∈W‡
p


Cp,vDp,v

∏

α∈(v−1∆)\Φp

1

〈λp, α∨〉s+ htα∨ − 1

×
∏

α∈Φ+\Φ+
p

1

(〈λp, α∨〉s+ htα∨ + δα,v)(〈λp, α∨〉s + htα∨ + δα,v − 1)


 .

Hence we have

Qp,w(s)

Q‡
p(s)

=

Cp,wDp,w

∏

α∈(w−1∆)\Φp

1

〈λp, α∨〉s+ htα∨ − 1

∑

v∈W‡
p


Cp,vDp,v

∏

α∈(v−1∆)\Φp

1

〈λp, α∨〉s + htα∨ − 1

(
1 + o(1)

)



as |s| → ∞. Therefore |Qp,w(s)/Q
‡
p(s)| = o(1) as |s| → ∞ for every w ∈ (W+

p ∪W0
p)\W‡

p

by Lemmas 10.1 and 10.3. We complete the proof of Proposition 6.5. �
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11. Proof of Proposition 6.9

Write s = σ + it (σ, t ∈ R). By Lemma 6.3, we have

Ep(s) = X‡
p(s)[Q

‡
p(s) + Vp(s)]

with

Vp(s) =
∑

w∈W+
p \W‡

p

Qp,w(s) ·
Xp,w(s)

X‡
p(s)

+
1

2

∑

w∈W0
p

Qp,w(s) ·
Xp,w(s)

X‡
p(s)

.

Thus, it suffices to prove Q‡
p(s) + Vp(s) 6= 0 in a left half plane, since X‡

p(s) is a finite
product of zeta functions.

From the proof of Proposition 6.6, we have

Xp,w(s)

X‡
p(s)

=

kp∏

k=1

∏

m∈Λw(k)

ξ(ks+ hm,w(k))

ξ(ks + hm(k) + 1)
.

Using the functional equation ξ(s) = ξ(1− s), we have

ξ(ks+ a)

ξ(ks+ b+ 1)
=

ξ((1− ks)− a)

ξ((1− ks)− b− 1)

= π
a−b−1

2
(ks + a)(ks + a− 1)

(ks + b)(ks+ b+ 1)

Γ((1− ks)/2 − a/2)

Γ((1− ks)/2− (b+ 1)/2)

ζ((1− ks)− a)

ζ((1− ks)− b− 1)
.

Because of ζ(s)−1 =
∑∞

n=1 µ(n)n
−s as σ → ∞, we have

ζ((1− ks)− a)

ζ((1− ks)− b− 1)
= 1 +

∞∑

n=2

Cn(k; a, b)

n−s
.

Using the Stirling formula

Γ(z) =
√
2π zz−

1
2 e−z

(
1 +

1

12z
+

1

288z2
+ · · ·+ 1

cnzn
+O

(
|z|−n−1

))

for | arg z| < π − ǫ, we have

Γ(z + λ)

Γ(z)
= zλ

(
1 +

a1(λ)

z
+ · · ·+ an(λ)

zn
+O

(
|z|−n−1

))

as |z| → ∞ with | arg z| < π−ǫ, where aj(x) ∈ R[x] are polynomials of x and the implied
constant depends on λ and ǫ. Using the above facts, we obtain

ξ(ks+ a)

ξ(ks+ b+ 1)
= (2π/k)

a−b−1
2 (−s)−

a−b−1
2

(
1 +

c1(a, b)

s
+ · · ·+ cn(a, b)

sn
+O

(
|s|−n−1

))

×
(
1 +

∞∑

ν=2

Cν(k; a, b)

ν−s

)

as σ → −∞ for any fixed n > 0, where cj(a, b) are real numbers depending on real

numbers a, b. Applying the result to each term of Xp,w(s)/X
‡
p(s), we obtain

Xp,w(s)

X‡
p(s)

= Kp,w(−s)
1
2
Ap,w(k)

(
1 +

c1(w)

s
+ · · ·+ cn(w)

sn
+O

(
|s|−n−1

))
(
1 +

∞∑

ν=2

Cν(w)

ν−s

)

for some real numbers c1(w), · · · , cn(w), where

Ap,w =

kp∑

k=1

∑

m∈Λw(k)

(hm(k)− hm,w(k) + 1), (11.1)

Kp,w = (2π)−
1
2
Ap,w exp


1

2

kp∑

k=1

log k
∑

m∈Λw(k)

(hm(k) − hm,w(k) + 1)


 (> 0)
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Note that Ap,w are positive integers, since hm(k) − hm,w(k) > 0 for every 1 6 k 6 kp
and m ∈ Λw(k) by definition. Therefore, for sufficiently large n, we have

Vp(s) =
∑

w∈(W+
p ∪W0

p)\W
‡
p

K ′
p,w(−s)

1
2
Ap,wQp,w(s)

×
(
1 +

c1(w)

s
+ · · ·+ cn(w)

sn
+O

(
|s|−n−1

))
(
1 +

∞∑

ν=2

Cν(w)

ν−s

)

as σ → −∞, where K ′
p,w = Kp,w for w ∈ W+

p \W‡
p and K ′

p,w = Kp,w/2 for w ∈ W0
p.

We write Q‡
p(s) + Vp(s) as

Q‡
p(s) + Vp(s) =

∞∑

µ=1

1

µ−s
Qµ(s

1/2)

(
1 +

n∑

k=1

ck(µ)

sk/2
+O

(
|s|−(n+1)/2)

)
,

where Qµ(s) (m = 1, 2, 3, · · · ) are polynomials with M =: max
µ>1

degQµ < ∞. Let µ0 be

the smallest positive integer such that degQm0 = M . Then

Q‡
p(s) + Vp(s) =

1

µ−s
0

Qµ0(s
1/2)

[(
1 +

n∑

k=1

ck(µ0)

sk/2
+O

(
|s|−(n+1)/2)

)

+

µ0−1∑

µ=1

1

(µ/µ0)−s

Qµ(s
1/2)

Qµ0(s
1/2)

(
1 +

n∑

k=1

ck(µ)

sk/2
+O

(
|s|−(n+1)/2)

)

+
∞∑

µ=µ0+1

1

(µ/µ0)−s

Qµ(s
1/2)

Qµ0(s
1/2)

(
1 +

n∑

k=1

ck(µ)

sk/2
+O

(
|s|−(n+1)/2)

)
 .

We can take σ0 > 0 such that

∞∑

µ=µ0+1

1

(µ/µ0)−σ

∣∣∣∣∣
Qµ(s

1/2)

Qµ0(s
1/2)

∣∣∣∣∣

∣∣∣∣∣1 +
n∑

k=1

ck(µ)

sk/2
+O

(
|s|−(n+1)/2)

∣∣∣∣∣ <
1

2
.

holds for ℜ(s) < −σ0 and |ℑ(s)| > 1. On the other hand

µ0−1∑

µ=1

1

(µ/µ0)−σ

∣∣∣∣∣
Qµ(s

1/2)

Qµ0(s
1/2)

∣∣∣∣∣

∣∣∣∣∣1 +
n∑

k=1

ck(µ)

sk/2
+O

(
|s|−(n+1)/2)

∣∣∣∣∣ = O(µ−σ
0 |s|−1/2)

as |ℑ(s)| → ∞ in ℜ(s) < −σ0 by the choice of µ0. Hence we have

Q‡
p(s) + Vp(s) =

Qµ0(s
1/2)

µ−s
0

[
1 + Θ(1/2) +O(µ−σ

0 |s|−1/2)
]

for ℜ(s) < −σ0 and |ℑ(s)| > R, where R is a large positive number and Θ(1/2) means
a function whose absolute value is bounded by 1/2. Therefore

εp(s) =
X‡

p(s)

Dp(s)

1

Rp(s)

(
Q‡

p(s) + Vp(s)
)
=

X‡
p(s)

Dp(s)

Q‡
p(s)

Rp(s)

Qµ0(s
1/2)

Q‡
p(s)

µs
0 [1 + g(s)] ,

and |g(s)| < 1 as |s| → ∞ with σ < κ log(|t|+10). This formula implies Proposition 6.9
by making κ > 0 large if necessary. �

12. Proof of Proposition 7.1

We need the following lemma.
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Lemma 12.1 Let σ0 > 0, T > 10. Let 0 6 α < β < σ0, where α and β can be depending
on T . Let f(s) be an analytic function, real for real, regular for σ > α, except at finitely
many poles on the real line; let

|ℜf(σ + it)| > m > 0

and
|f(σ′ + it′)| 6 Mσ,t (σ′

> σ, 1 6 t′ 6 t).

Then, if T is not the ordinate of a zero of f(s)

| arg f(σ + iT )| 6 π

log(σ0 − α)/(σ0 − β)

(
logMα,T+2 + log

1

m

)
+

3

2
π

for σ > β.

Proof. We readily prove this by the similar method as in [22, p. 213]. �

Proof of Proposition 7.1. It suffices to show the proposition for large T , since we shall
make T large if necessary. From the proof of Proposition 6.9, we have

Q‡
p(s) + Vp(s) = Q(s1/2)µs

0 (1 + g(s))

for some positive integer µ0 and a polynomial Q(s) = Qµ0(s) such that

|g(−σL + it)| < 1 as |t| → ∞ (12.1)

for some fixed σL > 0, and

|g(s)| < 1 as |s| → ∞ with ℜ(s) < −κ log(|ℑ(s)|+ 10). (12.2)

Thus, from this, we have

εp(s) =
X‡

p(s)

Dp(s)

Q‡
p(s)

Rp(s)
· Q(s1/2)

Q‡
p(s)

µs
0 (1 + g(s)) =

X‡
p(s)

Dp(s)

Q‡
p(s)

Rp(s)
· (1 + rp(s))

where rp(s) is of (6.1). Recall the bound (6.2) for rp(s). Note that Q‡
p(s)/Rp(s) is a

polynomial by Definition 5.9 of Rp(s).

For N(T ;σL), we consider the rectangle RT with vertices at −σL+ci, σR+ci, σR+iT ,
−σL+iT , where σR is a positive real number and c > 0 is a positive constant. We take σR
and c large positive real numbers such that εp(s) has no zeros on the line from −σL + ci
to σR + ci and |g(−σL + it)|, |rp(σR + it)| < 1 for |t| > c. Also, we can assume that
εP (s) has no zeros on the rectangle.

We apply the standard method of the counting of zeros to the above rectangle with
(6.2) and (12.1) (see [22, p. 212]). We have

N(T ;σL) =
1

2πi

∫

RT

d log εp(s)

=
1

2π
∆1 arg εp(s) +

1

2π
∆2 arg εp(s) +

1

2π
∆3 arg εp(s) +

1

2π
∆4 arg εp(s),

where ∆1, ∆2, ∆3, ∆4 denote the variations from σR + ci to σR + iT , from σR + iT to
−σL + iT , from −σL + iT to −σL + ic, from −σL + ic to σR + ci, respectively. Clearly,
∆4 arg εp(s) = O(1). Using (6.2) and (12.1), we can readily compute ∆1 arg εp(s) and
∆3 arg εp(s). For ∆2 arg εp(s), referring to (9.3), we define

Γ∗(s) =

∞∏

k=1

∏

h>(kcp+1)/2

γ(ks+ h)Np(k,h−1)−Np(k,h);

L(s) =
Q‡

p(s)

Rp(s)

∞∏

k=1

∏

h>(kcp+1)/2

ζ(ks+ h)Np(k,h−1)−Np(k,h);

L∗(s) = L(s)
(
1 + rp(s)

)
;
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where γ(s) = s(s− 1)π−s/2Γ(s/2). Then

εp(s) = Γ∗(s)L∗(s)

by definition, and
∆2 arg εp(s) = ∆2 arg Γ

∗(s) + ∆2 argL
∗(s).

The valuation ∆2 arg Γ
∗(s) is computed easily by the Stirling formula. On the other

hand, we have

L(s)rp(s) =
∑

w∈W+
p ∪W0

p\W
‡
p

Q̃p,w(s)

Rp(s)

∏

α∈(Φ+\Φ+
p )∩w−1Φ−

γ(〈λp, α
∨〉s + htα∨)

γ(〈λp, α∨〉s+ htα∨ + 1)

×
∏

α∈(Φ+\Φ+
p )∩w−1Φ−

ζ(〈λp, α
∨〉s+ htα∨),

(12.3)

where Q̃p,w(s)/Rp(s) are polynomials by definition of Rp(s). Therefore we see that

L∗(s) ≪ TM (−σL 6 ℜ(s) 6 σR)

for some positive M if T is sufficiently large ( [22, Chap.V]). Hence we have

∆2 argL
∗(s) = O(log T ).

by Lemma 12.1. Thus, we get the formula for N(T ;σL).
For N(T ; +∞), it suffices to consider N(T ;−κ log T ) by Proposition 6.9. We form

the rectangle −κ log T + c1i, σR + c1i, σR + iT , −κ log T + iT , where c1 > 0 is taken
such that εp(s) has no zeros on the boundary of this rectangle. We follow the method
as above. We similarly have

N(T ;∞) = ∆∗
1 arg εp(s) + ∆∗

2 arg εp(s) + ∆∗
3 arg εp(s) + ∆∗

4 arg εp(s)

and ∆∗
2 arg εp(s) = ∆∗

2 arg Γ
∗(s)+∆∗

2 argL
∗(s), where where ∆∗

1, ∆
∗
2, ∆

∗
3, ∆

∗
4 denote the

variations from σR + c1i to σR + iT , from σR + iT to −κ log T + iT , from −κ log T + iT
to −κ log T + ic1, from −σL + ic1 to σR + ic1, respectively. Using (6.2) and (12.2), we
can readily compute ∆∗

1 arg εp(s), ∆
∗
3 arg εp(s) and ∆∗

4 arg Γ
∗(s). We see that

L∗(s) ≪ T κ∗ log T (σ = −κ log T 6 ℜ(s) 6 σR),

by (12.3) (and [22, Chap.V]), where κ∗ > κ is a constant depending on κ. Thus we
obtain

∆∗
2 argL

∗(s) = O(log2 T )

by applying Lemma 12.1 to α = −2κ log T , β = −κ log T and σ0 = σR. It is not hard
to see that ∆∗

4 argL
∗(s) = O(log T ) by Lemma 12.1. Thus we obtain the formula for

N(T ; +∞). �

13. Proof of Proposition 7.2

The function εp(s) is a linear combination of products of several zeta functions ξ(ks+h)
with coefficients of rational functions. Therefore Wp(s) is an entire function of the order
at most one, since ξ(s) is an entire function of order one (and maximal type). Note that
if ρ is a zero of Wp(z), −ρ̄ is so, since εp(s) is real for real s. Thus, Propositions 6.8 and
6.9 imply the product factorization of Wp(s) of the form

Wp(z) = ω eβz V (z)w1(z)w2(z)

with

w1(z) =
∞∏

n=1

[(
1− z

ρn

)(
1 +

z

ρ̄n

)]
exp

(
z

ρn
− z

ρ̄n

)
,

w2(z) =

∞∏

n=1

[(
1− z

ηn

)(
1 +

z

η̄n

)]
exp

(
z

ηn
− z

η̄n

)
,
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where ω is a nonzero real number, β is a complex number, V (z) is a nonzero polynomial
having no zeros in ℑ(z) > 0 except for purely imaginary zeros, ℜ(ρn) > 0, ℜ(ηn) > 0,
ℑ(ηn) > 0, and 0 < δ(t) < ℑ(ρn) < σL +1 < ℑ(ηn) < κ log(ℜ(ηn) + 10) for every n > 1.
Here δ(t) is the function of Proposition 6.8, and κ is the positive number of Proposition
6.9, and σL is the positive number of Proposition 7.1. The products of the right-hand
sides converge uniformly on every compact subset in C. Write ρn = an + ibn (bn > 0),
and ηn = cn + idn (dn > 0). Then

∞∑

n=1

∣∣∣∣
1

ρn
− 1

ρ̄n

∣∣∣∣ 6 2
∞∑

n=1

bn
|ρn|2

6 2(σL + 1)
∞∑

n=1

1

|ρn|2
,

and
∞∑

n=1

∣∣∣∣
1

ηn
− 1

η̄n

∣∣∣∣ 6 2

∞∑

n=1

dn
|ηn|2

6 2κ

∞∑

n=1

log(cn + 10)

|ηn|2
≪ǫ

∞∑

n=1

1

|ηn|2−ǫ
.

Because the sum on the right-hand side is finite, we can take factors
∑∞

n=1 exp
(

z
ρn

− z
ρ̄n

)

and
∑∞

n=1 exp
(

z
ηn

− z
η̄n

)
out of the infinite product. Hence we obtain the desired prod-

uct formula except for the requirement for the exponent

α := β +
∞∑

n=1

exp

(
1

ρn
− 1

ρ̄n

)
+

∞∑

n=1

exp

(
1

ηn
− 1

η̄n

)

of the new exponential factor.
Now we prove ℑ(α) = 0 to complete the proof of Proposition 7.2. We have

log

∣∣∣∣
Wp(−iy)

Wp(iy)

∣∣∣∣ = 2y · ℑ(α) + log

∣∣∣∣
V (−iy)

V (iy)

∣∣∣∣+
∞∑

n=1

log

∣∣∣∣
iy + ρn
iy − ρn

∣∣∣∣
2

+

∞∑

n=1

log

∣∣∣∣
iy + ηn
iy − ηn

∣∣∣∣
2

= 2y · ℑ(α) +O(log y) (y → +∞).

In fact log |V (−iy)/V (iy)| = o(1),

∞∑

n=1

log
a2n + (y + bn)

2

a2n + (y − bn)2
6

∞∑

n=1

4ybn
a2n + (y − bn)2

= O




∞∑

ρ=1

y log ρ

ρ2 + y2


 = O(log y)

as y → +∞ by 0 < bn < σL + 1 and Proposition 7.1, and

∞∑

n=1

log
c2n + (y + dn)

2

c2n + (y − dn)2
6

∞∑

n=1

4ydn
c2n + (y − dn)2

= O




∞∑

ρ=1

y log ρ

(ρ2 + y2)1−ǫ


 = O(log y)

as y → +∞ by 0 < dn < κ log(cn + 10) and Proposition 7.1. Hence, in order to prove
ℑ(α) = 0, it suffices to show

εp(−cp/2 + y)

εp(−cp/2− y)
= Aym(1 + o(1)) (y → +∞)

for some A 6= 0 and m > 0. Because of Dp(−cp − s) = Dp(s) and Rp(−cp − s) = Rp(s),

εp(−cp/2 + y)

εp(−cp/2− y)
=

Ep(−cp/2 + y)

E(−cp/2− y)

Rp(−cp − y)Dp(−cp/2− y)

Rp(−cp + y)Dp(−cp/2 + y)
=

Ep(−cp/2 + y)

E(−cp/2− y)
.

We need to show

Ep(−cp/2 − y)

Ep(−cp/2 + y)
=

∑
w Q′

p,w(−cp/2− y)Xp,w(−cp/2− y)∑
w Q′

p,w(−cp/2 + y)Xp,w(−cp/2 + y)
= A−1y−m(1 + o(1))

as y → +∞ for some A 6= 0 and m > 0, where the summation
∑

w taken over all
w ∈ W+

p ∪W0
p, Q

′
p,w(s) = Qp,w(s) for w ∈ W+

p and Q′
p,w(s) = Qp,w(s)/2 for w ∈ W0

p.
By Propositions 6.5 and 6.6, we have

Ep(−cp/2 + y) = Q‡
p(−cp/2 + y)X‡

p(−cp/2 + y)(1 + o(1)) (y → +∞).
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Therefore it suffices to show that

Ep(−cp/2− y)

Q‡
p(−cp/2 + y)X‡

p(−cp/2 + y)
=
∑

w

Q′
p,w(−cp/2− y)

Q‡
p(−cp/2 + y)

Xp,w(−cp/2− y)

X‡
p(−cp/2 + y)

= A−1y−m(1 + o(1))

(13.1)

as y → +∞ for some A 6= 0 and m > 0. We have

Q′
p,w(−cp/2 − y)

Q‡
p(−cp/2 + y)

= δ′w +
a1(w)

y
+ · · ·+ an(w)

yn
+O(y−n−1) (y → +∞),

for some real numbers a1(w), · · · , cn(w), where δw = 1 if w ∈ W
‡
p and |w−1∆ \ Φp| = 1,

and δw = 0 otherwise. We write

Xp,w(−cp/2− y)

X‡
p(−cp/2 + y)

=
Xp,w(−cp/2 + y)

X‡
p(−cp/2 + y)

Xp,w(−cp/2− y)

Xp,w(−cp/2 + y)
.

Here we find that

Xp,w(s)

X‡
p(s)

= Bp,w s−
Ap,w

2

(
1 +

b1(w)

s
+ · · · + bn(w)

sn
+O

(
|s|−n−1

))
(1 +O(2−σ))

as σ → +∞ for some real numbers Bp,w > 0, b1(w), · · · , bn(w), and positive integers
Ap,w of (11.1) by a way similar to the proof of Proposition 6.9. On the other hand,

ξ(k(−cp − s) + h+ δ)

ξ(ks+ h+ δ)
=

ξ(ks+ kcp − h− δ + 1)

ξ(ks+ h+ δ)

= (2π/k)−
kcp−2h−2δ+1

2 s
kcp−2h−2δ+1

2

(
1 +

c1(k, h)

s
+ · · ·+ cn(k, h)

sn
+O

(
|s|−n−1

))
(1 +O(2−σ))

as σ → +∞. Therefore we obtain

Xp,w(−cp − s)

Xp,w(s)
=

∏

α∈Φ+\Φ+
p

ξ(〈λp, α
∨〉(−cp − s) + +htα∨ + δα,w)

ξ(〈λp, α∨〉s+ htα∨ + δα,w)

=

kp∏

k=1

kcp+~+
k∏

h=1

(
ξ(k(−cp − s) + h)

ξ(ks + h)

)Np,w(k,h)(ξ(k(−cp − s) + h+ 1)

ξ(ks+ h+ 1)

)Np(k,h)−Np,w(k,h)

= B′
p,w s−

A′
p,w
2

(
1 +

b′1(w)

s
+ · · ·+ b′n(w)

sn
+O

(
|s|−n−1

))
(1 +O(2−σ))

as σ → +∞ for some real numbers B′
p,w > 0 and integers A′

p,w given by

−A′
p,w =

kp∑

k=1

k+~
+
k∑

h=k+~
−
k

(
Np,w(k, h)(kcp − 2h+ 1) + (Np(k, h)−Np,w(k, h))(kcp − 2h− 1)

)
.

Now we calculate A′
p,w. We have

−A′
p,w =

kp∑

k=1

k+~+
k∑

h=k+~−
k

(
Np(k, h)(kcp − 2h) + 2Np,w(k, h) −Np(k, h)

)

=

kp∑

k=1

k+~
+
k∑

h=k+~
−
k

Np(k, h)(kcp − 2h)−
kp∑

k=1

kcp+~
+
k∑

h=k+~
−
k

(
Np(k, h) − 2Np,w(k, h)

)
.
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The first sum on the right-hand side is zero, since Np(k, h) = Np(k, kcp−h) and ~−k +~+k =
k(cp − 2) by Lemmas 8.3 and 8.14. Therefore, we get

A′
p,w =

kp∑

k=1

kcp+~
+
k∑

h=k+~
−
k

(
Np(k, h)− 2Np,w(k, h)

)

=

kp∑

k=1

kcp+~
+
k∑

h=k+~
−
k

2
(
Np(k, h) −Np,w(k, h)

)
−

kp∑

k=1

kcp+~
+
k∑

h=k+~
−
k

Np(k, h)

= 2
(
|Φ+ \Φ+

p | − lp(w)
)
− |Φ+ \ Φ+

p | = |Φ+ \ Φ+
p | − 2 lp(w).

Hence A′
p,w > 0 for w ∈ W+

p and A′
p,w = 0 for w ∈ W0

p.
Combining the above facts, we obtain

Ep(−cp/2− y)

Q‡
p(−cp/2 + y)X‡

p(−cp/2 + y)

=
∑

w∈W+
p ∪W0

p

B∗
p,w y−

Ap,w+A′
p,w

2

(
δ′w +

b∗1(w)

y
+ · · ·+ b∗n(w)

yn
+O

(
y−n−1

))
(1 +O(2−y))

as y → +∞ for some positive integers B∗
p,w and real numbers b∗1(w), · · · , b∗n(w). Now we

obtain (13.1), and complete the proof of Proposition 7.2. �

14. Proof of Theorem 7.5

In order to prove that all but finitely many zeros of ξp(s) are simple, it suffices to show
that θ(t) = arg εp(−cp/2 + it) is strictly increasing as t → +∞, since we already know
that all but finitely many zeros of ξp(s) lie on the line ℜ(s) = −cp/2, and

ξp(−cp/2 + it) = |εp(−cp/2 + it)|
(
eiθ(t) ± e−iθ(t)

)

holds for a suitable choice of sign. We have

Ep(s) = Q‡
p(s)X

‡
p(s)(1 + o(1))

as |s| → ∞ on ℜ(s) = −cp/2 by Propositions 6.5 and 6.6, and hence

εp(s) =
Q‡

p(s)

Rp(s)

X‡
p(s)

Dp(s)
(1 + o(1))

as |s| → ∞ on ℜ(s) = −cp/2. Note that Q‡
p(s)/Rp(s) and X‡

p(s)/Dp(s) are entire by

Definitions 5.9 and 5.10. Using the above asymptotic formula and (9.3) of X‡
p(s)/Dp(s),

we can see that

d arg εp(−cp/2 + it)

dt
= κ log t (1 + o(1)) (t → +∞)

for some positive constant κ. Here the factor log t comes from the gamma factors of

X‡
p(s)/Dp(s) (see (9.3)), and we need to use the fact that

ζ ′

ζ
(1 + it) = O

(
log t

log log t

)
= o(log t) (t → +∞)

(see Theorem 5.7 of [22], for example), if kcp is even and Np(k, h− 1)−Np(k, h) > 0 for
some 1 6 k 6 kp with h = 1 + kcp/2. In any case θ(t) = arg εp(−cp/2 + it) is strictly
increasing as t → ∞. Hence we obtain the desired result. �

The worst case of the proof could occur. In fact the zeta function of A1 is

ζ̂A1
1 (s) =

ζ̂(s+ 2)

s
− ζ̂(s+ 1)

s+ 2
.
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In this case, we have the factor ζ(1 + it) in ε1(s) = ξ(s+ 2) on ℜ(s) = −1 (cp = 2).

15. Appendix 1: Decomposition of Σp(1)

We use the same numbering as in [9, p.53]. In the following, we abbreviate L∨
j (1) of

Lemma 8.15 as L∨
j , and α∨ =

∑r
i=1 aiα

∨
i as the sequence a1 · · · ar with ap = 1. We will

give explicit forms of the sets L∨
j according to the type of the root system Φ∨.

15.1. An case. Due to the symmetry of the root system, it is sufficient to consider the

case 1 6 p 6 [n/2 + 1]. Let α∨
i,j =

∑j
k=i α

∨
k . Then for 1 6 j 6 p,

L∨
j = {α∨

j,n, α
∨
j,n−1, . . . , α

∨
j,p+j−1, α

∨
j+1,p+j−1, . . . , α

∨
p,p+j−1}.

For example, in the A6 case, we have

• p = 1 case:
L∨
1 : 111111 111110 111100 111000 110000 100000

• p = 2 case:
L∨
1 : 111111 111110 111100 111000 110000 010000

L∨
2 : 011111 011110 011100 011000

• p = 3 case:
L∨
1 : 111111 111110 111100 111000 011000 001000

L∨
2 : 011111 011110 011100 001100

L∨
3 : 001111 001110

• p = 4 case:
L∨
1 : 111111 111110 111100 011100 001100 000100

L∨
2 : 011111 011110 001110 000110

L∨
3 : 001111 000111

• p = 5 case:
L∨
1 : 111111 111110 011110 001110 000110 000010

L∨
2 : 011111 001111 000111 000011

• p = 6 case:
L∨
1 : 111111 011111 001111 000111 000011 000001

15.2. Bn case. Let α∨
i,j =

∑j
l=i α

∨
l and β∨

i,j,k =
∑j

l=i α
∨
l + 2

∑k
l=j+1 α

∨
l . Then for

1 6 j 6 min{p, n− p+ 1},
L∨
j = {β∨

j,p,n, β
∨
j,p+1,n, . . . , β

∨
j,n−1,n, α

∨
j,n, α

∨
j,n−1, . . . , α

∨
j,p+j−1, α

∨
j+1,p+j−1, . . . , α

∨
p,p+j−1}.

Further if n− p+ 1 < p 6 n, then for n− p+ 1 < j 6 min{p, 2n − 2p+ 1},
L∨
j = {β∨

j,p,n, β
∨
j,p+1,n, . . . , β

∨
j,2n−p−j+1,n, β

∨
j+1,2n−p−j+1,n, . . . , β

∨
p,2n−p−j+1,n}.

For example, in the B6 case, we have

• p = 1 case:
L∨
1 : 122222 112222 111222 111122 111112 111111 111110 111100 111000 110000

100000
• p = 2 case:
L∨
1 : 112222 111222 111122 111112 111111 111110 111100 111000 110000 010000

L∨
2 : 012222 011222 011122 011112 011111 011110 011100 011000

• p = 3 case:
L∨
1 : 111222 111122 111112 111111 111110 111100 111000 011000 001000

L∨
2 : 011222 011122 011112 011111 011110 011100 001100

L∨
3 : 001222 001122 001112 001111 001110

• p = 4 case:
L∨
1 : 111122 111112 111111 111110 111100 011100 001100 000100

L∨
2 : 011122 011112 011111 011110 001110 000110
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L∨
3 : 001122 001112 001111 000111

L∨
4 : 000122 000112

• p = 5 case:
L∨
1 : 111112 111111 111110 011110 001110 000110 000010

L∨
2 : 011112 011111 001111 000111 000011

L∨
3 : 001112 000112 000012

• p = 6 case:
L∨
1 : 111111 011111 001111 000111 000011 000001

15.3. Cn case. Let α∨
i,j =

∑j
l=i α

∨
l and β∨

i,j =
∑j

l=i α
∨
l + 2

∑n−1
l=j+1 α

∨
l + α∨

n . Then for

1 6 j 6 min{p, n− p+ 1},
L∨
j = {β∨

j,p, β
∨
j,p+1, . . . , β

∨
j,n−2, α

∨
j,n, α

∨
j,n−1, . . . , α

∨
j,p+j−1, α

∨
j+1,p+j−1, . . . , α

∨
p,p+j−1}.

Further if n− p+ 1 < p 6 n− 1, then for n− p+ 1 < j 6 min{p, 2n − 2p},
L∨
j = {β∨

j,p, β
∨
j,p+1, . . . , β

∨
j,2n−j−p, β

∨
j+1,2n−j−p, . . . , β

∨
p,2n−j−p}.

In the case p = n, for 1 6 j 6 n+1
2 ,

L∨
j = {β∨

j,j−1, β
∨
j,j, β

∨
j,j+1, . . . , β

∨
j,n−j, β

∨
j+1,n−j , . . . , β

∨
n−j+1,n−j}.

For example, in the C6 case, we have

• p = 1 case:
L∨
1 : 122221 112221 111221 111121 111111 111110 111100 111000 110000 100000

• p = 2 case:
L∨
1 : 112221 111221 111121 111111 111110 111100 111000 110000 010000

L∨
2 : 012221 011221 011121 011111 011110 011100 011000

• p = 3 case:
L∨
1 : 111221 111121 111111 111110 111100 111000 011000 001000

L∨
2 : 011221 011121 011111 011110 011100 001100

L∨
3 : 001221 001121 001111 001110

• p = 4 case:
L∨
1 : 111121 111111 111110 111100 011100 001100 000100

L∨
2 : 011121 011111 011110 001110 000110

L∨
3 : 001121 001111 000111

L∨
4 : 000121

• p = 5 case:
L∨
1 : 111111 111110 011110 001110 000110 000010

L∨
2 : 011111 001111 000111 000011

• p = 6 case:
L∨
1 : 222221 122221 112221 111221 111121 111111 011111 001111 000111 000011

000001
L∨
2 : 022221 012221 011221 011121 001121 000121 000021

L∨
3 : 002221 001221 000221

15.4. Dn case. Let α∨
i,j =

∑j
l=i α

∨
l , β∨

i,j =
∑j

l=i α
∨
l + 2

∑n−2
l=j+1 α

∨
l + α∨

n−1 + α∨
n and

γ∨i =
∑n−2

l=i α∨
l + α∨

n . Then in the cases 1 6 p 6 n− 2, for 1 6 j 6 min{p, n− p+ 1},
L∨
j = {β∨

j,p, β
∨
j,p+1, . . . , β

∨
j,n−2, α

∨
j,n−1, . . . , α

∨
j,p+j−1, α

∨
j+1,p+j−1, . . . , α

∨
p,p+j−1}.

Further if n− p+ 1 < p 6 n− 2, then for n− p+ 1 < j 6 min{p, 2n − 2p − 1},
L∨
j = {β∨

j,p, β
∨
j,p+1, . . . , β

∨
j,2n−j−p−1, β

∨
j+1,2n−j−p−1, . . . , β

∨
p,2n−j−p−1}.

In addition, for j = min{p, 2n − 2p− 1}+ 1,

L∨
j = {γ∨1 , γ∨2 , . . . , γ∨p }.
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In the case p = n− 1, for j = 1,

L∨
1 = {β∨

1,1, β
∨
1,2, . . . , β

∨
1,n−2, α

∨
1,n−1, α

∨
2,n−1, . . . , α

∨
n−1,n−1},

and for 2 6 j 6 n
2 ,

L∨
j = {β∨

j,j , β
∨
j,j+1, . . . , β

∨
j,n−j, β

∨
j+1,n−j, . . . , β

∨
n−j,n−j},

In the case p = n, for 1 6 j 6 n
2 , L∨

j is the same as in the case p = n − 1 with the
roles of αn−1 and αn exchanged.

For example, in the D6 case, we have

• p = 1 case:
L∨
1 : 122211 112211 111211 111111 111110 111100 111000 110000 100000

L∨
2 : 111101

• p = 2 case:
L∨
1 : 112211 111211 111111 111110 111100 111000 110000 010000

L∨
2 : 012211 011211 011111 011110 011100 011000

L∨
3 : 111101 011101

• p = 3 case:
L∨
1 : 111211 111111 111110 111100 111000 011000 001000

L∨
2 : 011211 011111 011110 011100 001100

L∨
3 : 001211 001111 001110

L∨
4 : 111101 011101 001101

• p = 4 case:
L∨
1 : 111111 111110 111100 011100 001100 000100

L∨
2 : 011111 011110 001110 000110

L∨
3 : 001111 000111

L∨
4 : 111101 011101 001101 000101

• p = 5 case:
L∨
1 : 122211 112211 111211 111111 111110 011110 001110 000110 000010

L∨
2 : 012211 011211 011111 001111 000111

L∨
3 : 001211

• p = 6 case:
L∨
1 : 122211 112211 111211 111111 111101 011101 001101 000101 000001

L∨
2 : 012211 011211 011111 001111 000111

L∨
3 : 001211

15.5. E6 case.

• p = 1 case:
L∨
1 : 123212 123211 122211 122111 122101 112101 111101 111001 111000 110000

100000
L∨
2 : 112211 112111 111111 111110 111100

• p = 2 case:
L∨
1 : 112211 112111 111111 111110 111100 111000 110000 010000

L∨
2 : 012211 012111 012101 011101 011100 011000

L∨
3 : 112101 111101 111001 011001

L∨
4 : 011111 011110

• p = 3 case:
L∨
1 : 111111 111110 111100 111000 011000 001000

L∨
2 : 111101 111001 011001 001001

L∨
3 : 011111 011110 011100 001100

L∨
4 : 011101 001101

L∨
5 : 001111 001110

• p = 4 case:
L∨
1 : 122111 122101 112101 111101 111100 011100 001100 000100
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L∨
2 : 112111 111111 111110 011110 001110 000110

L∨
3 : 012111 012101 011101 001101

L∨
4 : 011111 001111

• p = 5 case:
L∨
1 : 123212 123211 122211 122111 112111 111111 111110 011110 001110 000110

000010
L∨
2 : 112211 012211 012111 011111 001111

• p = 6 case:
L∨
1 : 123211 122211 122111 122101 112101 111101 111001 011001 001001 000001

L∨
2 : 112211 112111 111111 011111 001111 001101

L∨
3 : 012211 012111 012101 011101

15.6. E7 case.

• p = 1 case:
L∨
1 : 1343212 1243212 1233212 1233211 1232211 1222211 1122211 1122111 1121111

1111111 1111110 1111100 1111000 1110000 1100000 1000000
L∨
2 : 1232212 1232112 1232102 1232101 1222101 1122101 1121101 1111101 1111001

1110001
L∨
3 : 1232111 1222111 1221111 1221101 1221001 1121001

• p = 2 case:
L∨
1 : 1122211 1122111 1121111 1111111 1111110 1111100 1111000 1110000 1100000

0100000
L∨
2 : 0122211 0122111 0121111 0111111 0111110 0111100 0111000 0110000

L∨
3 : 1122101 0122101 0121101 0111101 0111001 0110001

L∨
4 : 1121101 1111101 1111001 1110001

L∨
5 : 1121001 0121001

• p = 3 case:
L∨
1 : 1111111 1111110 1111100 1111000 1110000 0110000 0010000

L∨
2 : 1111101 1111001 1110001 0110001 0010001

L∨
3 : 0111111 0111110 0111100 0111000 0011000

L∨
4 : 0111101 0111001 0011001

L∨
5 : 0011111 0011110 0011100

L∨
6 : 0011101

• p = 4 case:
L∨
1 : 1221111 1221101 1221001 1121001 1111001 1111000 0111000 0011000 0001000

L∨
2 : 1121111 1121101 1111101 0111101 0111100 0011100 0001100

L∨
3 : 1111111 1111110 0111110 0011110 0001110

L∨
4 : 0121111 0121101 0121001 0111001 0011001

L∨
5 : 0111111 0011111 0011101

L∨
6 : 1111100

• p = 5 case:
L∨
1 : 1232112 1232102 1232101 1222101 1221101 1121101 1111101 1111100 0111100

0011100 0001100 0000100
L∨
2 : 1232111 1222111 1221111 1121111 1111111 1111110 0111110 0011110 0001110

0000110
L∨
3 : 1122111 1122101 0122101 0121101 0111101 0011101

L∨
4 : 0122111 0121111 0111111 0011111

• p = 6 case:
L∨
1 : 2343212 1343212 1243212 1233212 1232212 1232112 1232111 1222111 1221111

1121111 1111111 1111110 0111110 0011110 0001110 0000110 0000010
L∨
2 : 1233211 1232211 1222211 1122211 1122111 0122111 0121111 0111111 0011111

L∨
3 : 0122211



ON THE ZEROS OF WENG ZETA FUNCTIONS FOR CHEVALLEY GROUPS 39

• p = 7 case:
L∨
1 : 1233211 1232211 1232111 1232101 1222101 1122101 1121101 1111101 1111001

1110001 0110001 0010001 0000001
L∨
2 : 1222211 1222111 1221111 1221101 1221001 1121001 0121001 0111001 0011001

L∨
3 : 1122211 1122111 1121111 1111111 0111111 0011111 0011101

L∨
4 : 0122211 0122111 0122101 0121101 0111101

L∨
5 : 0121111

15.7. E8 case.

• p = 1 case:
L∨
1 : 13456423 12456423 12356423 12346423 12345423 12345422 12345322 12344322

12334322 12334312 12234312 12234212 12233212 12223212 12223211 12222211
12222111 12222101 11222101 11122101 11112101 11111101 11111001 11111000
11110000 11100000 11000000 10000000
L∨
2 : 12345323 12345313 12345312 12344312 12344212 12334212 12333212 12333211

12233211 11233211 11223211 11222211 11222111 11122111 11112111 11111111
11111110 11111100
L∨
3 : 12234322 11234322 11234312 11234212 11233212 11223212 11123212 11123211

11122211 11112211
• p = 2 case:
L∨
1 : 11234322 11234312 11234212 11233212 11223212 11223211 11222211 11222111

11222101 11122101 11112101 11111101 11111001 11111000 11110000 11100000
11000000 01000000
L∨
2 : 01234322 01234312 01234212 01233212 01223212 01123212 01123211 01122211

01112211 01112111 01111111 01111110 01111100 01111000 01110000 01100000
L∨
3 : 11233211 01233211 01223211 01222211 01222111 01222101 01122101 01112101

01111101 01111001
L∨
4 : 11123212 11123211 11122211 11112211 11112111 11111111 11111110 11111100

L∨
5 : 11122111 01122111

• p = 3 case:
L∨
1 : 11123212 11123211 11122211 11122111 11122101 11112101 11111101 11111001

11111000 11110000 11100000 01100000 00100000
L∨
2 : 01123212 00123212 00123211 00122211 00112211 00112111 00111111 00111101

00111001 00111000 00110000
L∨
3 : 01123211 01122211 01122111 01122101 01112101 01111101 01111001 01111000

01110000
L∨
4 : 11112211 11112111 11111111 11111110 11111100 01111100 00111100

L∨
5 : 01112211 01112111 01111111 01111110 00111110

L∨
6 : 00122111 00122101 00112101

• p = 4 case:
L∨
1 : 11112211 11112111 11112101 11111101 11111001 11111000 11110000 01110000

00110000 00010000
L∨
2 : 01112211 00112211 00012211 00012111 00012101 00011101 00011001 00011000

L∨
3 : 11111111 11111110 11111100 01111100 01111000 00111000

L∨
4 : 01112111 01111111 01111110 00111110 00111100 00011100

L∨
5 : 01112101 00112101 00111101 00111001

L∨
6 : 00112111 00111111 00011111 00011110

L∨
7 : 01111101 01111001

• p = 5 case:
L∨
1 : 11111111 11111110 11111100 11111000 01111000 00111000 00011000 00001000

L∨
2 : 11111101 11111001 01111001 00111001 00011001 00001001

L∨
3 : 01111111 01111110 01111100 00111100 00011100 00001100

L∨
4 : 00111111 00111110 00011110 00001110
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L∨
5 : 01111101 00111101 00011101 00001101

L∨
6 : 00011111 00001111

• p = 6 case:
L∨
1 : 12222111 12222101 11222101 11122101 11112101 11111101 11111100 01111100

00111100 00011100 00001100 00000100
L∨
2 : 11222111 11122111 11112111 11111111 11111110 01111110 00111110 00011110

00001110 00000110
L∨
3 : 01222111 01222101 01122101 00122101 00112101 00012101 00011101 00001101

L∨
4 : 01122111 00122111 00112111 00012111 00011111 00001111

L∨
5 : 01112111 01112101 01111101 00111101

L∨
6 : 01111111 00111111

• p = 7 case:
L∨
1 : 12345313 12345312 12344312 12344212 12334212 12333212 12333211 12233211

12223211 12222211 12222111 11222111 11122111 11112111 11111111 11111110
01111110 00111110 00011110 00001110 00000110 00000010
L∨
2 : 12334312 12234312 12234212 12233212 12223212 11223212 11123212 11123211

11122211 11112211 01112211 01112111 01111111 00111111 00011111 00001111
L∨
3 : 11234312 11234212 11233212 11233211 11223211 11222211 01222211 01222111

01122111 00122111 00112111 00012111
L∨
4 : 01234312 01234212 01233212 01233211 01223211 01123211 01122211 00122211

00112211 00012211
L∨
5 : 01223212 01123212 00123212 00123211

• p = 8 case:
L∨
1 : 12333211 12233211 12223211 12222211 12222111 12222101 11222101 11122101

11112101 11111101 11111001 01111001 00111001 00011001 00001001 00000001
L∨
2 : 11233211 01233211 01223211 01123211 00123211 00122211 00112211 00012211

00012111 00011111 00001111 00001101
L∨
3 : 11223211 11222211 11222111 11122111 11112111 11111111 01111111 00111111

00111101 00011101
L∨
4 : 11123211 11122211 11112211 01112211 01112111 00112111 00112101 00012101

L∨
5 : 01222211 01222111 01222101 01122101 01112101 01111101

L∨
6 : 01122211 01122111 00122111 00122101

15.8. F4 case.

• p = 1 case:
L∨
1 : 1342 1242 1232 1231 1221 1220 1120 1110 1100 1000

L∨
2 : 1222 1122 1121 1111

• p = 2 case:
L∨
1 : 1122 1121 1120 1110 1100 0100

L∨
2 : 0122 0121 0120 0110

L∨
3 : 1111 0111

• p = 3 case:
L∨
1 : 1111 1110 0110 0010

L∨
2 : 0111 0011

• p = 4 case:
L∨
1 : 1231 1221 1121 1111 0111 0011 0001

L∨
2 : 0121

15.9. G2 case.

• p = 1 case:
L∨
1 : 13 12 11 10

• p = 2 case:
L∨
1 : 11 01
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16. Appendix 2: Table of numbers cp

We use the numbering of simple roots as in Appendix 1.

(1) Ar case (r > 1): cp = r + 1 (independent of p).
(2) Br case (r > 2): cp = 2r − p (p 6= r), cr = 2r.
(3) Cr case (r > 3): cp = 2r − p+ 1.
(4) Dr case (r > 4): cp = 2r − p− 1 (p 6= r − 1, r), cr−1 = cr = 2r − 2.
(5) E6 case:

p 1 2 3 4 5 6
cp 12 9 7 9 12 11

(6) E7 case:

p 1 2 3 4 5 6 7
cp 17 11 8 10 13 18 14

(7) E8 case:

p 1 2 3 4 5 6 7 8
cp 29 19 14 11 9 13 23 17

(8) F4 case: c1 = 11, c2 = 7, c3 = 5, c4 = 8.
(9) G2 case: c1 = 5, c2 = 3.

17. Appendix 3: Homogeneous vector bundles

We present basic facts on homogeneous vector bundles according to [18]. Let G be
a semisimple complex Lie group of type Φ with a maximal torus T . Let B be a Borel
subgroup containing T , and let P be a maximal parabolic subgroup of G corresponding
a simple root αp in the fundamental system ∆ attached to B.

Then Xp = G/P is a connected compact complex manifold with the Picard number
one, and the homogeneous line bundles on Xp are in one-to-one correspondence with
the set of weights Λp = Zλp and Pic(Xp) ≃ Λp, where λp is the fundamental weight
corresponding to αp.

Let L be a holomorphic line bundle on Xp, and let c1(L) ∈ H2(Xp,R) be the first
Chern class of L. The first Chern class of a line bundle L is identified with its associated
weight λ ∈ Λp ≃ Pic(Xp) as follows:

c1(L) =
i

2π

∑

α∈Φ+\Φ+
p

〈λ, α∨〉 dxα ∧ dx̄α,

and hence we shall just write c1(L) = λ. Let TXp be the tangent bundle of Xp. Then we
find that

c1(TXp) =
∑

α∈Φ+\Φ+
p

α = cpλp,

where cp is the number of (2.2).
The index ip of Xp is defined by the identity −KXp = ipLλp

for the canonical bundle
KXp and the (ample) line bundle Lλp

associated with the fundamental weight. For the
first Chern class of KXp , we have

c1(KXp) = −
∑

α∈Φ+\Φ+
p

α = −c1(TXp) = −cpλp.

This derives the identity

−KXp = cpLλp
(ip = cp).
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Now the functional equation of the zeta function ζ̂p(s) associated with (Φ,∆, p) can be
written as

ζ̂p(〈c1(KXp), α
∨
p 〉 − s) = ζ̂p(s).
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