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Sub-logarithmic fluctuations for internal DLA
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Abstract

We consider internal diffusion limited aggregation in dimension larger or equal to
two. This is a random cluster growth model, where random walks start at the origin
of the d-dimensional lattice, one at a time, and stop moving when reaching a site not
occupied by previous walks. It is known that the asymptotic shape of the cluster is a
sphere. When dimension is two or more, we have shown that the inner (resp. outer)
fluctuations of its radius is at most of order log(radius) (resp. log2(radius)). Using the
same approach, we improve the upper bound on the inner fluctuation to

√

log(radius)
when d is larger than or equal to three. The inner fluctuation is then used to obtain a
similar upper bound on the outer fluctuation.

AMS 2010 subject classifications: 60K35, 82B24, 60J45.
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dom walk, shape theorem, logarithmic fluctuations.

1 Introduction

This note is a companion to our paper [1]. There, we introduced a family of cluster growth
models with a spherical asymptotic shape but a wide diversity of shape fluctuations. Internal
diffusion limited aggregation (internal DLA) was one member of this family. More precisely,
the internal DLA cluster of volume N , say A(N), is obtained inductively as follows. Initially,
we assume that the explored region is empty, that is A(0) = ∅. Then, consider N independent
discrete-time random walks S1, . . . , SN starting from 0. Assume A(k − 1) is obtained, and
define

τk = inf {t ≥ 0 : Sk(t) 6∈ A(k − 1)} , and A(k) = A(k − 1) ∪ {Sk(τk)}. (1.1)

We call explorers the random walks obeying the aggregation rule (1.1). We say that the k-th
explorer is settled on Sk(τk) after time τk, and is unsettled before time τk. The cluster A(N)
is interpreted as the positions of the N settled explorers.
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In this paper we show how the tools developped in [1] lead in dimension d ≥ 3 to sharper
estimates on the fluctuations of A(N) with respect to its spherical asymptotic shape. We
keep the notation of [1], and recall some to make the paper as self-contained as possible. We
denote with ‖ · ‖ the euclidean norm on R

d. For any x in R
d and r in R, set

B(x, r) =
{

y ∈ R
d : ‖y − x‖ < r

}

and B(x, r) = B(x, r) ∩ Z
d. (1.2)

For Λ ⊂ Z
d, |Λ| denotes the number of sites in Λ, and the boundary of Λ is ∂Λ = {z 6∈ Λ :

∃y ∈ Λ, ‖y − z‖ = 1}. For a simple random walk, let H(Λ) denotes its first hitting time of
Λ. The inner error δI(n) is such that

n− δI(n) = sup {r ≥ 0 : B(0, r) ⊂ A(|B(0, n)|)} . (1.3)

Also, the outer error δO(n) is such that

n+ δO(n) = inf {r ≥ 0 : A(|B(0, n)|) ⊂ B(0, r)} . (1.4)

Our main result is as follows.

Proposition 1.1 There are constants {αd, βd, d ≥ 3} such that in dimension d ≥ 3, with
probability 1,

lim sup
δI(n)
√

log(n)
≤ αd, and lim sup

δO(n)
√

log(n)
≤ βd. (1.5)

Remark 1.2 For d = 2, we also show that there are constants α2, β2 such that, with proba-
bility 1,

lim sup
δI(n)

log(n)
≤ α2, and lim sup

δO(n)

log(n)
≤ β2. (1.6)

Such a bound on the inner error was already obtained in [1]. Recently, Jerison, Levine,
and Sheffield [2] have established, in dimension two and with a different method, the same
estimate on both the inner and outer errors.

Let us describe the main steps. The inner error is at the heart of the argument. It is
based on a large deviation estimate which refines our previous estimates, with interest of its
own. For a real x, let ⌊x⌋ be the integer part of x.

Lemma 1.3 Choose R large enough, and A ≥ 1. Assume that ⌊ARd⌋ explorers lie initially
on B(0, R/2). We call η the initial configuration of these explorers and A(η) the cluster they
produce. There are positive constants {κd, d ≥ 2} independent of R and A, such that when
d ≥ 3

P (B(0, R) 6⊂ A(η)) ≤ exp
(

−κdAR
2
)

, (1.7)

and when d = 2, we have

P (B(0, R) 6⊂ A(η)) ≤ exp

(

−κ2
AR2

log(R)

)

. (1.8)
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Remark 1.4 The reason behind the previous Lemma, in d ≥ 3, is that out of ⌊ARd⌋ explor-
ers, only about AR2 eventually hit a fixed site on the boundary of B(0, R), so that it is only
these very explorers that need to be pushed away from this very site if we want it unoccupied.
The cost should be proportional to AR2.

For the outer error, we use a large deviation estimate symmetrical to Lemma 1.3 as
well as our coupling between internal DLA and the flashing process of [1]. This last large
deviation estimate was recently proved by Jerison, Levine and Sheffield in [2].

Lemma 1.5 [Lemma A of Jerison et al.[2]] For β, and R positive reals, assume that ⌊βRd⌋
explorers lie initially outside B(0, R). We call η the initial configuration of these explorers
and A(η) the cluster they produce. There are positive constants {κ′

d, d ≥ 2}, such that for
β small enough, we have when d ≥ 3,

P (0 ∈ A(η)) ≤ exp(−κ′
dR

2), (1.9)

whereas when d = 2, we have

P (0 ∈ A(η)) ≤ exp

(

−κ′
2

R2

log(R)

)

. (1.10)

We give an alternative proof of this result, based on estimating the probability of crossing a
shell, while avoiding traps.

Lemma 1.6 Consider d ≥ 2. Fix a positive real R, and start a random walk on z ∈
∂B(0, 2R). There are positive constants {κd, ad} such that for any V subset of the shell
S = B(0, 2R)\B(0, R), we have

Pz (H (B(0, R)) < H(V c)) ≤ exp

(

ad − κd
R

ρ

)

where ρd−1 =
|V |
R

. (1.11)

Remark 1.7 V c = S\V is interpreted as traps. Note that ρ is proportional to the radius of
a cylinder of height R and volume |V |. We can also read (1.11) in the following way.

Pz (H(B(0, R)) < H(V c)) ≤ exp

(

ad − κd

(

Rd

|V |

)
1

d−1

)

. (1.12)

This shows that for (1.12) to be an effective inequality, one needs that |V | be smaller than
Rd. The power 1/(d− 1) on Rd/V in (1.12) is not important in proving (1.5). If one were
willing to accept the weaker power 1/d, then one would have the following simple heuristics
in d ≥ 3. Let t denotes the time the walk spends in the annulus of height R. On one hand,
the central limit scaling yields that the probability of such a stay is of order exp(−cR2/t).
On the other hand, all this time should be spent on sites of V , and it is well known that this
event has probability of order exp(−κdt/|V |2/d). Putting together these opposite requirements,
and optimizing over t, we find a statement weaker than (1.12), but enough for our present
purpose.

Pz (H(B(0, R)) < H(V c)) ≤ exp

(

ad − κd

(

Rd

|V |

)
1
d

)

. (1.13)
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Even though inequality (1.13) is not written in [1], it was the motivation behind the intro-
duction of flashing processes in [1], which were basically used to bypass this type of estimate.

The rest of the paper is organized as follows. In Section 2, we enounce some known results:
we recall the approach of Lawler, Bramson and Griffeath [3], and useful large deviation
estimates. Then, the inner error estimate is proved in Section 3. In Section 4, we show how
a flashing process permits a simple control on the outer error. Finally, we have gathered in
an Appendix the proof of the large deviations Lemmas 1.3, 1.5 and 1.6.

2 Prerequisites

2.1 Notation

We recall some notation of [1]. The state space of configurations is NZd
, and its elements are

denoted η, and represents starting conditions for a set of explorers, or random walks. Two
types of initial configurations play an important role here: (i) the configuration n1z∗ formed
by n trajectories starting on a given site z∗, (ii) for Λ ⊂ Z

d, the configuration 1Λ that we
simply identify with Λ. For any configuration η ∈ N

Z
d
we write

|η| =
∑

z∈Zd

η(z). (2.1)

Definition 2.1 Let R ∈ R+ ∪ {∞}. For z ∈ B(0, R) ∪ ∂B(0, R), we denote by MR(η, z)
(resp. WR(η, z)) the number of simple random walks (resp. explorers) initially on η that hit
z when or before exiting B(0, R). Thus, when z ∈ ∂B(0, R), MR(η, z) (resp. WR(η, z)) is the
number of simple random walks (resp. explorers) which exit B(0, R) exactly on z.

As in [5] (Section 3), it is useful to stop explorers as they reach ∂B(0, R), for some R > 0,
then to define AR(η) as the set of positions of settled explorers.

Definition 2.2 Consider R ∈ R ∪ {∞}. We set

∀z ∈ B(0, R), M̃R(η, z) = WR(η, z) +MR(AR(η), z). (2.2)

Finaly, for any function F : Zd → R, and Λ ⊂ Z
d, we denote

F (Λ) =
∑

z∈Λ

F (z).

2.2 On a classical approach

We recall the approach of Lawler, Bramson and Griffeath in [3]. Send N = |B(0, n)| explorers
from the origin. The approach of [3] is based on the following observations. (i) If explorers
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would not settle, they would just be independent random walks; (ii) exactly one explorer
occupies each site of the cluster. Then, observations (i) and (ii) imply that for any z ∈ B(0, n)

M̃n(N 1I0, z) := Wn(N 1I0, z) +Mn(An(N), z)
law
= Mn(N 1I0, z). (2.3)

Note that for any set Λ ⊂ B(0, n), Mn(Λ, z) is a sum of independent Bernoulli variables.
Note also that An(N) ⊂ B(0, n) so that

Wn(N 1I0, z) +Mn(B(0, n), z) ≥ M̃n(N 1I0, z). (2.4)

However, Lawler et al. did not use that Wn(N 1I0, z) and Mn(B(0, n), z) were independent.
They could only obtain a rough estimate on the lower tail of Wn(N 1I0, z). This in turn gave
some estimates on the inner error, which was used to derive bounds on the outer error, by
using that the cluster covers B(0, n− δI(n)). In other words, from (2.3), and the definition
of δI(n)

W∞(N 1I0, z) +M∞(B(0, n− δI(n)), z) ≤ M̃∞(N 1I0, z).

Therefore, if δI(n) is likely to be smaller than R,

1I{δI (n)<R} (W∞(N 1I0, z) +M∞(B(0, n− δI(n)), z)) ≤ M̃∞(N 1I0, z). (2.5)

Let us now recall a simple tool of [1] in estimating deviations in view of (2.4), and (2.5).

2.3 On sums of Bernoulli variables

We first enounce the lower tail estimate.

Lemma 2.3 Suppose that a sequence of random variables {Wn,Mn, Ln, M̃n n ∈ N}, and a
sequence of real numbers {cn, n ∈ N}, satisfy for each n ∈ N

Wn + Ln + cn ≥ M̃n, and M̃n
law
= Mn. (2.6)

Assume that Wn and Ln are independent, and that Ln and Mn both are sums of independent
Bernoulli variables. Assume that the Bernoulli variables {Y (n)

1 , . . . , Y
(n)
Nn

} summing up to Ln,
satisfy for some κ > 1

(H1) sup
n

sup
i≤Nn

E[Y
(n)
i ] <

κ− 1

κ
,

(H2) µn := E[Mn]− E[Ln] ≥ 0.

Then, for any n in N and ξn in R we have for all λ ≥ 0

P (Wn < ξn) ≤ exp

(

−λ(µn − ξn − cn) +
λ2

2

(

µn + κ

Nn
∑

i=1

E[Y
(n)
i ]2

))

. (2.7)

The upper tail estimate needs other assumptions.
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Lemma 2.4 Assume for each n ∈ N, and for an event An

1IAn (Wn + Ln) ≤ M̃n, and M̃n
law
= Mn. (2.8)

Assume that Wn and Ln are independent, 1IAn and Ln are independent, and that Ln and
Mn both are sums of independent Bernoulli variables such that µn := E[Mn] − E[Ln] ≥ 0.
Then, for all n in N, ξn in R and λ ∈ [0, log 2],

P (Wn ≥ ξn, An) ≤ exp

(

−λ(ξn − µn) + λ2

(

µn + 4
∑

i

E[Y
(n)
i ]2

))

. (2.9)

Remark 2.5 This lower (resp. upper) tail estimate turns out to be useful when ξn + cn is
less than (resp. ξn is more than) E[Mn] − E[Ln]. By Lemmas 2.3 and 2.4 tail estimates

reduce to a three step strategy: i) estimation of E[Mn]−E[Ln] ii) estimation of
∑

i E
2[Y

(n)
i ]

iii) optimization in λ. We emphasize that this strategy does not require any control of the
variance of Wn.

Proof of Lemmas 2.3 and 2.4: As in [1] this is an application of Lemma 2.2 of [1]. For
the lower tail, using the exponential Chebishev inequality, the independance between Wn

and Ln, formula (2.6) and after centering the random variables, we get

P (Wn < ξn) ≤
E
[

e−λ(Mn−E[Mn])
]

E [e−λ(Ln−E[Ln])]
e−λ(E[Mn]−E[Ln]−ξn−cn). (2.10)

If we define, for t ∈ R, f(t) = et − (1 + t) and g(t) = (et − 1)2, then Lemma 2.2 of [1] yields

E
[

e−λ(Mn−E[Mn])
]

E [e−λ(Ln−E[Ln])]
≤ exp

{

f(−λ)(E[Mn]−E[Ln]) +
κ

2
g(−λ)

Nn
∑

i=1

E2[Y
(n)
i ]

}

. (2.11)

We conclude by observing that for all t ∈ R,

f(t) ≤ t2

2
e[t]+ and g(t) ≤ t2e2[t]+ , (2.12)

where [·]+ stands for the positive part. The proof for the upper tail is similar.

2.4 On a discrete mean value property of Green’s function

We recall now the key result behind the sphericity of the asymptotic shape.

Proposition 2.6 Consider d ≥ 2. There is a constant Kd such that, for any n and R with
n− n

1
3 ≥ R ≥ n and z in B(0, R) with n− ‖z‖ ≥ 1,

∣

∣

∣

∣

∣

∣

|B(0, R)|Gn(0, z)−
∑

y∈B(0,R)

Gn(y, z)

∣

∣

∣

∣

∣

∣

≤ Kd. (2.13)



Fluctuations for internal DLA 7

Proof : For n − R large enough this is Proposition 4.2 of [1]. For n = R this is a direct
consequence of Lemmas 2 and 3 of [5]. For the remaining cases one can use the same Lemmas
in conjunction with Lemma 5 of [5].

Remark 2.7 For the inner bound we will use Proposition 2.6 with R = n. For the outer
bound we will use Proposition 2.6 with n − R of order logn in dimension 2 and

√
log n in

dimension d ≥ 3.

3 Inner error

3.1 Exploration by waves

We choose the following height sequence. For any positive integer n, h(n) =
√

log(n) in
d ≥ 3, and h(n) = log(n) in d = 2. We partition Z

d into concentric shells of heights h(n).
We define S0 = B(0, h(n)), and for k ≥ 1,

Sk = B(0, (k + 1)h(n))\B(0, kh(n)), and Σk = ∂B(0, kh(n)). (3.1)

We realize the internal DLA as an exploration wave process, where concentric shells are
covered in turn (see Section 3 of [5]).

We fix an integer k. For a site z ∈ Σk, we call cell centered on z, C(z) := B(z, h(n))∩Sk ,
and we call tile centered on z, T (z) := B(z, h(n)/2) ∩Σk. A generic cell is denoted C, and a
generic tile is denoted T . Note the obvious facts

⋃

z∈Σk

B(z, h(n)) ⊃ Sk. (3.2)

Before covering shell Sk, one stops the unsettled explorers on Σk. Following[1], for z ∈ Σk,
we prove that the Wkh(n)(N 1I0, T ) explorers stopped on T = T (z) are likely to cover C(z),
if kh(n) ≤ n− Ah(n) for a large enough constant A. As first observed in [3]

Wkh(n)(N 1I0, T ) +Mkh(n)(B(0, kh(n)), T ) ≥ M̃kh(n)(N 1I0, T ). (3.3)

Since (3.3) corresponds to an inequality of type (2.6), we wish to use Lemma 2.3, but we
need to ensure (H1) and (H2).

First, if B̃(r) denotes the sites of B(0, kh(n)) at a distance less than r from T , there is L
and ρd > 1, (which depend only on dimension) such that

sup
y∈B(0,kh(n))\B̃(Lh(n))

Py(S(H(∂Σk)) ∈ T ) <
ρd − 1

ρd
(3.4)

(see Lemma 4.5 of [1]). Set cn = |B̃(Lh(n))|, and note that cn ≤ c(Lh(n))d for some constant
c. From (3.3) we have

Wkh(n)(N 1I0, T ) +Mkh(n)(B(0, kh(n))\B̃(Lh(n)), T ) ≥ M̃kh(n)(N 1I0, T )− cn. (3.5)
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We will use Lemma 2.3 with Ln = Mkh(n)(B(0, kh(n))\B̃(Lh(n)), T ) and we note that (H1)
is ensured by (3.4). Let us define

µ = E
[

Mkh(n)(N 1I0, T )
]

−E
[

Mkh(n)(B(0, kh(n))\B̃T (Lh(n)), T )
]

. (3.6)

We consider the event that Sk is not covered, and use the bound

P (Sk not covered) ≤P

(

∃T ⊂ Σk : Wkh(n)(N 1I0, T ) <
1

3
µ

)

+ P

(

Sk not covered, ∀T ⊂ Σk : Wkh(n)(N 1I0, T ) ≥ 1

3
µ

)

.

(3.7)

In the next Sections, we compute µ, and estimate the probabilities of events on the right
hand side of (3.7).

3.1.1 Mean number of explorers crossing a tile

When T is the tile of a cell C, which has side h(n), and belongs to shell Sk ⊂ B(0, n), at a
distance Ah(n) from B(0, n), then we have that for some positive constants {cd, d ≥ 2}

µ ≥ cdAh(n)
d. (3.8)

Indeed, this follows as in [1], Section 5.2 and relies on Proposition 2.6. Note that (3.8)
ensures (H2).

3.1.2 Wkh(n)(N 1I0, T ) is unlikely to be small

By hte computations (5.25) and (5.26) of Section 5.2 of [1], there are constants Cd such that

∑

y∈B(0,kh(n))\B̃(Lh(n))

P 2
y (S(H(∂Σk) ∈ T ) ≤

{

C2h
2(n) log(n) for d = 2 ,

Cdh
d(n) for d ≥ 3 .

(3.9)

Since for A large enough we have µ ≥ 3cLdhd(n) ≥ 3cn, Lemma 2.3 yields that for positive
constants {cd, d ≥ 2} such that

P

(

Wkh(n)(N 1I0, T ) <
1

3
µ

)

≤
{

exp (−λκ2Ah
2(n) + λ2c2h

2(n) log(n)) for d = 2 ,
exp

(

−λκdAh
d(n) + λ2cdh

d(n)
)

for d ≥ 3 .
(3.10)

Thus, after optimizing over λ, we get

P

(

∃T ⊂ Σk : Wkh(n)(N 1I0, T ) <
1

3
µ

)

≤







n2 exp
(

−κ2
2A

2h2(n)

4c2 log(n)

)

for d = 2 ,

nd exp
(

−κ2
dA

2hd(n)

4cd

)

for d ≥ 3 .
(3.11)

Thus, {∃T ⊂ Σk, Wkh(n)(N 1I0, T ) ≤ 1
3
µ} has a summable probability if A is large enough.
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3.1.3 C is likely to be covered when Wkh(n)(N 1I0, T ) is large

We consider here the event {∀T ⊂ S, Wkh(n)(N 1I0, T ) ≥ κ
3
Ahd(n)}. Consider shell Sk at a

distance Ah(n) from ∂B(0, n). Since Sk is the union of B(z, h(n)) when z ∈ Σk, Lemma 1.3
implies, when d = 2, that

P (Sk 6∈ A(N), ∀T ,Wkh(n)(N 1I0, T ) >
1

3
µ) ≤ |Sk| exp

(

−κ2κA
h2(n)

log(n)

)

. (3.12)

We obtain a summable bound, with h(n) = log(n) and A large enough. When d ≥ 3, then
we have

P (Sk 6∈ A(N), ∀T ,Wkh(n)(N 1I0, T ) >
1

3
µ) ≤ |Sk| exp

(

−κdκAh
2(n)

)

. (3.13)

We obtain a summable bound, with h2(n) = log(n), and A large enough.

4 Outer error.

In this Section, we prove the outer error estimate (1.5). This is a consequence of our inner
error estimates, of Lemma 1.5, combined with coupling with a flashing process of [1]. When
dimension d = 2, and for A large to be chosen later, we decompose the event {δO(n) ≥
A log(n)}, as

{δO(n) ≥ A log(n)} =
⋃

i≥1

{δO(n) ∈ [A log(n) + i− 1, A log(n) + i[} . (4.1)

In dimension d ≥ 3,
√

log(n) replaces log(n) in (4.1). Note that the index i is at most log2(n)

in view of the results of [1]. Now, we fix i ≥ 1, and we set 3h(n) = A
√

log(n) + i in d ≥ 3,
and 3h(n) = A log(n) + i in d = 2. We consider the event {δO(n) ∈ [3h(n)− 1, 3h(n)[}. We
define also,

Σ = B(0, n+ 3h(n))\B(0, n+ 3h(n)− 1).

Note now that

P (δO(n) ∈ [3h(n)− 1, 3h(n)[) ≤ P

(

⋃

z∈Σ

{z ∈ A(N), δO(n) = ‖z‖ − n}
)

. (4.2)

For z ∈ Σ, and in view of Lemma 1.5, we define

G(z) =
{

z ∈ A(N), δO(n) = ‖z‖ − n, |A(N) ∩ B(z, h(n))| > βhd(n)
}

. (4.3)

We further decompose the right hand side of (4.2) as

P (z ∈ A(N), δO(n) = ‖z‖ − n) ≤ P (G(z))+P
(

z ∈ A(N), |A(N) ∩ B(z, h(n))| ≤ βhd(n)
)

.
(4.4)

The second term on the right hand side of (4.4) is dealt with Lemma 1.5. We deal now with
G(z). Note that under {δO(n) ∈ [3h(n) − 1, 3h(n)[}, no explorer escapes B(0, n + 3h(n)).
Thus, on G(z), there are at least βhd(n) explorers which settle on B(z, h(n)) before exiting
B(0, n+ 3h(n)). We now express the event G(z) in term of flashing explorers, as introduced
in [1].
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4.1 On a flashing process

We refer the reader to Section 3.1 of [1] for a definition of flashing processes. Here, we
partition Z

d into shells encaging B(0, n), with for k ≥ 0

Sk = B(0, n+ 2(k + 1)h(n))\B(0, n+ 2kh(n)).

Also, for k ≥ 0, let Σk = ∂B(0, n + (2k + 1)h(n)). We now consider the following flashing
process. Explorers behave like internal DLA explorers, as long as they stay in B(0, n). After
exiting B(0, n) they do not flash until their hitting of Σ0, and behave like flashing explorers
as defined in Section 3.1 of [1]. In shells {Sk, k ≥ 0}, cells and tiles have the meaning given
in Section 4 of [1]. The key features, the reader has to keep in mind, are as follows.

• If a flashing explorer is unsettled up to time H(Σk), then after time H(Σk), it probes
one site distributed almost uniformly over the cell centered at S(H(Σk)), and settles
if the site is unoccupied.

• When an explorer leaves the cell centered on S(H(Σk)), it cannot afterward settle in
Sk, but perform a simple random walk, independent of other explorers, until it hits
Σk+1. Thus, if we know that an explorer has reached at time t a site of B(0, n+ (2k+
1)h)\B(0, n + 2kh), then it performs after time t a simple random walk, independent
of its surrounding, until it reaches Σk.

• We can build the internal DLA cluster, A(N), and the flashing cluster A∗(N) using
the same trajectories S1, . . . , SN such that

A(N) =
N
⋃

i=1

{Si(T (i))}, and A∗(N) =
N
⋃

i=1

{Si(T
∗(i))}, (4.5)

and for all i = 1, . . . , N, T ∗(i) ≥ T (i). This last property is fundamental. It implies
that if a DLA explorer has crossed a site before settling, then the corresponding flashing
explorer has also crossed the site before settling.

Before introducing more notation, let us explain the simple idea behind our estimate.

Heuristics Using the representation (4.5), event G(z) for z ∈ Σ implies that at least βhd(n)
flashing explorers hit B(z, h(n)) before exiting B(0, n+3h(n)). Consider these explorers after
the moment they enter B(z, h(n)) ⊂ S1 for the first time: they are behaving as independent
random walks until they hit Σ1. Now, a fraction must hit Σ1 on B(z, 2h(n)) ∩Σ1. We show
that this later event has a probability we can estimate through the approach of [1].

Recall that for Λ ⊂ B(0, n+3h(n))∪∂B(0, n+3h(n)), we call W3h(n)(N 1I0,Λ) the number
of flashing explorers which cross Λ before hitting Σ1. Since the initial configuration is always
N 1I0 in this section, we omit this coordinate in W3h(n) to simplify notation. Under our
coupling (4.5), we have

G(z) ⊂
{

W3h(n) (B(z, h(n))) ≥ βhd(n)
}

. (4.6)
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Let z′ be the closest site of Σ1 to the line (0, z), and note that ‖z−z′‖ ≤ 1+
√
d. Note that

a fraction of theW3h(n)(B(z, h(n))) independent random walks in B(z, h(n))∩B(0, n+3h(n)),
must hit Σ1 in a neighborhood of z′. Indeed, first note that since z′ ∈ Σ1, we have

|∂B(z′, 2h(n)) ∩ B(0, n + 3h(n))| ≥ 1

4
|∂B(z′, 2h(n))|. (4.7)

Now, for any y ∈ ∂B(z, h(n)), a random walk starting on y, exits B(z′, 2h(n)) on any site
of |∂B(z′, 2h(n))| with a probability larger than c(2h(n))1−d, for some positive constant c.
Thus, there is a positive constant ρ such that

inf
y∈∂B(z,h(n))

Py (S (H(∂B(z′, 2h(n)))) ∈ S2) ≥ ρ. (4.8)

In other words, each flashing explorer stopped on ∂B(z, h(n)) before hitting Σ1 has a prob-
ability at least ρ to exit Σ1 from Σ1 ∩B(z, 2h(n)). Thus, there is a positive constant I, such
that for an integer k large enough

P
(

W3h(n) (B(z
′, 2h(n))) <

ρ

2
k
∣

∣ W3h(n)(B(z, h(n))) > k
)

≤ exp (−Ik) . (4.9)

From (4.6), we have

⋃

z∈Σ

G(z) ⊂
⋃

z′∈Σ1

{

W3h(n) (B(z
′, 2h(n))) ≥ ρ

2
βhd(n)

}

∪
⋃

z′∈Σ1

{

W3h(n) (B(z
′, 2h(n))) <

ρ

2
βhd(n) and W3h(n) (B(z, h(n))) ≥ βhd(n)

}

.

(4.10)

Let us now define, for any a > 0

F (a) =
⋃

z∈Σ1

{

W3h(n) (B(z, 2h(n))) ≥ ahd(n)
}

. (4.11)

Thus, from (4.10) and (4.9), and for some constant C > 0

P
(

⋃

z∈Σ

G(z)
)

≤ P

(

⋃

z′∈Σ1

W3h(n) (B(z
′, 2h(n))) ≥ ρ

2
βhd(n)

)

+ |Σ1| sup
z′∈Σ1

P
(

W3h(n) (B(z
′, 2h(n))) <

ρ

2
βhd(n)

∣

∣W3h(n) (B(z, h(n))) ≥ βhd(n)
)

≤ P
(

F (
ρ

2
β)
)

+ Cnd−1 exp
(

−I
ρ

2
βhd(n)

)

.

(4.12)

It remains to show that for any fixed a, we can find A (defining h(n)) such that P (F (a)) is
smaller than any inverse power of n.
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4.2 On estimating P (F (a)).

Note that by definition of δI(n), for T ⊂ Σ1 W3h(n)(T ) satisfies the inequality

W3h(n)(T ) +M3h(n)(B(0, n− δI(n)), T ) ≤ M̃3h(n)(N 1I0, T ). (4.13)

Thus, for αd defined in (1.5), we have

1I
δI (n)≤2αd

h(n)
A

(

W3h(n)(T ) +M3h(n)(B(0, n− 2αd
h(n)

A
))

)

≤ M̃3h(n)(N 1I0, T ). (4.14)

Inequality (4.14) puts us in the setting of Lemma 2.4. Thus, we first need to compute

µ̃ = E
[

M3h(n)(N 1I0, T )
]

− E

[

M3h(n)(B(0, n− 2αd
h(n)

A
), T )

]

. (4.15)

Following the same computations as in Section 5.3 of [1], we have for some constants K, c >
0.

µ̃ ≤ K

(

αd
h(n)

A
nd−1

)

× hd−1(n)

nd−1
≤ c

A
hd(n). (4.16)

Secondly, note that as in Section 5.3 of [1], we have that for constants {cd, d ≥ 2}
∑

z∈B(0,n)

P 2
z (S(H(Σ1)) ∈ T ) ≤

{

c2h
2(n) log(n) if d = 2,

cdh
d(n) if d ≥ 3.

(4.17)

In optimizing over λ in (2.4), we find for (other) constants {cd, d ≥ 2}

P
(

∃T : W3h(n)(T ) ≥ hd(n)
)

≤ P

(

δI(n) > 2αd
h(n)

A

)

+ nd

{

exp
(

−c2
h2(n)
log(n)

)

if d = 2,

exp
(

−cdh
d(n)

)

if d ≥ 3.
(4.18)

APPENDIX

A Proof of Lemma 1.3

We fix η, a configuration of ARd explorers in B(0, R/2), and we will choose later α large
enough. Then,

P (B(0, R) 6⊂ A(η)) ≤
∑

z∈B(0,R)

P (WαR(η, z) = 0) . (A.1)

If ζ is the configuration with one explorer on each site of B(0, αR)\B(z, L), we have

WαR(η, z) +MαR(ζ, z) ≥ M̃αR(η, z)− |B(z, L)|. (A.2)
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Note thatWαR(η, z) andMαR(ζ, z) are independent, so that we are in the setting of Lemma 2.3.
Assume for a moment that conditions (H1) and (H2) hold, and in addition

E [MαR(η, z)]− E [MαR(ζ, z)] ≥ max



3|B(z, L)|,
∑

y∈B(0,αR)

Py (Hz < HαR)
2



 . (A.3)

Then, we have

P (WαR(η, z) = 0) ≤ exp (−C (E [MαR(η, z)]−E [MαR(ζ, z)])) . (A.4)

It would remain to show that for some constants cd

E [MαR(η, z)]−E [MαR(ζ, z)] ≥
{

c2
AR2

log(R)
if d = 2,

cdAR
2 if d ≥ 3.

(A.5)

For this purpose, we next consider separately the case d ≥ 3 and the case d = 2, and show
(A.5) and (A.3).

A.1 The case d ≥ 3

We show in this Section that for κd > 0, and A large enough,

E[M̃αR(η, z)−MαR(ζ, z)] ≥
κ

2
AR2 ≫ 3|B(z, L)|. (A.6)

The proof is based on the following classical estimates. There is a1, a2 positive constants
such that for any y, z ∈ Z

d

a1
1 + ‖y − z‖d−2

≤ Py(Hz < ∞) ≤ a2
1 + ‖y − z‖d−2

. (A.7)

Note first that when L is large enough, (H1) holds. Indeed,

sup
y:‖z−y‖>L

Py(Hz < HαR) ≤ sup
y:‖z−y‖>L

Py(Hz < ∞) ≤ a2
1 + Ld−2

≤ κ− 1

κ
, with κ > 1.

(A.8)
We now estimate the mean number of explorers hitting z.

E[MαR(η, z)]− E[MαR(ζ, z)] =
∑

y∈B(0,R/2)

η(y)Py (Hz < HαR)−
∑

y∈B(0,αR)\B(z,L)

Py (Hz < HαR)

≥
∑

y∈B(0,R/2)

η(y)Py (Hz < HαR)−
∑

y∈B(0,αR)

Py (Hz < ∞) .

(A.9)

Note that for y ∈ B(0, R/2), we have

Py (Hz < HαR) =Py(Hz < ∞)−Ey

[

1IHαR<Hz PS(HαR) (Hz < ∞)
]

≥ a1
1 + ‖y − z‖d−2

−Ey

[

a2
1 + ‖S(HαR)− z‖d−2

]

≥ inf
y∈B(0,R/2)

a1
1 + ‖y − z‖d−2

− sup
y∈∂B(0,αR)

a2
1 + ‖y − z‖d−2

.

(A.10)
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Now, for a constant α which depends only on a1, a2, there is κ > 0 such that

inf
y∈B(0,R/2)

Py (Hz < HαR) ≥
κ

Rd−2
. (A.11)

Now, using (A.11) in (A.9), we have a constant c such that

E[M̃αR(η, z)−MαR(ζ, z)] ≥ARd κ

Rd−2
−

∑

y:‖y−z‖<αR

a1
1 + ‖y − z‖d−2

≥κAR2 − ca2(αR)2.

(A.12)

When A is chosen large enough, we obtain (A.6).

Finaly, there are constants {Cd, d ≥ 3} such that for any z ∈ B(0, R)

∑

y∈B(0,αR)

Py (Hz < HαR)
2 ≤







C3αR for d = 3 ,
C4 log(αR) for d = 4 ,
Cd for d ≥ 5 .

(A.13)

Thus, hypotheses (A.3) holds.

A.2 The case d = 2

We still have

Py(Hz < HαR) =
GαR(y, z)

GαR(z, z)
=

GαR(z, y)

GαR(z, z)
, and GαR(z, y) = Ez [a(S(HαR), y)]− a(z, y),

(A.14)
where the potential kernel a(., .) replaces Green’s function. Note that for 0 ≤ ‖z‖+R < αR,
we have two positive constants K2 and K ′

2 such that

K ′
2 log(2αR) ≥ GB(z,2αR) ≥ GαR(z, z) ≥ GB(z,R)(z, z) ≥ K2 log(R), (A.15)

by Proposition 1.6.6 of Lawler [4]. To estimate GαR(z, y), we use Theorem 4.4.4. of [6] which
establishes that for z 6= 0, (with γ the Euler constant)

∣

∣a(0, z)− 2

π
log (‖z‖)− 2γ + log(8)

π

∣

∣ ≤ Kg

‖z‖2 . (A.16)

Thus, for y ∈ B(0, αR), and 0 ≤ ‖z‖ ≤ R, and y 6= z

∣

∣

∣

∣

GαR(z, y)−
2

π
E

[

log

(‖S(HαR)− z‖
‖y − z‖

)]∣

∣

∣

∣

≤ 2Kg. (A.17)

When y ∈ B(0, R/2) we get

GαR(z, y) ≥
2

π
log (2(α− 1)/3)− 2Kg. (A.18)
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We choose α large enough so that for some constant C1, we have, for all y in B(0, R/2),

GαR(z, y) ≥ C1. (A.19)

Formulas (A.14), (A.15) and (A.19) together imply that

E[MαR(η, z)] =
∑

y∈B(0,R/2)

η(y)Py(Hz < HαR) ≥
C1

K ′
2 log(2αR)

∑

y∈B(0,R/2)

η(y) =
C1AR

2

K ′
2 log(2αR)

.

(A.20)
Using Lemma 3 of [5], we have, for some positive constant C2,

E[MαR(ζ, z)] ≤ E[MαR(B(0, αR), z)] ≤ C2(αR)2

log(R)
. (A.21)

We need now to choose L to have (H1) satisfied. Note that for y 6= z, (A.17) and (A.15)
yields

Py(Hz < HαR) ≤
1

K2 log(R)
E

[

2

π
log

(‖S(HαR)− z‖
‖y − z‖

)

+ 2Kg

]

. (A.22)

If ‖z − y‖ > R/ log(R), we obtain, for some constant C3

Py(Hz < HαR) ≤
C3 log ((α+ 1) log(R))

log(R)
. (A.23)

When R is large enough, we have that (H1) holds for L = R/ log(R). Note that |B(0, L)| is
of order R2/ log(R)2 and is much smaller than R2/ log(R).

Finally we need to control the sum of second moments. Simply note that, from (A.21),

∑

y∈B(0,αR)\B(0,L)

P 2
y (Hz < HαR) ≤ E[MαR(ζ, z)] ≤

C2α
2R2

log(R)
. (A.24)

B Proof of Lemma 1.6

We will choose an h such that R/2h is a positive integer. We divide S = B(0, 2R) \B(0, R)
into R/2h concentric shells of height 2h. For i = 1, . . . , R/2h define

Sk = B(0, 2R− 2(k − 1)h)\B(0, 2R− 2kh), and Σk := ∂B(0, 2R − (2k − 1)h). (B.1)

Also, we set S0 = B(0, 2R)c. Then, we start on z ∈ ∂B(0, 2R) a flashing explorer associated
with this partition with an explored region V . The flashing setting is much simpler than
the one introduced in Section 3.1 of [1]. There is an underlying simple random walk, say
S∗, and each shell S1,S2, . . . is associated with a flashing site. These flashing sites, say
{Zk, 0 ≤ k ≤ 2R/h} are obtained as follows. For k = 0 we set Z0 = z and for k ≥ 1 we
draw a continuous random variable Rk on [0, h] with density in r ∈ [0, h] 7→ drd−1/hd: the
flashing site Zk is the exit site from B(S∗(H(Σk)), Rk) after time H(Σk). Then, the explorer
settles on the first flashing site in S \ V . The purpose of the flashing construction is that (i)
the flashing site is distributed almost uniformely inside the ball B(S∗(H(Σk)), h), and (ii)
Pz(H(B(0, R)) < H(V c)) is bounded above by the probability that the explorer crosses S.

For a small β to be chosen later, we say that y ∈ Σk has a dense neighborhood if |B(y, h)∩
V | ≥ βhd, and we call Dk their set. There is κ > 0 such that for h large enough (say h ≥ h0)
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• if S∗(H(Σk)) 6∈ Dk, then the probability that S∗ does not settle in Sk is smaller than
κβ,

• the probability that S∗(H(Σk)) ∈ Dk is smaller than κ|Dk|/hd−1
k (see Lemma 5 of [3])

uniformely over the of position the previous flashing site (in Sk−1 or, exceptionally, on
the border of Sk−1).

Now, the flashing explorer has crossed the annulus S if Zk ∈ V for all k ≥ 1. In other
words,

{H(B(0, R)) < H(V c)} ⊂
R/2h
⋂

k=1

{Zk ∈ V } . (B.2)

By conditioning, we obtain

Pz





R/2h
⋂

k=1

{Zk ∈ V }



 ≤
R/2h
∏

k=1

(

κβ +
κ|Dk|
hd−1
k

)

. (B.3)

By the arithmetic-geometric inequality, and (B.2), we obtain

Pz(H(B(0, R)) < H(V c)) ≤



κβ +
κ

R/2h

R/2h
∑

k=1

|Dk|
hd−1





R/2h

. (B.4)

Note that each y ∈ Dk satisfies |B(y, h) ∩ V | ≥ βhd, but each site in B(y, h) ∩ V is in the
neighborhood of at most hd−1 site of Dk. Thus, for some κ′

R/2h
∑

k=1

β|Dk|hd

hd−1
≤ κ′|V |, i.e.,

1

R/2h

R/2h
∑

k=1

|Dk|
hd−1

≤ 2κ′|V |
βRhd−1

. (B.5)

We choose now β such that 4κβ < 1, and we choose the smallest h such that R/2h is a
positive integer and

h ≥ max

{

h0,

(

2κ′|V |
β2R

)
1

d−1

}

. (B.6)

This adds a constraint on |V |:
|V | ≤ β2

2dκ′
Rd. (B.7)

Instead of including (B.7) as a condition of our Lemma, we find more convenient to note
that the probability we estimate is always less than 1, so that we deal with the case where
(B.7) is violated with the constant ad of (1.11).

C Proof of Lemma 1.5

Recall that ad and κd are the constants appearing in Lemma 1.6. We define a positive
constant

γ = max

(

1,

(

2ad
κd

)d−1
)

. (C.1)
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Choose now β > 0 such that 4dβγ ≤ 1, and h0 = R/4 ≥ 1. Note that

γ|η| ≤ γβRd ≤ hd
0. (C.2)

We build now, by induction, a random subdivision of B(z, R) into shells of heights h0, h1, . . . ,
in which respectively N0, N1, . . . explorers of A(η) have settled. We emphasize that the
randomness comes from A(η), and that the event {0 ∈ A(η)} imposes to have Ni ≥ ⌊hi⌋, for
i ≥ 0. Assume that h1, . . . , hk have been defined such that

hk ≥ 1 and

k
∑

i=1

hi <
R

2
. (C.3)

We define hd
k+1 = γNk ≤ γ|η|, and, by (C.2) we have hk+1 ≤ h0. Note also that hk+1 ≥ 1.

Indeed, necessarily Nk ≥ ⌊hk⌋, so that hd
k+1 ≥ γ⌊hk⌋ ≥ ⌊hk⌋. Since min(h1, . . . , hk+1) ≥ 1,

the number of steps before we violate (C.3), say L, is finite. Obviously L ≤ R. Note that
since hL ≤ h0

R

2
≤

L
∑

i=1

hi ≤ hL +

L−1
∑

i=1

hi ≤
R

4
+

R

2
. (C.4)

Thus, we define

hL+1 = R−
(

L
∑

i=0

hi

)

≥ 0. (C.5)

For any choice of integers l, n0, . . . , nl, the event {L = l, N0 = n0, . . . , NL = nl} implies that
n1 + · · ·+ nl explorers have crossed a shell B(z, R)\B(z, R− h0) by stepping on at most n0

explorers settled in it, that n2 + · · ·+ nL explorers have crossed shell B(z, R− h0)\B(z, R−
h0 − h1) with n1 explorers settled in it, and so on and so forth. Using Lemma 1.6, the fact
that ni ≤ βRd, l ≤ R, and the notation δ = 1

d−1
, we reach the following estimate.

P (0 ∈ A(η))

≤
∑

l≤R,n0,n1,...,nl≤|η|
∀i,ni≥⌊hi⌋

P (L = l, N0 = n0, . . . , NL = nl)

≤ R(βRd)R+1 sup
l≤R,n0,n1,...,nl≤|η|

∀i,ni≥⌊hi⌋

ead
∑L

i=1 i ni exp

(

−κd

L
∑

i=1

ni

(

(

hd
0

n0

)δ

+ · · ·+
(

hd
i−1

ni−1

)δ
))

.

(C.6)

Now, note that by the arithmetic-geometric inequality, for 1 ≤ i ≤ l (and using hi ≤ h0)

1

i

(

(

hd
0

n0

)δ

+ · · ·+
(

hd
i−1

ni−1

)δ
)

≥
(

hd
0

n0
× · · · × hd

i−1

ni−1

)δ/i

=

(

hd
0

ni−1
γi−1

)δ/i

=

(

hd
0

hd
i

γi

)δ/i

≥ 2ad
κd

.

(C.7)
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Thus, from (C.6) and (C.7), we have

P (0 ∈ A(η)) ≤ R(βRd)R+1 max
l≤R,n0,n1,...,nl≤|η|

∀i,ni≥⌊hi⌋

exp

(

−ad

L
∑

i=1

i ni

)

≤ R(βRd)R+1 max
l≤R,n0,n1,...,nl≤|η|

∀i,ni≥⌊hi⌋

exp

(

−ad
γ

L−1
∑

i=1

ihd
i+1

) (C.8)

Since h1 ≤ R/4, note that we have h2 + · · · + hL ≥ R/4 by (C.4). By Hölder inequallity,
note that for constants {cd, d ≥ 2}

L−1
∑

i=1

ihd
i+1 ≥

(

∑L−1
i=1 hi+1

)d

(

∑L−1
i=1

1
i1/(d−1)

)d−1
≥
{

c2
R2

log(L)
≥ c2

R2

log(R)
for d = 2 ,

cd
Rd

Ld−2 ≥ cdR
2 for d ≥ 3 .

(C.9)

This concludes the proof.
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