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Abstract. - Using field theoretic approach, we study equilibrium shape deformation of a vesicle
induced by the presence of enclosed flexible polymers, which is a simple model of drug delivery
system or endocytosis. To evaluate the total free energy of this system, it is necessary to calculate
the bending elastic energy of the membrane, the conformation entropy of the polymers and their
interactions. For this purpose, we combine phase field theory for the membrane and self-consistent
field theory for the polymers. Simulations on this coupled model system for axiosymmetric shapes
show a shape deformation of the vesicle induced by introducing polymers into it. We examined
the dependence of the stability of the vesicle shape on the chain length of the polymers and the
packing ratio of the vesicle. We present a simple model calculation that shows the relative stability
of the prolate shape compared to the oblate shape.

Micelles and vesicles are closed forms of membranes that
are composed of amphiphilic molecules, such as surfac-
tants or lipid molecules. These molecules are not only ele-
mentary components of biological cells [1] but also impor-
tant materials in industrial sciences, for example, surface
coating, oil recovery, cosmetics and so on [2]. Among var-
ious functions and applications of vesicles, a vesicle that
encloses polymers can be used as a simple model of drug
delivery system (DDS) and the endocytosis in biological
cells [1]. In these phenomena, shape deformation, fusion,
and fission of vesicles induced by the enclosed polymers
are essential to our understanding the total process.

Nakaya et al. performed a small angle neutron scat-
tering experiment on an inverted micellar phase of a sur-
factant solution where hydrophilic polymers are enclosed
in these micelles [4]. They reported that micelles show
anisotropic deformation upon the inclusion of the poly-
mers inside them. In this process, there are several candi-
dates for the reason of the transition, i.e. the configuration
entropy of the centers of mass of the enclosed polymers and
the solvent and the conformation entropy of the polymers.

In the present paper, we introduce a new theoretical
model of a closed-form membrane (a vesicle) that con-
tains polymers, and clarify the mechanism of its shape
deformation. A standard technique to study such phe-
nomena is a molecular simulation where the polymers are

modeled by bead-spring chains and the membrane is mod-
eled either by a set of short bead-spring chains composed
of hydrophilic and hydrophobic beads [5, 6] or by a set of
vertex points of a triangular mesh on the membrane sur-
face (so-called surface element method) [7]. One of the
difficulties of these techniques is that an evaluation of the
free energy of the system is not easy for such molecular
simulations [8]. To overcome this difficulty, we combine
the self-consistent field (SCF) theory for polymers [9, 10]
and the phase field (PF) theory for membranes [11,12]. In
the SCF theory, the probability distribution of the con-
formation of polymer chains is evaluated in terms of path
integral Q(0, r0;N, rN ), which corresponds to the statisti-
cal weight of a polymer chain composed of N+1 segments
whose two end segments (denoted by indices 0 and N) are
at r0 and rN , respectively [9]. On the other hand, in the
PF theory, the membrane is described with a scalar field
ψ(r), where ψ(r) = 0, ψ(r) > 0 and ψ(r) < 0 correspond
to the membrane surface, inside and outside regions of the
membrane, respectively. It should be noted that in the PF
theory the membrane is treated as a curved surface with
a finite thickness. This treatment is different from that of
the usual Helfrich’s bending elastic model where the thick-
ness of the membrane is assumed to be negligible [13, 14].

Let us describe the detail of our model vesicle that con-
tains polymers. The target system is a three component
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mixture composed of amphiphilic molecules (membrane
of the vesicle), polymers, and the solvent. For simplic-
ity, we assume that an amphiphilic molecule, a solvent
molecule and a polymer segment have the same volume.
In our model, all of these three components are described
in terms of their local density distributions denoted as
ϕM(r), ϕP(r) and ϕS(r), respectively. We require an in-
compressibility condition on these three components;

ϕM(r) + ϕP(r) + ϕS(r) = 1, (1)

where ϕM(r) is related to the phase field ψ(r). This in-
compressibility condition produces the coupling between
the PF and the SCF.
Using these field variables, the total free energy Ftotal of

the combined system of the membrane, polymers and the
solvent multiplied by β = 1/kBT is given in the following
form:

βFtotal = βFPF[ψ] + σ
(

Atotal −A(0)
total

)

+ µ
(

Vin − V(0)
in

)

+ βFSCF[ψ, {ϕK}]. (2)

The first term on the right-hand side of eq. (2) is the
free energy of the membrane obtained with the PF theory.
In a non-dimensional form, it is given as [15]

βFPF =
3κ

4
√
2

∫

dr{−ψ(r) + ψ(r)3 −∇2ψ(r)}2, (3)

where κ is the bending elastic modulus and the unit of
length is chosen as the membrane thickness. In eq. (3),
we neglected the effects of the spontaneous curvature and
the Gaussian curvature for simplicity.
The surface area element of the membrane is given by

[11, 15]

A[ψ(r)] =
3
√

2

4

[

1

2
| ∇ψ(r) |2 +

1

4
(ψ(r)2 − 1)2

]

. (4)

Since each amphiphilic molecule occupies a certain con-
stant area on the membrane surface, the local surface area
of the membrane is proportional to the local number den-
sity of the amphiphilic molecules, ϕM(r). Therefore, the
following relation holds;

ϕM(r) = CA[ψ(r)], (5)

where C is a normalization constant that should be deter-
mined so that ϕM(r) takes its maximum value 1 on the
central surface of the membrane.
The total area of the membrane surface Atotal and the

total enclosed volume by the membrane Vin are given by

Atotal[ψ(r)] =

∫

A[ψ(r)]dr,

Vin[ψ(r)] =

∫

ψ(r)>0

(1− ϕM(r)) dr, (6)

respectively. In the simulations, we fix these quantities

Atotal and Vin to given values A(0)
total and V(0)

in by using
Lagrange multipliers σ and µ as are described in the sec-
ond and third terms on the right-hand side of eq. (2) [16].
These constraints mean that both of the exchange of am-
phiphilic molecules between the membrane and the envi-
ronment and the permeation of solvent across the mem-
brane are very slow compared to the equilibration time
scales of the membrane shape and the polymer conforma-
tions.
The last term on the right-hand side of eq. (2) is the free

energy of the polymers and the solvent calculated with the
SCF theory. In the SCF calculation, we describe the poly-
mer chains using the path integral Q(0, r0;N, rN ) while
the solvent molecules are assumed to be point particles
which posses only translational degrees of freedom.
The mean field potential used in the SCF calculation is

assumed to have the form

VK =
∑

K′

χKK′ϕK′(r) + γ(r), (7)

where indices K and K ′ represent either the polymer (P)
or the solvent (S), and χKK′ is Flory interaction parameter
between the segments of K and K ′ types, and γ(r) is
the Lagrange multiplier for the incompressible condition
eq. (1), which produces a coupling between the polymer
chains and the membrane.
For simplicity, we assume that all the interaction pa-

rameters χKK′ vanish except for χPS ≡ χ. We also as-
sume that all polymer chains are confined in the vesicle
while the solvent fills both inside and outside regions of
the vesicle. (Due to the constraint of the fixed enclosed
volume Vin, there is essentially no exchange of solvent
across the membrane.) To realize this condition, we set
the path integral for polymers to be zero outside the vesi-
cle (Q(0, r0; i, r) = 0 for ψ(r) < 0), while we impose no
restrictions on the region of the distribution of the solvent.
As a result of this SCF calculation, we obtain the following
contributions from the SCF part to the total free energy
[9]

βFSCF[ψ, {ϕK}]] ≡ β (FP + FS + Fint + Fincomp) , (8)

where FP, FS, Fint and Fincomp are contributions from
polymers, solvent, segment interactions, and incompress-
ibility, respectively. These components are defined as fol-
lows;

βFP = −MP ln

∫

dr0

∫

drNQP(0, r0;N, rN )

−
∫

drVP(r)ϕP(r) +MP lnMP −MP,

βFS =

∫

dr [ϕS(r) lnϕS(r) − ϕS(r)] ,

βFint =
1

2

∑

KK′

χKK′

∫

drϕK(r)ϕK′ (r),
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(a) (b)

Fig. 1: Typical vesicle shapes: (a) the prolate and (b) the
oblate shapes are shown for the case with v = 0.5, φ = 0.1,
χ = 0.0, and N = 100, respectively. The distributions of the
polymers inside the vesicle are also shown by shading.

βFincomp =

∫

γ(r) {ϕP(r) + ϕS(r) + ϕM(r)− 1} dr,

(9)

where MP and MS are total numbers of polymers and
solvent molecules in the system.
There are three important non-dimensional parameters

that specify the state of the system. These are the “pack-
ing ratio” inside the vesicle v, the volume fraction of poly-
mers inside the vesicle φ, and the chain length of the poly-
mer N . The packing ratio v is defined as a ratio between

the actual enclosed volume V(0)
in and that of the spherical

vesicle with the same surface area A(0)
total [11, 14]:

v = V(0)
in

/





4π

3

(

A(0)
total

4π

)3/2


 . (10)

Due to the existence of the solvent in our system, the
stable regions of v for oblate and prolate shapes in the
absence of polymers are somewhat different from those
reported in Ref. [11]. In our simulations, we found that
the prolate shape is always stable than the oblate shape for
v < 0.7 when the membrane does not contain polymers.
By changing the parameters v, φ and N , we examined the
stable shape of the vesicle.
Assuming axiosymmetric shapes, we minimized the free

energy eq.(2) with respect to {ϕK(r)} and ψ(r) by an
iteration method. We used a cylindrical coordinate system
with 256 × 80 mesh points in axial and radial directions,
respectively, with mesh width ∆x = 0.5. Figures 1(a) and
(b) show two typical shapes of the membrane, i.e., the
prolate and the oblate shapes, respectively, obtained for
the case with v = 0.5, φ = 0.1, χ = 0.0, and N = 100.
The left edge of the figure is the axis of revolution.
In Fig. 2, we show the dependences of the components

of the free energy on the chain length N for the athermal
case with v = 0.5, φ = 0.1 and χ = 0.0 (i.e. Fint = 0).
Shown are βFPF, β(FP + Fincomp), βFS, and the total
free energy βFtotal defined by eq.(2), respectively. These
quantities are the difference between the values for the

prolate vesicle and that for the oblate vesicle. Thus, a
negative value means that the prolate shape has lower free
energy than the oblate case. In this figure, the constraint
terms that include σ and µ are included in FPF although
they give only negligible contributions.
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Fig. 2: Each components of the total free energy, βFPF (�),
β (FP + Fincomp) (•), βFS (N), and βFtotal (�) are shown. (a)
Dependence on the chain length N for the case with v = 0.5,
χ = 0.0 and φ = 0.1, and (b) the dependence on the packing
ratio v defined in eq. (10) for the case with χ = 0.0, φ =
0.3, and N = 100, respectively. Note that βFint = 0 because
χ = 0 for both figures. For each component, βF (prolate) −
βF (oblate) is shown.

Figure 2(a) indicates that both the conformation en-
tropy of polymers and the bending elastic energy of the
membrane tend to prefer prolate shape when the chain
length is increased. On the other hand, the contribu-
tion from the translational entropy of the solvents shows
a more complex behavior. In the short chain length re-
gion, this contribution once decreases and then it turns
to increase when the chain length becomes longer. As a
sum of these components, the total free energy difference
decreases monotonically as the polymer chain length is in-
creased, leading to the equilibrium prolate shape in the
long chain region.
The complex behavior of the translational entropy of the

solvent is understood considering the effect of the deple-
tion layer of the polymers near the membrane. When the
polymer chain length becomes comparable to the mem-
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brane thickness (around N ∼ 3), the width of the deple-
tion layer is negligibly thin, and the solvent distributes
almost uniformly inside the vesicle, which maximize the
translational entropy of the solvent. As the chain length
is increased, a clear depletion layer is formed, and the
solvent distribution inside the vesicle becomes inhomoge-
neous, which cause a decrease of the translational entropy
of the solvent molecules (i.e. an increase in the free en-
ergy).

The opposite behavior of this translational entropy of
the solvent in the very short chain length region (N < 3)
is an artifact of the present phase field modeling of mem-
brane which has a finite thickness that is the same order as
the gyration radius of the polymer with N ∼ 5. Due to the
smooth density profile and the finite thickness of the mem-
brane distribution ϕM (r), either the polymer segments or
the solvent molecules must come into the membrane region
to fill the vacancy. Such invading molecules are strongly
repelled by the membrane and cause an increase in the
free energy. As the rate of this increase is different for
the prolate and the oblate shapes, it leads to the steep
increase of βFS for N < 3.

To understand why the conformation entropy of poly-
mers βFP prefers prolate shape, we give a simple interpre-
tation. Let us approximate an oblate or a prolate shape
with a cylinder with diameter x and height y. These two
values are determined when the total surface area and
the enclosed volume are given. These conditions lead to
x2y = C1 and x2 + 2xy = C2, where C1 and C2 are con-
stants that correspond to the total enclosed volume mul-
tiplied by 4/π and the total surface area multiplied by
2/π, respectively. Solving these set of equations for given
C1 and C2 gives 3 solutions (xi, yi) (i = 1, 2, 3) where
x3 < 0 < x2 < x1. Obviously, the solution x3 < 0 is un-
physical. The other two solutions correspond to the oblate
(x1, y1) and prolate (x2, y2), respectively. If x2 is small, we
obtain up to the first order in x2 that x2 = 2C1/C2 ≡ Lpr

(prolate) and y1 = C1/(2C2) ≡ Lob (oblate). Thus, the
ratio between the linear dimensions of the confined region
for prolate and oblate cases is Lpr = 4Lob. Now, we es-
timate the increase in the conformational free energy due
to such confinement. We consider an ideal chain confined
in a region of size LC. As the number of segments in a
blob of size LC is proportional to L2

C, a chain made of N
segments can be regarded as a linear chain of N/L2

C blobs.
Therefore, the increase in the conformational free energy
per chain due to the confinement is given by

∆F (LC) = kBT ln 2N/L
2

C =
NkBT

L2
C

ln 2. (11)

Using the fact that the number of chains is inversely pro-
portional to the chain length N because of the constant
volume fraction φ inside the vesicle, and the fact that there
are two directions of the confinement in the prolate case,
we can estimate the difference in the total conformational
free energy (i.e. ∆F× (number of chains)) between the

(a) (b) (c)

Fig. 3: Distributions of the membrane and the polymers are
shown for the case N = 100, v = 0.5 and φ = 0.1. The inter-
action parameter χ is (a) 0.6 (b) 0.65 and (c) 0.7, respectively.

prolate and the oblate cases as

1

N
[2∆F (Lpr)−∆F (Lob)] = −7kBT ln 2

8L2
ob

< 0. (12)

Equation (12) means that the conformational free energy
prefers the prolate shape, which is consistent with the re-
sults in the long chain region in Fig. 2(a).
In Fig. 2(b), we show similar data as those in Fig. 2(a)

but for the dependence on packing ratio v. As v becomes
smaller, the polymers are more strongly confined. Above
simple consideration suggests that the prolate shape will
be more and more stable than the oblate one when the
constraint becomes stronger. Actually, we can confirm
this tendency in the behavior of the conformation entropy
of polymers and total free enrgy shown in Fig. 2(b).
Finally, we consider the case where there is a repulsive

interaction between the polymer segment and the solvent
molecule (χ > 0). In Fig. 3, we show distributions of the
membrane and the polymers for the case with N = 100,
v = 0.5 and φ = 0.1. The interaction parameter between
the polymer segment and the solvent χ is (a) χ = 0.6, (b)
χ = 0.65 and (c) χ = 0.7, respectively. Compared to the
athermal case (χ = 0) in Fig. 1, the polymers distribute
inhomegeneously forming a depletion layer near the mem-
brane. While the vesicle shows a symmetric shape for a
smaller value of the χ-parameter (Figs. 3(a) and (b)), the
membrane shape becomes asymmetric for a larger value of
χ (χ = 0.7 in Fig. 3(c)) due to an asymmetric distribution
of the polymers inside the vesicle.
As a conclusion, we introduced a new field theoretic

model for a vesicle that encloses polymers. With this
model, we succeeded in calculating the equilibrium shape
deformation of the vesicle induced by the polymers. This
technique has a wide variety of extensions and applica-
tions such as the fusion and fission of the membrane by
introducing the Gaussian curvature into the model.
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