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Abstract

We give an explicit version of a result due to D. Burgess. Let χ

be a non-principal Dirichlet character modulo a prime p. We show
that the maximum number of consecutive integers for which χ takes

on a particular value is less than
{

πe
√
6

3 + o(1)
}

p
1/4 log p, where the

o(1) term is given explicitly.

1 Introduction

Let χ be a non-principal Dirichlet character to the prime modulus p. In

1963, D. Burgess showed (see [4]) that the maximum number of consecutive

integers for which χ takes on any particular value is O(p1/4 log p). This still

constitutes the best known asymptotic upper bound on this quantity. How-

ever, in some applications, one needs a more explicit result. Following the

general lines of his original argument and making careful estimates through-

out, we prove an explicit version of Burgess’ theorem (see Theorem 4.1 and

Corollary 4.3), thereby obtaining the following:
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Theorem 1.1. If χ is any non-principal Dirichlet character to the prime

modulus p which is constant on (N,N +H ], then

H <

{

πe
√
6

3
+ o(1)

}

p1/4 log p .

We note that the constant (πe
√
6)/3 is approximately 6.97. As we have

an explicit bound on the o(1) term when p is large, we are able to obtain

the following result which is more useful in applications:

Theorem 1.2. If χ is any non-principal Dirichlet character to the prime

modulus p which is constant on (N,N +H ], then

H <

{

7.06 p1/4 log p , for p ≥ 5 · 1018

7 p1/4 log p , for p ≥ 5 · 1055
.

For the special case of N = 0, which amounts to giving a bound on the

smallest non-residue of χ (i.e., the smallest n such that χ(n) 6= 1), K. Nor-

ton proves a result analogous to Theorem 1.2 which holds for all p with a

constant of 4.7 (see [10]). In addition, a result for arbitrary N , similar to

the one given in Theorem 1.2 is stated, but not proved in [11]. R. Hudson

(see [7]) cites a result slightly improving the one stated in [11] to appear in

a future paper, but the present author cannot locate the purported proof. It

seems a worthwhile endeavor to put down such a proof as it is possible that

some authors avoid using the result in [11] due to the lack of proof (see,

for example [8]), while others (see [7]) use the result for further derivations.

To our knowledge, this is the first proof to appear in the literature which

makes the constant in Burgess’ theorem explicit.

It is perhaps useful here to comment briefly on the connection between

Dirichlet characters and power residues. Fix an integer k ≥ 2. We say that

n ∈ Z is a k-th power residue modulo p if (n, p) = 1 and the equation xk ≡ n

(mod p) is soluble in x. Suppose χ is any Dirichlet character modulo p of

order (k, p−1). One can easily show that χ(n) = 1 if and only if n is a k-th

power residue modulo p. Here we might as well assume (k, p−1) > 1, or else

every integer is a k-th power residue modulo p and the only such χ is the

principal character. If we denote by Cp = (Z/pZ)⋆ the multiplicative group

consisting of the integers modulo p and by Ck
p the subgroup of k-th powers

modulo p, then the value of χ(n) determines to which coset of Cp/C
k
p the

integer n belongs. In light of this, theorems 1.1 and 1.2 also give estimates
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(which are the best known) on the maximum number of consecutive integers

that belong to a given coset of Cp/C
k
p .

We should also mention that Burgess’ well-known character sum esti-

mate (see [3]) gives a bound on the quantity (in the title of the paper) of

O(p1/4+ε). However, the constant associated to the O-symbol depends on ε

and hence, although there are explicit versions of Burgess’ character sum

estimate available (see [9]), theorems 1.1 and 1.2 would not follow from this.

The main idea behind Burgess’ proof is to combine upper and lower

bounds for the sum:

S(χ, h, r) :=

p−1
∑

x=0

∣

∣

∣

∣

∣

h
∑

m=1

χ(x+m)

∣

∣

∣

∣

∣

2r

In Lemma 2.2 of §2 we give an upper bound for S(χ, h, r) in terms of r and

h. In Proposition 3.3 of §3 we give a lower bound on S(χ, h, r) in terms

of h and H , under some additional hypotheses on H . Combining these

results, we obtain an upper bound on H in terms of r and h under the same

hypotheses; this result is also given as part of Proposition 3.3. Then, in §4 we
prove our main result (see Theorem 4.1) by invoking Proposition 3.3 with a

careful choice of parameters. Finally, by performing some simple numerical

computations, we show that that the extra hypothesis on H can be dropped

when p is large enough (see Corollary 4.3); theorems 1.1 and 1.2 will then

follow immediately.

2 An Upper Bound on S(χ, h, r)

The following character sum estimate was first given by A. Weil, as a con-

sequence of his deep work on the Riemann hypothesis for function fields

(see [15]). It is also proved as Theorem 2C’ in [13] using an elementary

method due to S. Stepanov (see [14]), which was later extended by both

E. Bombieri (see [2]) and W. Schmidt (see [12]).

Lemma 2.1. Let χ be a non-principal Dirichlet character to the prime

modulus p, having order n. Let f(x) ∈ Z[x] be a polynomial with m distinct

roots which is not an n-th power in Fp[x], where Fp denotes the finite field

with p elements. Then
∣

∣

∣

∣

∣

∣

∑

x∈Fp

χ(f(x))

∣

∣

∣

∣

∣

∣

≤ (m− 1) p1/2 .
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The next lemma is a slight improvement over Lemma 2 in [3] which gives

an upper bound on S(χ, h, r). The proof is not difficult if we grant ourselves

Lemma 2.1.

Lemma 2.2. Suppose χ is any non-principal Dirichlet character to the

prime modulus p. If r, h ∈ Z
+, then

S(χ, h, r) <
1

4
(4r)rphr + (2r − 1)p1/2h2r .

Proof. First we claim that we may assume, without loss of generality, that

r < h < p. We commence by observing that h = p implies S(χ, h, r) =

0, in which case there is nothing to prove. We see that h > p implies

S(χ, h − p, r) = S(χ, h, r), which allows us to inductively bring h into the

range 0 < h < p. Additionally, we notice that if h ≤ r, then the theorem

is trivial since in this case we would have S(χ, h, r) ≤ h2rp ≤ (hr)rp. This

establishes the claim.

Now, to begin the proof proper, we observe that

S(χ, h, r) =
∑

1≤m1,...,m2r≤h

p−1
∑

x=0

χ(x+m1) . . . χ(x+mr)χ(x+mr+1) . . . χ(x+m2r) .

Define

M := {m = (m1, . . . , m2r) | 1 ≤ m1, . . . , m2r ≤ h} .

We can rewrite the above as

S(χ, h, r) =
∑

m∈M

∑

x∈Fp

χ(f
m
(x)) ,

where

f
m
(x) = (x+m1) . . . (x+mr)(x+mr+1)

n−1(x+m2r)
n−1 ,

and n denotes the order of χ. If f
m
(x) is not an n-th power mod p, then by

Lemma 2.1 we have
∣

∣

∣

∣

∣

∣

∑

x∈Fp

χ(f
m
(x))

∣

∣

∣

∣

∣

∣

≤ (2r − 1)
√
p .

Otherwise, we must settle for the trivial bound of p.

It remains to count the number of exceptions – that is, the number of

m ∈ M such that f
m
(x) is an n-th power mod p. A little care is required here

– as an example, if r = n = 3 and p ≥ 5, then the vectorsm = (1, 2, 3, 1, 2, 3)



Consecutive residues or non-residues 5

andm = (1, 1, 1, 2, 2, 2) are both exceptions, but the way in which they arise

is slightly different; as r gets larger compared to n, the situation only gets

worse. In light of this difficulty, we will actually count (as Burgess does in [4])

the number of m = (m1, . . . , m2r) ∈ M such that each mj is repeated at

least once.

We let u denote the number of distinct mj (so that u ≤ r < h) and

denote by 1 = j1 < j2 < · · · < ju ≤ 2r the indices corresponding to the first

occurrence of each of the u values among the mj. The number of ways to

choose the jk is bounded by
(

2r−1
u−1

)

, and there are at most h choices for each

mjk while the remaining mj are restricted to at most u values. In light of

all this, we find that the number of exceptions is bounded above by

r
∑

u=1

(

2r − 1

u− 1

)

huu2r−u ≤ (hr)r
r

∑

u=1

(

2r − 1

u− 1

)

(u

h

)r−u

≤ (hr)r
r

∑

u=1

(

2r − 1

u− 1

)

.

Finally, to complete the proof, we observe

(hr)r
r

∑

u=1

(

2r − 1

u− 1

)

= (hr)r22r−2 =
1

4
(4rh)r . �

3 A Lower Bound on S(χ, h, r)

In obtaining the desired lower bound, the idea is to locate a large number

of intervals on which χ is constant. The next two lemmas will be useful

in accomplishing this end. The following lemma makes the error term in

Lemma 3 of [4] explicit and improves the main constant from 1− π2/12 ≈
0.178 to 3/π2 ≈ 0.304.

Lemma 3.1. Let X ≥ 7. If a, b ∈ Z are coprime with a ≥ 1, then there are

at least

X2

(

3

π2
− logX

2X
− 1

X
− 1

2X2

)

distinct numbers of the form
at + b

q

where 0 ≤ t < q ≤ X.

Proof. As in [4], we observe that #{q−1(at + b) | 0 ≤ t < q ≤ X} is

bounded below by

∑

q≤X

∑

0≤t<q
(at+b,q)=1

1 =
∑

q≤X

∑

0≤t<q

∑

m|(at+b,q)

µ(m)
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Writing q = rm allows us to rewrite the sum above as

∑

m≤X

µ(m)
∑

r≤X/m

∑

0≤t<rm
at≡−b (m)

1 .

Since (a, b) = 1, the congruence at ≡ −b (mod m) has a solution if and

only if (m, a) = 1. Therefore we can rewrite our sum in the following way:

∑

m≤X
(m,a)=1

µ(m)
∑

r≤X/m

∑

0≤t<rm
at≡−b (m)

1 =
∑

m≤X
(m,a)=1

µ(m)
∑

r≤X/m

r

A careful lower estimate of the sum on the right-hand side above will give

the desired result. Using the identity

∑

r≤Y

r =
Y 2

2
+

Y

2
θY , θY ∈ [−1, 1] ,

which holds for Y > 0, we obtain

∑

m≤X
(m,a)=1

µ(m)
∑

r≤X/m

r(3.1)

=
X2

2

∑

m≤X
(m,a)=1

µ(m)

m2
+

X

2

∑

m≤X
(m,a)=1

µ(m)

m
θX/m .

Let ζ(s) denote the Riemann zeta function. When s > 1, we have

∞
∑

m=1
(m,a)=1

µ(m)m−s = ζ(s)−1
∏

p|a
(1− p−s)−1 ≥ ζ(s)−1 ,

and the tail of the series is bounded in absolute value by

∑

m>X

m−s ≤ 1

Xs
+

1

(s− 1)
· 1

Xs−1
;

therefore

∑

m≤X
(m,a)=1

µ(m)m−s ≥ ζ(s)−1 − 1

Xs
− 1

(s− 1)
· 1

Xs−1
.

Setting s = 2 gives

∑

m≤X
(m,a)=1

µ(m)

m2
≥ ζ(2)−1 − 1

X2
− 1

X
.
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Now we deal with the second sum on the right-hand side of (3.1); we

have
∑

m≤X
(m,a)=1

µ(m)

m
θX/m ≤

∑

m≤X

1

m
≤ 1 + logX .

Summarizing, we have shown

∑

m≤X
(m,a)=1

µ(m)
∑

r≤X/m

r ≥ X2

2

(

1

ζ(2)
− 1

X2
− 1

X

)

− X

2
(1 + logX)

= X2

(

1

2ζ(2)
− logX

2X
− 1

X
− 1

2X2

)

.

In light of the fact that ζ(2) = π2/6, we have arrived at the desired con-

clusion. The reader may worry why we failed to use the hypothesis that

X ≥ 7. This hypothesis is not necessary for the truth of the conclusion,

but we include it nonetheless to ensure that our estimate gives a positive

number. �

Finally we will require Dirichlet’s Theorem in Diophantine approxima-

tion; see, for example, Theorem 1 in Chapter 1 of [5].

Lemma 3.2. Let θ, A ∈ R with A > 1. Then there exists a, b ∈ Z with

(a, b) = 1 such that

0 < a < A , |aθ − b| ≤ A−1 .

We are now ready to give our lower bound on S(χ, h, r).

Proposition 3.3. Let h, r ∈ Z
+. Suppose χ is a non-principal Dirichlet

character to the prime modulus p which is constant on (N,N +H ] and such

that

14h ≤ H ≤ (2h− 1)1/3p1/3 .

If we set X := H/(2h) ≥ 7, then

S(χ, h, r) ≥
(

3

π2

)

X2h2r+1f(X) ,

where

f(X) = 1− π2

3

(

logX

2X
+

1

X
+

1

2X2

)

,

and therefore

H <
2πh

√

3f(X)
p1/4

[

1

4h

(

4r

h

)r

p1/2 +

(

2r − 1

h

)]1/2

.

Note: f(X) is positive and increasing on [7,∞) and f(X) → 1 as X → ∞.
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Proof. Following the argument given in [4], we define the real interval

I(q, t) :=

(

N + pt

q
,

N +H + pt

q

]

,

for 0 ≤ t < q ≤ X . We take note of two important properities of I(q, t),

which we will use later. First, the length of I(q, t) is H/q ≥ H/X = 2h.

Second, χ is constant on I(q, t); this is because for any z ∈ I(q, t) we have

χ(qz − pt) = ζ and hence χ(z) = χ(q)ζ . We are interested in locating a

large number of non-overlapping intervals of this form.

By Lemma 3.2, there exists coprime a, b ∈ Z such that 1 ≤ a ≤ H and

(3.2) |aNp−1 − b| ≤ 1/H .

One shows that if I(q1, t1) and I(q2, t2) overlap, then

(3.3) |Np−1(q1 − q2) + t2q1 − t1q2| < p−1XH .

Equations (3.2) and (3.3) yield

∣

∣

∣

∣

b

a
(q1 − q2) + t2q1 − t1q2

∣

∣

∣

∣

<
XH

p
+

|q1 − q2|
Ha

≤ XH

p
+

X

Ha
=

H2a+ p

2ahp
.

But since a ≤ H and H3 ≤ (2h− 1)p by hypothesis, we have

H2a + p

2ahp
≤ H3 + p

2ahp
≤ 1

a
.

Hence
∣

∣

∣

∣

b

a
(q1 − q2) + t2q1 − t1q2

∣

∣

∣

∣

<
1

a
,

and it follows that I(q1, t1) and I(q2, t2) can only overlap if

at1 + b

q1
=

at2 + b

q2
.

Invoking Lemma 3.1, we find that there will be at least (3/π2)X2f(X) dis-

joint intervals I(q, t) of the given form.

Having located the desired intervals, we are ready to give a lower estimate

for S(χ, h, r). Let z(q, t) denote the smallest integer in I(q, t). Since I(q, t)

has length at least 2h, the integers z(q, t) + n+m, for n = 0, . . . , h− 1 and

m = 1, . . . , h are distinct elements of I(q, t). Moreover, as q, t run through

the values selected by Lemma 3.1, the I(q, t) are disjoint. Now, using the
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fact that χ is constant on each I(q, t), one obtains the following bound for

S(χ, h, r):

p−1
∑

x=0

∣

∣

∣

∣

∣

h
∑

m=1

χ(x+m)

∣

∣

∣

∣

∣

2r

≥
∑

q,t

h−1
∑

n=0

∣

∣

∣

∣

∣

h
∑

m=1

χ(z(q, t) + n +m)

∣

∣

∣

∣

∣

2r

=
∑

q,t

h−1
∑

n=0

h2r

= h2r+1
∑

q,t

1

≥
(

3

π2

)

X2h2r+1f(X) .

Now we combine this lower bound on S(χ, h, r) with the upper bound

given in Lemma 2.2 to obtain
(

3

π2

)(

H

2h

)2

h2r+1f(X) <
1

4
(4r)rphr + (2r − 1)p1/2h2r ,

which implies

H2 <
4π2h2

3f(X)
p1/2

[

1

4h

(

4r

h

)r

p1/2 +

(

2r − 1

h

)]

.

(We have used the fact that f(X) > 0 for X ≥ 7 in order to divide both

sides by f(X) and preserve the inequality.) Taking the square root of both

sides yields the result. �

4 The Main Result

Theorem 4.1. Suppose χ is a non-principal Dirichlet character to the

prime modulus p ≥ 5 · 104 which is constant on (N,N + H ]. If H ≤
(2e2 log p− 3)1/3p1/3, then

H < C g(p) · p1/4 log p·

where

C =
πe

√
6

3
≈ 6.97266

and g(p) → 1 as p → ∞. In fact,

g(p) =

√

f

(

Cp1/4

2e2

)−1(

1 +
1

log p

)

,

where f(X) is defined in Proposition 3.3. Note that g(p) is positive and

decreasing for p ≥ 5 · 104.
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Before launching the proof of Theorem 4.1, we will establish the follow-

ing:

Lemma 4.2. Let p ≥ 3 be an integer. Suppose that A,B > 0 are real

numbers such that h = ⌊A log p⌋ and r = ⌊B log p⌋ are positive integers

with 2r + 1 ≤ h. Then

A ≥ 4B · exp
(

1

2B

)

=⇒ 1

2h

(

4r

h

)r

≤ 1

Ap1/2 log p
.

Proof. By convexity, log t ≥ (2 log 2)(t− 1) for all t ∈ [1/2, 1] and thus

log

(

h

h+ 1

)

≥ −2 log 2

h + 1
≥ − log 2

r + 1
.

This implies

1

2
≤

(

h

h+ 1

)r+1

and therefore

1

2h

(

4r

h

)r

≤ 1

h+ 1

(

4r

h+ 1

)r

≤ 1

A log p

(

4B

A

)r

.

Hence to obtain the desired implication, is suffices to show

(

4B

A

)r

≤ p−1/2 .

Taking logarithms, this is equivalent to

r log

(

4B

A

)

≤ −1

2
log p ,

which follows from inequality

B log

(

4B

A

)

≤ −1

2
,

which is true by hypothesis. �

Proof of Theorem 4.1. We will suppose H ≥ Cp1/4 log p, or else there

is nothing to prove. Set h = ⌊A log p⌋ and r = ⌊B log p⌋, where A := e2

and B := 1/4. The constants A and B were chosen as to minimize the

quantity AB subject to the constraint A ≥ 4B exp
(

1
2B

)

. One easily checks

that 14h ≤ Cp1/4 log p for our choices of h and C, provided p ≥ 5 · 104 and

hence 14h ≤ H . Also, we note that H ≤ (2h− 1)1/3p1/3 by hypothesis. We
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apply Proposition 3.3 and adopt all notation relevant to its statement. This

gives:

(4.1) H <
2πh

√

3f(X)
p1/4

[

1

4h

(

4r

h

)r

p1/2 +

(

2r − 1

h

)]1/2

In order for the quantity inside the square brackets above to remain

bounded as p gets large, and moreover be as small as possible, we would

like
1

4h

(

4r

h

)r

p1/2 → 0 .

As the constants A and B were chosen to satisfy the conditions of Lemma 4.2

(the condition above was precisely the motivation for the lemma), we have

1

2h

(

4r

h

)r

≤ 1

Ap1/2 log p
.

To give a clean bound on the the quantity (2r−1)/h we notice that 2r ≤ h+1

implies
2r − 1

h
≤ 2r

h+ 1
≤ 2B

A
.

Thus inequality (4.1) becomes

H <
2πA

√

3f(X)
p1/4 log p

[

1

2A log p
+

2B

A

]1/2

= p1/4 log p

[

8π2AB

3f(X)

(

1 +
1

4B log p

)]1/2

.

Now it is plain that the asymptotic constant in the above expression is

directly proportional to
√
AB, which motivates our choices of A and B.

Plugging in the values of A and B, we obtain:

H < p1/4 log p

[

2π2e2

3f(X)

(

1 +
1

log p

)]1/2

=
eπ

√
6

3
p1/4 log p

[

1

f(X)

(

1 +
1

log p

)]1/2

Finally, we note that we have an a priori lower bound on X ; namely

X =
H

2h
≥ Cp1/4 log p

2A log p
=

C p1/4

2e2
.

In light of the fact that f(X) is increasing, this gives

f(X)−1 ≤ f

(

C p1/4

2e2

)−1

,

and the result follows. �
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Corollary 4.3. If χ is a non-principal Dirichlet character to the prime

modulus p ≥ 5 · 1018 which is constant on (N,N +H ], then

H < C g(p) · p1/4 log p ,

where C and g(p) are as in Theorem 4.1.

Proof. In order to apply Theorem 4.1, which will give the result, it suffices

to show that H ≤ (2e2 log p − 3)1/3p1/3. By way of contradiction, suppose

H > (2e2 log p − 3)1/3p1/3. In this case we set H = ⌊(2e2 log p − 3)1/3p1/3⌋,
and note that χ is clearly still constant on (N,N +H ] for smaller H . We

invoke Theorem 4.1 to conclude that H < Cg(p)p1/4 log p where Cg(p) ≤
Cg(5 · 1018) < 7.06. Using the fact that p ≥ 5 · 1018, we have

H < 7.06p1/4 log p < (2e2 log p− 3)1/3p1/3 − 1 < H ,

which is a contradiction. �

It remains to derive theorems 1.1 and 1.2. Theorem 1.1 follows immedi-

ately from Corollary 4.3, and Theorem 1.2 follows immediately as well in

light of the facts that Cg(5 · 1018) < 7.06 and Cg(5 · 1055) < 7.

Remark. It would be highly desirable to prove a form of Theorem 1.2 with

a reasonable constant when p < 1020. For small p the best result appears

to be due to A. Brauer, using elementary methods. In [1], he shows that

H ≤ √
2p+ 2 for all p.
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