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WELL-POSEDNESS FOR THE FIFTH ORDER KDV EQUATION
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ABSTRACT. We consider the Cauchy problem of the fifth order KdV equation
with low regularity initial data. We cannot apply the iteration argument to this
problem when initial data is given in the Sobolev space H?® for any s € R. So we

give initial data in H*® equipped with the norm

llellrsa == 11(€)**1€1*@ll 2

Then we recover derivatives of the nonlinear term to be able to use the itera-
tion method. Therefore we obtain the local well-posedness in H®% with s >
max{—1/4,—2a — 2}, —3/2 < a < —1/4 and (s,a) # (—1/4,—7/8). Moreover,
we obtain ill-posedness in some sense when s < max{—1/4,—2a — 2}, a < —3/2
or a > —1/4. The main tool is a variant of the Fourier restriction norm method,
which is based on Kishimoto’s work (2009).

1. INTRODUCTION
We consider the Cauchy problem of the following fifth order KdV equation:

O — Pu + c10,(u?) + 20, (0,u)* + 30, (ud?u) = 0, in [0,T] x R,
u(0,2) = wolx), = E€R,

(1.1)

where ¢, ¢o, c3 € R with ¢3 # 0. Here the given data uy and the unknown function

u are real-valued or complex-valued. The Lax equation,
O — OPu — 100, (u?) + 50, (0,u)* + 100, (ud?u) = 0, (1.2)

is one of the KdV hierarchies. The equation is completely integrable and has an

infinite number of conservation laws as follows:

/qua:, /(&Cu)2 + 2u’du, /(8§u)2 + 50, (0pu)? + gzﬁ‘da:, etc.
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The fifth order KAV equation models several water wave physics (see, for instance,
[2], [3], [20]). Our main aim is to prove the local well-posedness (LWP for short) for
(LI) with low regularity data.

By using the theory of complete integrability, we obtain global solutions of (2
with Schwartz initial data. But this method does not work for the well-posedness
problem of ((ILT]) generalizing (L2)) to non-integrable case. So the theory of dispersive
PDE:s is required. The main tool is the Fourier restriction norm method introduced
by Bourgain [4].

We recall some known results for (ILT]) with data given in the Sobolev space H*(R).
Here this space is defined by the norm

ue = [[(€)°Pll 2,

where (£)° := (1 + |¢|?)"/? and @ is the Fourier transform of . Ponce [22] proved

el

LWP in H* for s > 4 by the compactness argument, which was improved to s > 5/2
by Kwon [I6]. Kenig, Ponce and Vega [12] studied the Cauchy problem for the

higher order dispersive equation:
O+ 0¥y + P(u, Oyu, - -, 0%u) = 0,

where P is a polynomial having no constant and linear term. Using the local smooth-
ing estimates established in [I1], they showed LWP in the weighted Sobolev space
L*(|z|™dz) N H® where s > 0 and m € N U {0} are some large numbers (see also
[21]). When s > j—3 — % +2land 1 <’ < % with j > 2, Gronrock [8] proved
LWP for the Cauchy problem of the 2j 4+ 1th order KdV equation in H] equipped

with the norm

s 1 1

Namely, he obtained LWP for (LI) in H" when s > T+ andl <r < 3
Moreover, Kwon [16] proved LWP for the Cauchy problem of the modified fifth

order KdV equation,
O — Pu — 60, (u®) 4+ 100, (u(0u)?) + 100, (u?0%u) = 0, (1.3)

at critical case H>/*, which is proven by using the [k, Z]-multiplier norm method
and the block estimates established by Tao [23].

The difficult point in this problem is that the nonlinear term 9, (ud?*u) has more
derivatives than can be recovered by the smoothing effects Lemma below.
Precisely speaking, we only recover two derivatives by these effects. From this
fact, the data-to solution map for (1)) is not C? from H* to C([0,T] : H?®) for any
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s € R. This causes a strong interaction between high and low frequencies data. This
type of phenomenon is observed in the Benjamin-Ono equation and the Kadomtsev-
Petviashvili-I equation. In [I7] and [I§], Molinet, Saut and Tzvetkov showed the
data-to-solution maps of these equations are not C?. Using their argument, we prove
that (LI} cannot have its data-to-solution map C?. We first define the quadratic

term of the Taylor expansion of the data-to-solution map as
t t
As(up)(t) = —02/ U(t — 5)0,(0yuq(s))*ds — 03/ U(t — 8)0,(u1(5)0u(s))ds.
0 0
(1.4)

where U(t) := €% and u;(t) := U(t)up. Next, we put the sequence of initial data
{On 1}, € H* as follows:

ng\v(f) =N~ X[N—N*47N+N*4}(§) + N2X[N*4/2,N*4] (€)> (1-5)

for N > 1. Clearly, ||¢n||gs ~ 1. Substituting (LI) into (I.4]), we obtain, for |¢|

bounded,

[ A2(6n)(1)]

which implies the claim by the general argument in [9]. This implies that the

us > CN,

Picard iteration is not available if the data-to-solution would be real-analytic. The
modified fifth order KdV equation (3] is linked with the fifth order KdV equation
(L2) through the Miura transform v — u = ad,v + Sv? for some constants a, 3.
If v is a smooth solution of (L3), then u solves (L2)). But (L)) is a non-integrable
equation so that it seems unable to apply the Miura transform.

To avoid this difficulty, we change the space in which initial data is given as

follows:

H>*(R) :={u€ Z'(R) ; |ul

oo = (€)° 7€)z < o0},
where Z'(R") denotes the dual space of
Z(R") := {u € S(R") ; D*Fu(0) = 0 for every multi-index a}.

For the details of Z(R), see e.g. pp. 237 in [24].
We remark that we can recover derivatives of the nonlinear term 9,(ud?*u) in
the interaction between high and low frequencies data when a < 0. Therefore the

iteration method works in the case

1 1 1
s> max{—z, —2a — 2}, —; <a< ~1 and (s,a) # (_Z’ —g), (1.6)

and we obtain the well-posedness results in H*“ as follows.
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Theorem 1.1. Let s,a satisfy (1.8). Then (1)) is locally well-posed in H**(R).

We obtain a priori estimate by using two conserved quantities

/u2da:, /(&Cu)2 + %au?’da:,

where o € R\ {0} when
= —gaz, co = a and c3 = 2av. (1.7)
Proposition 1.2. Let u be a solution to (1.1) with (1.7). Then, for —1 < a < —1/4,
we obtain
sup u(t, )Fne < ClluolFe + luoll 2" + T (llull g + lfuoll32) }. - (1.8)

0<t<T

By this proposition, we extend the time local solutions obtained by Theorem [.1]

to time global ones.

Theorem 1.3. Let s > 1 and —1 < a < —1/4. Then (11) with (1.7) is globally
well-posed in H>*(R).

We put s, = —2a — 2 and B.(X) := {u € X ; |lu||x < r} for a Banach space
X. We prove ill-posedness in the following sense when s < max{—1/4, —2a — 2},
a<-3/2ora>-1/4.

Theorem 1.4. (i) Letr > 1, —3/2 < a < —7/8 and ¢y # c3. Then, from Propo-
sition [5.1] below, there exist T > 0 and the flow map for (1.1) B,(H**") 3> uy —
u(t) € H*> for any t € (0,T]. Then the flow map is discontinuous on B,(H*®)
(with H>® topology) to H%* (with H*® topology) for any s < s,.

(ii) Let s < —2a — 2, a < =3/2 or a > —1/4. Then there is no T > 0 such that
for (1) with cy # c3 , ug — u(t), is C? as a map from B,.(H>*) to H>* for any
te(0,7].

(iti) Let s < —1/4, a € R and ¢; # tcs(cs — ¢2). Then there is no T > 0 such that

the flow map for (L), ug — u(t), is C* as a map from B,.(H>®) to H>* for any
te (0,77].

Remark. (i) We do not know weather LWP for (ILT)) holds or not in H~'/4~7/8,
(ii) From Theorems [T and T4, (IT)) is locally well-posed in H~/* and ill-posed in

H* in some sense when s # —1/4.

The main idea is how to define the function space to construct the solution of

(LI). The bilinear estimates of the nonlinear term 0, (ud?u) plays an important
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role to prove Theorem [[LT. We introduce the Bourgain space Xsab corresponding

to H*% as follows:

Xeobi= {f € Z/(R2) ; ||flgoan = 1€ I&|r — €)' fl2, < o0}

We consider the bilinear estimate of the nonlinear term 9, (ud?u) in the Bourgain

space X %" as follows:

1€E7F) * gll gewor < ClS Nl eonllgl o (1.9)
But, from Examples 1-3 in Appendix, (.9) fails for any b € R when
1 7 1
s 7 38 <a< -7, (1.10)
1 7 27 7
s:—i—l—él,a:—gands:—Qa—Q, —5g <@< g (1.11)

where ¢; is a sufficiently small number such that 0 < ey < s+ 1/4. Therefore the
standard argument of the Fourier restriction norm method does not work for (ILI0)—
(LII). To overcome this difficulty, we make a modification on the Bourgain space
to establish the bilinear estimates when (LI0)-(TII). An idea of a modification
of the Bourgain space is used by Bejenaru-Tao [I] in which they prove LWP at
critical regularity s = —1 for the quadratic Schrédinger equation with the nonlinear
term u2. We consider the typical counterexamples of the bilinear estimate to find a
suitable function space.

From Example 3 in Appendix, we have to take b = 1/2 in the neighborhood of
5

the curve {7 = f—6 and £ > 1} to obtain (LJ) for (LI0). Thus we modify the

Bourgian norm in the high frequency part {|¢| > 1} as follow:

||f||X€2’)11/)2 = H{H §5 1/2f||L2 E(A NBg) }] k‘>0Hl211'
where A;, By, are two dyadic decompositions as follows:
Ay ={(r,6) e R*; 27 < (¢) <27},
By :={(1,€) e R*; 2" < (7 — &%) < 2F1},

for j,k € NU {0}. For a Banach space X and a set @ C R™, || - [|x() denotes
| fllx@) = llxaf|lx where xq is the characteristic function of €.

From Examples 1 and 2 in Appendix, we need to take b = 3a/5+10 on the domain

Do = {(1,¢) €R?; [¢| < 1and |7] ~ [¢]7°7},
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so that (L9) holds for (ILI0). Thus we modify the Bourgain norm in the low fre-
quency part {|¢| < 1} as follows:

(11l g0y + Il g rmrma g,y for a==1/4,
1 fll e = ||f’|XZ,5a/s+9/1o,1(A0) for —7/8 <a< —1/4,
M ||f||X£7/8,3/8+51/2(A0) for a = —7/8,
\ ||fHX273/8+sz/2(AO) for —3/2<a< —7/8.
where

Dy :={(7,6) eR?; [{| < 1 and |7] > |¢|/3},
Dy :={(r,§) €R*; [¢] < 1and |7] < |¢|7*},

and e, is a sufficiently small number such that 0 < 5 < —(a+7/8). Here X&°, X!
are defined by the norm

Hf”)zg»b = ||[§]*(T — £5>beL§’E(AO)7
1l g == D 2% €% llz2 (aarim-

k>0
This idea of a modification of the Bourgain norm in the low frequency part is
based on Kishimoto’s work [I3] which proved LWP and global well-posedness for
the Cauchy problem of the KAV equation at the critical case H =%/ (see also [10]).

From the above argument, we define the function space 759 as follows:

z = {f e Z'®); ||f]

ze0 = ||Pn.f] xiyzt lpefll e < 00}

where pj,, p; are projection operators such that (pnf)(&) = f(§)|ig>1, (0if)(§) =
f(&)]je)<1- Using the function space above, we obtain the following nonlinear esti-

mates which are the main ones in this paper.
Proposition 1.5. Let s,a satisfy (1.6). Then the following estimates hold.

[ = €)71E(Ef) = (€9)

+ 1) 1€1m — €71 (ES) * (€9)llezes < CllFllzsallgll 2o (1.12)
(7 — &) 7€(E%) * gll 21

+HIHE Il — €)TTE(E ) * gllrzir < ClSN zeallgll o, (1.13)
[ —€)7'€ fxg*hllzea

+HIHE Il = )7 frgxllrzry < Clfllzeallgll zeallPll e (1.14)
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We omit the proof of (ILI2]) because we immediately obtain (LI2) from ([LI3]).

Therefore we only prove (LI3) and (LI4).
We use A < B to denote A < C'B for some positive constant C' and write A ~ B

tomean A < B and B < A. The rest of this paper is planned as follows. In Section
2, we give some preliminary lemmas. By using these lemmas, we prove the bilinear
estimate (LI3]) in Section 3 and the trilinear estimate (I.I4]) in Section 4. In Section
5, we give the proofs of Theorem [I.1, Proposition and Theorem [1.4]

Acknowledgement. The author would like to appreciate his adviser Kotaro Tsug-
awa for many helpful conversation and encouragement and thank Dr. Kishimoto for

helpful comments.

2. PRELIMINARIES

In this section, we prepare the smoothing effects and linear estimates to show
the main theorems and the nonlinear estimates. When we use the variables (7, &),

(11,&1) and (72, &), we always assume the relation

(7,6) = (11,61) + (72, &2).

We mention the smoothing effects for the operator e=%%.

Lemma 2.1. Suppose that f, g is supported on a single A; for j > 0. Then
3/4 < . 0.1/2. 2.1
IEPT % gz, S 15Nl (2.1
Moreover if

K :=inf{|& — & ; In, 7 st (11,&) € supp f, (72,&2) € supp g} > 0,

then we have
2 7 % glsz, S K200 goellgl e (22
Proof. Tt suffices to show that
[ ] 600t = m.6 — 0htr anderdrae]
< 2972952 1 gl €]/l 2 (2.3)
and
}/RQ . f(r:&)g(T — 71,6 — &) h(T, f)dTldfldef}

S K2 22 flls gllss NlE PRI, (24)
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when f, g are restricted to By,, By, for ki, ke > 0. That is the reason why we use

(Z3) and the triangle inequality to have

‘/ f(Tl’ é-l)g(T - 7—175 - gl)h(T, §)d7'1d§1d7'd§
R2 JRR2
<ZZ}/ / X8, F)(11,6) (X8, 9) (T — 71, & — &1)dmidé h(T, §)drdg

SO 22 fllz sy D 25 Mgl e ) 11EI Al 2
k‘l k2

which implies ([21)). Moreover, if we assume (2.4, we obtain (2.2) in the same
manner as above.
We prove (2.3) and (24]). We use Schwarz’s inequality twice and Fubini’s theorem

to have
’/IRLQ 2 f(Tla 51)9(’7‘ — 7'1,5 — fl)h(T, f)dﬁd{ldef

S sup m(m, )Y flliz Mlgllez NBllz.
(1,6)€R? ’

where

m(r,§) = /XA1(7_a§aTla§1)d7—ld§1>

and

Avi={(1.6,m,&) €RY; (1,&) €supp f, (7 — 71,6 — &) € supp g}

Therefore (2.3) and (24) are reduced to the estimate

m(r,€) S min{ K~ 281k |g| 71, ghitha g -3/2), (2.5)
and we estimate m. Here we fix 7, £ # 0 and consider the variation of . The
identity

£ 5 5 5 2 2 2
(T_E) (n—&)—{r-—n)-(-&)’}= Ef(%l—f) {26 - €)% +2¢°}
implies

S

<l -gf< {3

16 M + C(2% 4 2k 1/2

( ) 4 54} - £2'
€l

where M = |17 — £5/16| and C' is some positive constant. If

_ K Ky 1/2 1/2

(2.6)
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then the variation of |2&; — £| is bounded by

16 M+ C(28 4+ 2k2) vz 1?2 M2 — (K2 +¢€2)
{E +< } —¢ K= 1’/2 2)1/2
€] (MMY? — )12 4 K

32C (9k1 k
W@ + 22)

< ; (2.7)
{(M)2 = )2 + KY{M)? + (K2 + )}
where
16 M + C(2F +2k2) |
M, ¢ = — + &5
D €]
We note that there exists ¢; > 0 such that
(ME = )12 2 d1Je| 5 (2M/2 4 20/2). (2.8)
Following (2.7) and (2.8)), the variation of &; is at most
O (minf]¢[ 7 K32 + 2%), J¢] Y220/ 4 9% }), (2.9)

When

16 |M — C(2k1 + 2k2)] A, 1/2
KSH? €] '} —f} =

the variation of & is bounded by (2.9) in the same manner as above. Next we also
fix &. Then

m =& < 2" and [(7 — ) — (€~ &)°] S 2"

imply that the variation of 71 is at most O(min{2*", 2*2}). Combining this and

(29), we obtain
m(T, 5) 5 {|§|_1K_32k1+k2, ‘g‘—3/2 max{23k1/4, 23k2/4} min{2k1, 2k2}}’

which shows (Z3]). O

Lemma 2.2. Assume that g is supported on a single A; for 7 > 0 and g is an

arbitrary test function. Then

1% 92 3 S 27 NIEF/ sz gl oo (2.10)

Moreover if a non-empty set Q C R? satisfies
Ky =inf{[§ + &[5 In, e st (1,6) €Q, (72,8) €supp g} > 0,

then we have

—3/2 _
1 % gllzz onsy S 22 K2 1E72 F Nz gl gouse. (2.11)
T, 7€ (2,1)
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Proof. 1If g is restricted to By, for ks > 0, it suffices to show
’/RQ . f(r,&)g(t — 71, — &)h(T, f)dedeldgl’
S 23k/82k2/2’||£|_3/4f“L3,§HgHLE,EHhHng (2.12)
for h € L2 (B}) and
‘/R 0809 = 7,6 = €)h(r, ) drdgdnde,

—3/2 _
S KR R glle Bz, (213)

for h € L2 ((BrNS). That is the reason why we use (2.I2) and the triangle inequality

to have

[ [ 1o eatr = g - @)hir ardsande,
R2 JR2

< Z) / F0.8) (x8,9)(T =71, — E)h(r, §)drdédndt,

SEVRIIET Sl D2l 22 ey 2
ko

which implies (2.I0). Moreover, if we assume (2.13]), we use the triangle inequality
to obtain (Z.I1)) in the same manner as above.
We prove ([2I2) and (ZI3). We use Schwarz’s inequality twice and Fubini’s

theorem to have
[ [ sgatr = mg - €onir. ardednds,
RrR2 JR2

< sup (1, &) 2 fllez Ngllee NP2z .
(11,61)€R?

where

(€)= / s (726071, €0)drde
R2

and
Ay = {(r,&,m,6) €RY; (7 =7, = &) €supp f, (7,€) € supp h}.
Therefore (2.12)) and (213)) are reduced to the estimate.
ma(71,&1) S min{Kf3|€1|_12k+k2a |§1|_3/223k/42k2}- (2.14)

Now we fix 77 and &; # 0 and estimate m;. We use the identity
5

(n=35) (=) +{r-—m) - (€= &) }——51 26— G {26 - )" + 267}
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to have
16 | M, — C/(2F + 2k 1/2
max {PRAZCEFEN g, w2}
5 IS1
16 M, + C(2F + 2k 1/2
<pg-gf< {RMECC 2D Vg
5 IS1
where M, := |1 — £7/16|. This estimate shows (2.I4]) by following the proof of
Lemma 2.1 O

Lemma 2.3. Assume that f is supported on a single A; for j > 0 and g is an

arbitrary test function. Then
17 g1l sy S 247 11 g€ gl (2.15)
Moreover if a non-empty set Q0 C R? satisfies
K2 = 1nf{|§ + §1| ) 37—) 71 s.t. (77 6) € Qa (7-1761) € supp f} > 07
then we have
—3/2 _
If * gllzz ansy S 252 Ko ™2 (1f | gourzlll€17 gllz - (2.16)
7,& (2,1) 3

In the same manner as the proof of Lemma 2.2 we immediately obtain (2.15])
and (2.I6]) by symmetry. We put a smooth cut-off function ¢(t) satisfying ¢(t) =
1 for |t| < 1 and = 0 for [t| > 2 and define || - ||zs0 as ||u]/zea = ||| 5sa. We

mention the linear estimates below.

Proposition 2.4. Let s,a € R and u(t) = @(t)U(t)ug. Then the following estimate
holds.

Hs.a.

[ull zow + lull oo s mrzey < lluol

Proposition 2.5. Let s,a € R and

Then the following estimate holds.
lullzee + l|ull o @ mgey S NFrg (T =€) Fllzoe + (€)™ 1€]* (T — €))7 Fll 2.

The proofs of these propositions are given in [7].
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3. PROOF OF THE BILINEAR ESTIMATES

In this section, we prove the bilinear estimate (LI3]). We use the following notation

for simplicity,

A<j1 = UAju B[kl,kg) = U By, etc.

J<j1 k1<k<ks

Here we state the key bilinear estimates as follows.

Proposition 3.1. Let s, a satisfy (1.8). Suppose that f and g are restricted on Aj,
and Aj;, for ji,jo € NU{0}. Forj >0, we obtain

17 =€) € (€)% gl goaayy S CU 1 el 70 (3.1)
€l r =€) €)% ol 30s0) S CO I el e (32)

in the following eight cases.

soallgl

(i) At least two of j, j1, jo are less than 30 and C(7, j1,j2) ~ 1.

(ii) j1,52 > 30, |j1 —j2| < 1,0 < j < j1 — 9 and C(j, j1,j2) ~ 27% for some
0> 0.

(iii) j,j2 > 30, |j = jol <10, 0 < ji < j—10 and C(j, ju, ja) ~ 279 + 2707
for some § > 0.

(iv) .1 2 30, [j = ji| <10, 0 < j» < j =10 and C(j, jr, ja) ~ 2792 + 270672
for some § > 0.

(v) 3,1, J2 2 30, |7 — 1l <10, |7 — jof <10 and C(j, j1,j2) ~ 1.

(vi) j1.j2 = 30, j = 0 and C(j, j1j2) ~ 1.

(vii) 7,72 > 30, 51 =0 and C(j,j1,72) ~ 1.

(viii) j, 71 > 30, jo = 0 and C(j, j1,ja) ~ 1.

Combining this proposition and the Lg—property of Z%, namely
171200 = 5 1., we obtain (LI3).
Proof. We put 2Fmax := max{2¥, 2% 2*2} Then we have
fmex > £&1(E — E){E+ & + (- &)%Y

From the definition, we easily obtain

Xs,a,3/4+a SN Zs,a < XS,G73/8. (33)

where € > 0 is sufficiently small.

(I) Estimate for (i). In this case, we can assume j, j1, jo < 40. The left hand sides
of (B) and (B.2) is bounded by C||[£]+ (7 — €5) =14+ fx g]| 12 , from B3). We use
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the Holder inequality and the Young inequality to obtain

el (r =€) Fx gllzz, S 1f * glluzere

S WA zpas gl 2 s S U lgoaamsllgllgonss,

which implies the desired estimate from (3.3).
From the estimate in the cases (iv) and (viii), we easily obtain (B.1]) in the cases
(iii) and (vii) because we recover derivative losses in these cases. Therefore we omit

the proof in the cases (iii) and (vii). We first prove ([B.I]) in other cases.
(I) Estimate for (ii). We prove

20407 920N 27K kgl 2 (anmy S 27V
k>0

Xy Il Xy (3.4)
(ITa) We consider (3.4) in the case 2Fm= = 2k From 2F > 24117 we use ([2.2)
with K ~ 271 to have

(L.H.S.) ~ 20407 902520 5™ 97k2) () 1y (&) Dllr2 (5o

k>451+5+0(1)

< 9(s+1/2)i 92551 ||((£)* f) 5 (€92,
< 2% 2(72573/20 | |

ol

which is bounded by 2-57/4|| f|

el
(ITb) We consider (3.4 in the case 2Fmax = 2k2 From 27%2/2 < 2-k/89-311/29-31/8
we use ([2.I06) with K, ~ 27 to obtain

ge1/2 for s > —1/4.
2.1)

(L.H.S.) S 206H5/87 o2 /Ba Yy “a=068) ((€)* ) ((€)*(T = €°)29) |12 ()

k>0

< Q(F5/8) 9(=25=3/2)51 Z Q—k/8||f|
k>0

sl e

which shows the required estimate for s > —1/4.
In the same manner as above, we obtain the desired estimate in the case 2Fmax =

2% by symmetry.

(III) Estimate for (iii). We prove

K195 S W gl S 2420 ol e 59
}>0 ’ ’
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(ITa) We consider (3.5)) in the case 2F=sx = 2% Since 2% > 24172 we use ([2.2)
with K ~ 27 to have

(LHS)~2% 2% 3™ 27*2)((©)°f) « (()°9) 2 o)

k>4j+j2+0(1)

S22 ((6)° ) * ((€)°9)l e
52(—5—1/2)]'2 2_j||f|

sl v

(IITb) We consider (3.5)) in the case 2Fmsx = 2 From 2M > 24+ we have
27k1/2 < 9=k/82=37/29=372/8  Then we use (ZII) with K; ~ 27 to have

(L.H.S.) S20778/8032 930/2 3 ©9m3h8||((€)*(r = &) ) ((€)°9)l 2 )

k>0

52(—8—3/8)1‘2 9-3/2 Z 2—k/8Hf|

k>0

s ol

which implies the desired estimate for s > —1/4.

(ITlc) We consider (3.5)) in the case 2kmax = 2k2_ Since 27%2/2 < 2-+/89-31/29-352/8
we use (Z.I6) with Ky ~ 27 to have

(LHS) 52(—5—3/8)j223j/2 22_5k/8||(<§>sf) « (<£>sg)||L3’£(Bk)

k>0
< 9(=5=7/8)j2 9—Fk/8 . .
~ Z ||f||X(2’)11/)2 ||g| X(é}l/)Qa
k>0
which shows the required estimate.
(VI) Estimate for (v). We prove
295 S 22 £ % gllsa oy S Wl el (3

k>0

(VIa) We consider (B.6) in the case 2¥m= = 2k Since 2% > 25 we have

(L.H.S) ~205595 % 2782 () f) + ((6)°9)l 12 )

k>5j4+0(1)

S22 ((€)° f) * ((€)° )z

which shows the desired estimate by using (2.1]).
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(VIb) We consider ([B3.6]) in the case 2kmax = 2% Since 2% > 251 we use (Z.10)
with K7 ~ 27! to have

(L.H.S.) ~2055990 % “ 27 2)1((6)° £) % ((€)°9) 1, ()

k>0
52(—5-!—1/2)1'1 Z 2—k/2||(<§>s<7_ . §5>1/2f) * (<€>Sg)||[,35
k>0
<o(—s—1/4)j1 —k/8 R N
S2 ; 2 Hf| X(Szv}l/)z Hg| X(Sz’}l/)z'

In the same manner as above, we obtain the desired estimate in the case 2Fmax =

2%2 by symmetry.

(V) Estimate of (v). We prove

22j1 _ b\ -1 . < s s . .
I~ €71EF »glley S N geapelol oo B7)
We remark that
1Al goare < M1Fll gy < N Fl grar (3.8)
In the case || < 2741 from (B.8)), it suffices show to
22j1 a+1 —1/44¢ < iy i )
eI ()% iz, S 1ol

We use the Holder inequality and Young inequality to have

(LHS.) S22 ||| r) Ve ((6)° ) 5 ((€)°g)lse
52(—23—}-2)]‘1 H ‘g‘a—i-l ’|L§(\5\§2*4j1)||(<£>sf) * (<£>39> HL?’LE
STHED ) F Ly aall ()G

which implies the required estimate since ||f||Lng S I fll o2 when 1T < p < 2.
@1

Therefore we only consider the case 2741 < |¢] < 1.

(Va) We consider (B.7) in the case 2Fm»x = 2*2 Note that the left hand side of
B70) is bounded by

22 S (€ ) 5 ()9 (39

k>0
Since —s/2 < a+ 1 and 2F > |£[2%71 we have

2—28j1|€|a+1 S (|§|24j1)—8/2 5 2k2/8 5 2]@2/22—3/&‘/8'
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Then we use ([2.16) with K, ~ 27 to obtain

B 22 M) * (€ = €)' P9z

k>0

S 270

k>0

s l9 g v

In the same manner as above, we obtain the desired estimate in the case 2Fmax =

2%2 by symmetry.

(Vb) We consider ([3.7) in the case 2Fmax = 2k If 2% > |£|2%1 then we have
Qkmax ~, 9k1 or 22 Thus we only prove ([B.1)) in the case 2Fmsx ~ [£]241,

(Vb-1) Firstly, we prove (3.7)) in the case —7/8 < a < —1/4.

(i) We first consider ([B71) when f * g is restricted to D;. In this case, we have
27371/2 < |¢] < 1 and 2%1/2 < |7| < 2%,

(ia) In the case a = —1/4, we prove
2|l ) glliz S U Fll ez llgll oo (3.10)
™ (2,1) (2,1)
Since |7| ~ [£]2%1, we use ([2.2) with K ~ 27 to have
(LHLS.) ~27 204 [[€[V2((€)° f) % ({€)°0) .2,
<9—2(s+1/4)j1 9 iy
= 10l g
(ib) In the case —7/8 < a < 1/4, we prove
921 Z 2(3a/5—1/10)k||‘£‘a+1f * gHLi,g(Bk) 5 Hf| X(Sé,l{)2||g’ X(Sé,l{)z' (3.11)

k>541/2+0(1)
Since |£|9T1/2 ~ 2(aF1/2kg—4a1 =211 e use (L) with K ~ 271 to obtain

(LHS.) ~272dan 37 23R 1 2((6)" )+ ((€)°9) 22 s,

k>541/2+0(1)

S2TEIHRE2((€)° f) % ((€)°9) e

52_2(34_1/4”1 HJCH)ZSJ/2 ||g’
(2,1)

Xy

(ii)) We next consider ([B.7) when f x g is restricted to Ds. In the present case, we
have 2=41 < |¢] < 27%1/2 and 1 < |7| < 2%01/2,

In the case —7/8 < a < —1/4, we prove

(3.12)

2j (3a/5—1/10)k ||| ¢|a+1
2 32 1177 % gl ) S 1l
k<5j1/2+0(1)

s,1/2.
X
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Since |¢| ~ 2F7%1 we use the Hélder inequality and the Young inequality to have

(L.H.S.) ~9~2851+201 Z 9(3a/5-1/10)k I |€|a+1(<€>5f) x ((€)%9) ”L?E(Bk)
k<5j1/2+0(1)
<9—28j1+2j1 Z 9(3a/5-1/10)k
k<5j1/2+0(1)
X |||§|a+1||Lg(\5\~2k74j1)||(<§>8f) * (<§>89)HL2"L2
—2sj1—4aj1—4j 8(g+2I s s
TRty T RN f 1 I1€) gz,
k<541/2+0(1)
<9~ 2(s+1/4)j1 ||f|

.s 1/2 ||g||Xs 1/)2
(Vb-2) Secondly, when a = —7/8, we prove

26 () gz, S 1 gl

s,1/2.
X2

Since 2 ~ |¢[2%t and s > —1/4 + &5, we use the Holder inequality and the Young

inequality to obtain
(LELS.) ~2(-2-1/2420) 1| V2422 (€)7 1) 5 (€)°) 12
SIET2H 2 2 1(€)°F) * (€)°9) 22
SI
(Vb-3) Finally, when —3/2 < a < —7/8, we prove

22| () R f gl SIS

s 19l v

51/2 (313)

xi/2ll9ll 5

Since |£|*T! < |€]7*/2 and s > —1/4 4 2¢;, we have

|§|a+1 <7_>—5/8+51/2 S |§| —1/2—51/22(25—2—251)]‘1‘

From this, we use the Holder inequality and the Young inequality to obtain

(LHS.) S22 [(7)2=2((6)° ) % ((€)°9) e,
&)z € glle

2B |E[ T2 g i 1 €

S

xGh lg! Xy

(VI) Estimate for (viii). We prove

293 2 ) * gl iy S IS

k>0

cellollss (3.14)

In the case |&| < 27 we easily obtain the desired estimate for a < —1/4. Hence

we only consider the case 2% < |&| < 1.
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(VIa) We consider ([3.I4) in the case 2k== = 2k From (3.8), it suffices to show
that

29| (r = &) (E) ) * gl SIS

Since 2(-1/2+e)k < | &, |71/42-i(=1/ 4ok e use (2.2) with K ~ 27 to have
29| (r = &%) TVEEE) f) % glle  S2YNE)°F) + (€174 " 2 g) 2,
SIS

which implies the desired estimate for a < —1/4.
(VIb) We consider (B.I4) in the case 2= = 2% Similar to above, it suffices to

show

Xéf ||9H)zzv3/8-

51/2||g|| 1/4,3/8,

29 (€ ) * alliz (s S IFIlg s1/2||9|| gasd/s-
k>0

Since 27F1/2 < 27k/12|¢,|~1/427727k2/6 e use (ZIT) with K, ~ 27 to obtain
(L.H.S.) $27 % " 27 ™2 (€)% (r = €)2 ) (1174 ™0 9) 22 (s,

k>0

SO 2P0

k>0

o 1/2Hg||X 1/4,3/8,

which shows the required estimate.

(VIc) We consider (B.I4) in the case 2Fmax = 2k2  If 2kmax > |£,|2% we have
Qhmax ~, 2k op 2kmax ~ 2k We only prove the case 2Fmax ~ |£,]29.
(VIe-1) Firstly, we prove the following estimate in the case a = —7/8.
29N 2R ) % gl s S IFIlg
k>0
From |&|%/8(ry)~3/8751/2 < 271k/29731/2 e use (2.16) with K, ~ 27 to obtain
(L.H.S.) $29/2y 20202k | ((6)° f) % (1€ ¥(n) 512 g) | 2 s,

k>0

ST el rmasene
k>0

.s 1/2 ||g|| 77/8 3/8+e1/2-

(VIe-2) Secondly, we prove the following estimate in the case —3/2 < a < —7/8.

23]22 k/2|| "‘QHL2 ¢(Br) S ||f|
k>0
We use ([2.16) with K, ~ 27 to obtain
(LHS) 29723 1|f|

k>0

oS 1/2 ||g|| oa 3/8+52/2

) ~1/2
X(s;{f”\ﬂ 9llzz,-
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Following

|§2|—a—1/2<7_2>—3/8—82/2 5 |€2|—a—7/8 2—3j/2 2—82k/2 5 2—3j/2 2—82/4:/2’

the right hand side is bounded by C’Z 9-e2k/2) 1 £1l 5 /2 9]l 5 a:3/5+23/2.

k>0

(VIe-3) Finally, we prove (8.14]) in the case —7/8 < a < —1/4. We consider (3.14])

when g is restricted to D,. In the present case, we have 274 < |&| < 27%/2 and
15 |mf S 29972

(ia) In the case a = —1/4, we prove
29 2R ) * gl sy S IS g1/ l9ll g 1. (3.15)
k>0

Since |&| ~ 27274 We use Holder’s inequality, Young’s inequality and the triangle

inequality to have

(L.H.S.) S2914€) fllrzrallgll ez
SN AN o2 €1 2, oty 1€ g 22,

PNl g2 S Nl gl g
ko

Sl

X(Sé,l{)z ||g ’|X£1/4,3/4,1 .

(ib) In the case —7/8 < a < —1/4, we prove

293 27 ) * gl s SIS

k>0

31/2Hg||Xa 3a/5+9/10. (3.16)

Since 272 ~ |&,]2%, we use the Holder inequality and Young inequality to have

(LHS) S21€) flzzer 9l yee
S| £

g2 €175 L2 co-msr2) g1l go.20/5+9/10,

which shows the desired estimate since |||¢]~5¢/5~ 9/10||L2(\£\<2 5i/2) S 2% (@t 3)j,

(ii) We consider (3.14) when g is restricted to D;. In this case, 273/2 < |&| < 1
and 2%/2 < || < 29,
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(iia) Firstly, g is restricted to Bysj/a5i/2+a) With 0 < a < 3j/2. From 27%/2 <
€] < 2739/7Fe we use the Holder inequality and Young inequality to obtain

1) % ll o172y ~ 2Y D0 272 ) * 91z

k>2a

< 2% 27°KE) fll ez gl e

S 275 e f]

31/2|H£‘ 8[1/5 9/10HL2 2— 3]/2<‘5‘<2 3j/24a Hg”Xa 3a/5+9/10.

In the case a = —1/4, the right hand side is bounded by /o 27| f|| ;

because

-5 1/2 ||g|| 71/4 3/4

—-1/2
|||€2| / HLEZ(273j/25\52|522*3j/2+a) S \/a

In the case —7/8 < a < —1/4, that is bounded by 275 +8)|| f|

since

siifpl9llgonrmone

€175 o g ca-aa/20my S 2 (4 g3t e,
We put a sufficiently small number e3 such that 0 < e3 < 8(a + 7/8)/5. Then we
obtain, for —=7/8 < a < —1/4,
2 —e3a
IE(E°f) = g||Xfé;;/2(322a) <27% ||f||X(32,’11/)2||g||Xz,3a/5+9/1o. (3.17)

iib) Secondly, ¢ is restricted to Bjs; /a1~ 4;1 With 0 < v < 2%/2. Then we use
(55 /2+7,44]

with 22 ~ 27 to have

||£(£2f) * 9] X571%(Besa) ~2% Z 2” k/2|| *g||L2 ¢(Br)
@1 - k<2«
35/2 —1/2
52 i/ k<z2 1 ||f| X(8211/)2|Hf‘ / g||L§y§(2*3j/2+w§\§\)

§a23j/2||f||X(32,?1/)2 I ‘f‘_1/2g||L_2r75(273j/2+w§\€\)7
which is bounded by

a2 3| £|

X(Z,ll/f ||9||Xz»3a/5+9/10>

since 2739/2+7 < & < 1 and

—a— —3a/5— (gt (— 1218 _3; 8 (gt T
‘52‘ 1/2(72> 3a/5-9/10 N‘§2| slatg)o(=Fa—3)j <2 3j/2 9—5latg)y

Therefore we obtain

€% ) * gll ¢

S 2| f]

51/2”9” a3a/5+9/10 (318)

X5 1/2(B<2 )~
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If g is restricted to Bisj/a4y,5j/2+a] With v < a, from (3.17) and (B.18), we have

IEE2) * glgere S 2720+ a2 ) I | guallgl ggamons: (3.19)

Let {a,})_, be the decreasing sequence defined by

3. 1 0< <
ayg = = Qp41 = S 0n, aN = 7,
0 2]7 +1 5 N 5

where NN is a minimum integer such that N > log, 7. We first apply with a = ag
and v = a; and next apply with « = a; and v = ay. Repeating this procedure at

the end we apply with a = ay and v = 0. From (3.19), we obtain

N

1
s S (02 SN

n=0 "

l(€% ) * g

sigypllgsermrone

N

which shows the claim since E — is bounded uniformly in j.
Qn,
n=0

Next, we prove (B.2]) except the case (i). We use the triangle inequality and the

Schwarz inequality to have

11l D 1Al S D252 11 £llc2me)- (3.20)

k>0 k>0

From (B3.20), we have, for all j # 0,
e~ 1177 — € €)  gllsznacay S VEE) ol s

Therefore we obtain (3.2)) for j # 0 from the proof of (3.1)). Here we only prove (3.2))

in the case (vi).

(VII) Estimate for (vi). We prove

27 Il f * gllizracan) S IS (3.21)

sl
We consider ([B.21)) in the case || < 27%1. Since the left hand side of (B.21)) is
bounded by C||[£]7HH(7) "4+ f x g|| 12 . We obtain the desired estimate in the same
manner as (V). Thus we only consider the case 274" < |¢| < 1 below.
[f 2kmax = 2k1 or 2F2 the left hand side of (3.21]) is bounded by

c22n Z 27k g| ot f % g||L3’£(Bk). In the same manner as (V), we obtain (3:2I]) in
k>0
this case. We consider the case 2Fmes = 2% Since |¢]|a+12721 < (|¢[241)7/2 < 2F/8,
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we use the Holer inequality and the Young inequality to have

(LH.S) < 2727 22| 7)1 ((€)° ) * ((€)"9)l rzne
S 27T ) * (€)° ) s
S 27 NET aamun < | () ) * ((€)°9) | cgers
S I

Xy lg] X

4. PROOF OF THE TRILINEAR ESTIMATES

In this section, we prove the trilinear estimate (LI4]). This estimate is reduced
to some bilinear estimates by using [k; Z]- multiplier norm method introduced by
Tao [23]. Here we recall notations and general frame work of [k; Z]-multiplier norm
method. For the details, see [23].

Let Z be an abelian additive group with an invariant measure d¢ (for instance
R™, T™). For any integer k > 2, we let I'y(Z) denote the hyperplane

TW(Z) = {(&, - &) €Z"; &+ + & =0}.

A [k; Z]—multiplier is defined to be any function m ; I'y(Z) — C. Then we define

the multiplier norm ||m||x,z) to be the best constant such that the inequality

k k
\/F (Z)m(ﬁ)fo&)déi SCH||fZ-||L2(Z),

i=1
for all functions f; on Z. This multiplier norm has the composition rule and the
TT* identity as follows.

Lemma 4.1. If ki, ko > 1 and my, me are functions on Z* and Z** respectively,
then

||m1 (gla to >€k1)m2(€k1+1> T >€k1+k2)”[/€1+k2;z]

< lma€e - &) I zllma (e, -+ 5 Era) ko t1,2)- (4.1)

As a special case we have the T'T* identity

lm(&r, - &)m(=Errs -, —ar)liamz) = Im(&rs - &) i1z (4.2)

for all functions m ; Z¥ — R.
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For the details, Lemma 3.7 in [23].
We estimate (I.I4). Schwarz’s inequality implies

K€Y €1 lzns S K€ °lE)" (T — €)% fll e,

where ¢ > 0 is sufficiently small. Therefore it suffices to show
H|€4|<T4 - /R4 f(11, &) 9(72, &)1 (73, 53)d71d€1d72d§2H23,a
+H<§4>8_a|§4|a+1<74 — &) /R4 J(11,&1)9(72, &)1 (73, 53)d71d€1d72d§2HL2 E
SI

where 71 + 7 + 73 + 74 = 0 and &§ + & + §3 + {4 = 0. By symmetry, without loss of

Id

7s,a |g’ 7s,a 7s,a

generality, we can assume that |&5] < [&| < |&]. We put
Q= {(7,6) € RS ; |&] < 100 or |&], |€4] < 100},

where 7 = (19, T2, 73) and £ = (&1,&2,&3). Combining the Holder inequality and the
Young inequality, we easily obtain (ILI4]) in €. Thus we only consider (LI4]) in

R®\ . We divide R®\ Qg into five parts as follows.
O ={(7,€) €RO\ Qp ; |&] > 1 and |&] > 1},
Qo :={(7,) e R°\ Q ; |&| > 1 and |&] <1},

(7

( € R\ Qo ; [&, [&] > 1 and |&5] < 1},
(7 8

(

™y @l

l

)

Qg Z—{
Qu :={(7,€) € R°\ Qo ; |&] > 1 and |&], & < 1},

Qs :={(7,6) e RO\ Q ; |&1], |€4 > 1 and |&] < 1}.
We reduce the trilinear inequality by using the composition rule (@1l and the T7T*

identity (4.2).

(A) Estimate in €;. It suffices to show that

(€4 H (&)
{

HXQl (14 — E)V/2= el — &) 1/2H[4R2 ~

where ¢ > 0 is sufficiently small. Following (£,)5*! < (&,)1/2(&,)5+Y/2 for s > —1/2,
we use the TT* identity (4.2]) to have

(E4)M2(&1)1? H H
— N2 (1 — £0)1/2 ( _55 172 || (4:r2)

,)1/2
SHX{IQ\, \52|21}(51’52) (11 §< >1> <§.§ >_ 53)1/2—5

(LHS.) ,sHm

2

[3R2]
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Therefore the trilinear estimate in €2; is reduced to the bilinear estimate

1% llez, S llpnf

x5 [prgll ARt (4.3)
where X (32’?2) is defined by the norm
1f]

(B) Estimate in Q5. It suffices to show that

oo, s 1
XQ2 5)i/4 55 1/2 [4R2]

We use the composition rule ([@.1]) to have

o0 = ()T — f5>bf!|Li5 for s,b € R.

(2,2)

a+1
(L.H-S-),SHX{IQISLI&QIZI}(&’52) (1 ‘Z‘>1/4<<£2> €3) 1/2H3R2]
2
HX{\&\ &1213 (61, &2) E 55 1/2 H[?;RQ ’

which shows that the trilinear estimate in €2, is reduced to

1F # gllzz ¢ S Ipufllgpo-rarallprgll oz (4.4)

and

1% gllez, S llpnsf

(C) Estimate in Q3. It suffices to show that

(€a)7 ! H € gl
{

o = e gl <

X(sélg)z |Prgl

os,1/2.
X2.2)

Following (£4)°+! < (&,)Y/2(€,)*T1/2 for s > —1/2, we use the composition rule (&)
to obtain
(€)' 2 (6) 2 (E2) 016 H
— &P — )V — )V — £5)%/8 llumy
5 —a g 1/2
SJHX{\&\SL\EHZH(&’52) (r — f‘§>13‘/8<<7'2>— £5>1/2—5

&)
x HX{51|,|52>1}(§1752)<71 _§<§>11>/2 <<2 &) 1/2H[3R2

(LH.S.) 5HXQB <

[3;R?]

which implies that the trilinear estimate in {23 is reduced to (4.3]) and

1% 9z, S Noufl oo longl g oo (4.5

Similar to above, the trilinear estimate in other cases is reduced to the bilinear
estimates (4.3), (44) and (L35). We remark that Chen, Li, Miao and Wu [6] proved
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[43) for s > —1/4 by using the block estimates established by Tao [23]. For the
details, see Lemma 5.2 in [6]. Thus we omit the proof of (£3)) and give the proofs of
([#4) and (@3). From LZ-property of X (82’?2) and X" it suffices to show two lemmas

as follows.

Lemma 4.2. Let s > —1/4 and —3/2 < a < —1/4. Suppose that [ is supported on
Ay and g is supported on A;, with jo > 0. For j >0, we obtain

< i ) )
1 *gllzz ay) S C(J,]1,]2)||Plf||x(;72§1,1/4||ph9| 5o (4.6)
in the cases (i) and (vii) of Proposition[3 1l
Lemma 4.3. Let s > —1/4 and —3/2 < a < —1/4. Suppose that f is supported on
Ao and g is supported on A;, for jo > 0. For j > 0, we obtain
1% 9llis o) S CG v o)l s longll oo (@7)

in the cases (i) and (vii) of Proposition 3.

Here we define 2Fmax > 2Fmea > 2kmin to be the maximum, median and minimum
of 2k 2k 9F2 respectively.
Proof of Lemma[4.2. (I) Estimate for (i). We use the Holder inequality and the
Young inequality to have

17 % 0lez, S 10029l SIEIT sz el €7 Pl g 2l 0
ST PR

which shows the required estimate.

(IT) Estimate for (vii). We prove

llon (f * 9)||L3,§(Aj) S ||plf||)2*a*171/4||phg| X(S;z/f*f’ (4.8)

(ITa) We consider (£8)) when f is restricted to {(7,&) ; |£] < 2721}, We use the
Holder inequality and the Young inequality to have

1f % gllzz cayy ~277Lf * ((6)°9) e
3 3
SQ_Sij”L%Lf_/Q||<€>Sg”L§L?_/5

2716z, gerje—2 | |§|‘“‘1f||LgL3/2 gl

<2—(s+2a+3

Xty
Y

Ml ggarrallgl ey,

which implies the desired estimate.

(ITb) We prove ([£8) when f is restricted to {(7,£) ; 27% < |¢] < 1}.
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(ITb-1) We consider the case 2Fmax ~ [£[2%, From a +1 > —s/2 and s > —1/4,

we have

|€1|a+12—5j 5 (|€1|22j)—s/2 S 2j/4|§1|1/8 S 22j2—7kmax/16|€1|9/16'

Then we obtain

1 % gllzz () S277MENHUET 1) = (€)° )z,
Nk (e 1f)*((£>sg)||L2
S2|(le 7))+ (€ = €)7o gz,

which shows the required estimate by using ([2.2) with K ~ 27.

(ITb-2) We consider in other cases, namely 2Fmax ~ 2Fmed > |£,1247, We only prove
(&) in the most difficult case 2Fmsx = 2% and 2Fmed = 2% Following

|€1|a+12—5j ~ (|€1|22j)—s/2—1/8|§1|1/82j/4 S (|§1|24j)1/16|€1|1/8 S 2k1/16’

we use the Holder inequality and the Young inequality to have

£ % gllze o ~2 2 " E" ) * ()%l c2,
<IE 1) % ((€0°9) .2,
SIE 10 3ol € g
SIS gzoraralgl e

O

Proof of Lemma[{.3. (I) Estimate for (i). We use the Holder inequality and the

Young inequality to have

1 gllzz o S WAl ypsrallgl pzrers S WAl gonserellgllgoore,

which shows the desired estimate.

(IT) Estimate for (vii). We prove

Ipn(F * Dllaz apy S Moefll gosrsllprgll g pyzare-e. (4.9)
(ITa) We consider (£3) when 2Fmax ~ |£|2% . Following

[€1]7927% ~ 220 (|€1[24) 738 gy |eHBSS 229 ka8,
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we use (2.2)) with K ~ 27 to have
17 % gllsz ay ~2P205 5 (1€)20) s
2% B (€1 ) 5 ((€) 72 9) 2,
S2||(IEl(m) ") * ()T = €)7Eg)

SHfHXZ,S/S ||g||X&12/)2,1/2+5.

(ITb) We prove (A9) in the case 2Fmax ~ 2kmed > |£12%7, It suffices to show (A7)

in the case 2Fmex = 2F and 2Fmed = 21 Following
292~ (|62[29) 8160 7YE S [ B2,
we use the Holder inequality and the Young inequality to have
1F * gllzz (a,) SNAETYEYEF) % (€)°9) .z,
ST 1 1)
,SII\51\‘“‘1/8!|Lgl(|gl\g1>|H£\“<T)1/8f||L§L§/2!|g||)g(;}2()2»1/2—s

SHfHXz,S/S ||g||X(—212/)2,1/275.

5. PROOF OF THE MAIN RESULTS

In this section, we give the proof of the main theorems. The space Z7" is defined

by the norm

lul

z50 = inf{||v|| zsa ; u(t) = v(t) on t € [0,T]}.

We obtain the following well-posedness result.

Proposition 5.1. Let s, a satisfy (I.8) and r > 1.
(Eristence) For any ug € B,(H*>®), there exist T ~ r~19/3+20) gpn
we C([0,T]; H>*) N Z3* satisfying the following integral form for (I1);

w(t) =U(t)ug — e /0 Ut — 5)0,(u(s))*ds

e /0 Ut — 5)0,(uu(s))2ds — ¢ /0 Ut — 8)du(udPu(s))ds  (5.1)

Moreover the data-to-solution map B.(H*>*) 3 ug — u € C([0,T]; H>*) N Z3" is
Lipschitz continuous.

(Uniqueness) Assume that u,v € C([0,T); H>*) N Z7* satisfy {51). Then u(t) =
v(t) ont € [0,T].
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Proof. We first prove the existence of the solution of (5.1). This equation is the

scale invariant with respect to the following scaling.
u(t, z) = un(t,z) = A 2u(A°t A 2), A > 1
A direct calculation shows

[u(0, )]

Therefore we can assume that initial data is small enough. Here we use proposi-
tions [L.5] 2.4 and to construct the solution by the fixed point argument. For
details, see the proof of Proposition 4.1 in [14].

Hs.a S >\_3/2_a||uO||H5,a. (52)

We next prove the uniqueness of solutions by the argument in [19]. We define the

space W*% with the norm

[ullws.a = [Jull zoo + o]l Lgo(Bsarsa).

In the same manner as the proof of Theorem 2.5 in [19], we obtain, for 1/2 < b < 1,

s,a,b _ : _
we X, w0r)=0= 51—1>I-I+10 sa = 0, (5.3)
where Ty := A>T, A > 1 and the space X(1 i > defined by
lull ez = I 1E1( = €Tl c2 (a0} ol

Let u € W** and u(0,z) = 0. Since W% contains Z(R?) densely, We can choose
v € Z satisfying ||u — v||ws« < & where € is an arbitrary positive number. Now we

have

[v(0)]

woa = |[(u—v)(0)]

Hee S [u—vlfwee <e.

Note that

sup [[u(t)[[se S lullwse S Jlullxsa (5.4)
teR

for any 3/4 < b < 1. From the above argument, we obtain
[ullwze Sllu = vllwse + llv = U@)o(0)[lwge + [U#)v(0)[[xs00
Se+ [0 = U0w0) 00+ 0(0)]

Se+ |lv—=U(t)v(0 )||Xsaz, :

(1,1),T

Hs»a

The second term tends to 0 as 7' — 0 from (5.3), which shows that

Jimn ]z = 0. (5.5)
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Combining Propositions [[L5], 2:4] and 5] and (5.5), we have the uniqueness. For the
details, see [13]. O

We next prove a priori estimate (LS.

Proof of Proposition[1.2 By the density argument, without loss of generality, we
can assume u € Z. We put the Fourier multiplier P defined by

Pu = FE xqe1<13(6) Fru.
Calculating
/P(@tu — Ou — §a20x(u)3 + a0, (0,u)? + 200, (udu)) - Pudz = 0,

we have

/8tPu - Pudz — /P@iu - Pudx — %az / PO, (u)* - Pudx

—a / PO, (0,u)? - Pudz + o / PO3(u)? - Pudr = 0.
The second term of the right hand side vanishes. We note
PO, < [¢* g1 < 1. (5.6)

for a > —1. By the Sobolev inequality and (5.6]), the third term is bounded by

5/2 1/2 1/2 1/2

w2 o1 [[]| oo || P28y oo S|l 35710l 1 | P28 ]| 57| (PO) il
1/2 1/2
SlulBa|Bpu] |17 || P[5

Similarly, the fourth term is bounded by
@) (| | P20t oo S ([ Data[Fel el ]| Pl 2
and the fifth term is bounded by
el P20%ul o S 72| Pl
Following the above estimates, we obtain
Oul Pl < llullZallOzull 2 + lull 212wl 72 + ull 2
Therefore we have

3/2 3/2 1/2 1/2 5/2
sup [P, W < N Puol[35 + CT (|32 |l 15+ Nlaell o2 Dual 22 + [Jue]|357).

0<t<

(5.7)
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In the case ¢; = —2a%/5, ¢co = a and ¢3 = 2a with a € R\ {0}, (L) is complete

integrable. So this equation particularly has the conserved quantities as follows:

Ju(t, )z = lluollze, (5.8)
/(&Cu)2 + %augd:v = /(axuo)Q + %au%dm. (5.9)
Using the Sobolev inequality and (5.8)) to (5.9]), we have
0zu(t, iz S 10suollf + lluolz2”. (5.10)
Substituting (5.8)) and (5.10) into (5.7)), we have

3/2 3/2 15/4 5/2 5/2
sup (| Pult, )l < [ Puollys + CT (luoll 2 + luol 72 + 0ol 72). (5.11)

Since
Ju(t, e < [[Pult, )7 + ult, )7z + [0zult, -)lI72,

we obtain (L) from (£.8), (5.I0) and (GIT)). O

Finally, we prove Theorem [[.4l We first prove (i) in Theorem [[.4. In [1], Bejenaru
and Tao, for the quadratic Schrodinger equation with nonlinear term u?, proved the
discontinuity of the data-to-solution map for any s < —1. We essentially follow their

argument to obtain the following proposition.

Proposition 5.2. Let s < s, := —2a—2, =3/2 < a < =7/8, ¢y # c3 and0 < 6 < 1.
Then there exist T' = T(0) > 0 and a sequence of initial data {pns}F_; € H™
satisfying the following three conditions for any t € (0,T],

(1) ll¢n sl

(2) ||onsllgsa — 0 as N — oo,

(3) luns(t) || s 2 0%,
where un 5(t) is the solution to (I1) obtained in Proposition[5.1 with the initial data
ON,5-

Proof. Let N > 1. We put the initial data ¢y s as follows:

Hsaa ~ 0,

PY .
ons(x) = SN2t cos(Nx)/ e de .

-

where v := N=%. A simple calculation shows that

On5(E) ~ NPy o (€) + IN iy g (), (5.12)

where

B* .= [£N — v, £N +1].
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Thus we have

[onsllzrsa ~ GN*T252 0 ||U(t)p o] He ~ ONH2H2 (5.13)

fee = ||ons]

Since ||¢n sl rsa.a ~ 0, we have T'= T'(0) > 0 and the solution uy s to (LI]) with the
initial data ¢y s by Proposition Bl Let ¢ € (0,7]. A direct calculation shows that

z/‘l\z(uo)(t) =(ca — ¢3) eXP(ifst)/ L= ele(_iqlt) §&1(€ — &) uo(&1)uo(§ — &1)déy

ﬁ exp (i&’t) / — eXI;( ~ta) o (&1)to (€ — &1)d&
=1 (uo)(t) + Aga(uo)(t), (5.14)

where

0= SEa(E -~ )€+ + (€ - a)).

By similarly argument to the proof of Theorem 1.2 in [I4], substituting (5.12]) into
(5.14), we obtain for ¢y # c3

| Az (dn,6) (8| o 2 0% (5.15)

Now we put vy s(t) := uns(t) — U(t)pns — A2(¢ns)(t). Since the data-to-solution

map is Lipschitz continuous with s = s,, we obtain

Heaa SO0 (5.16)

lows(1)]
by Propositions [[5 2.4l and 2.5 From (5.13)), (5.15) and (5.16]), we obtain
[uns(@)]lmse > [|A2(dn,5) (1)) wsa = [|U()dw s

for all N > 1. Since ||¢n 5|

Hsa Z 527

oo — [luns(t)]

gsa — 0 as N — oo, this shows the discontinuity of the
flow map. ]

Secondly, we prove Theorem [[.4] (ii). By the general argument in [9], it suffices

to show the following estimate fails for |¢| bounded.

[ A2 (o) ()]

We put the initial data {¢Yn}F_, € H* as follows:

2
Hs»a-

fsa S luol

T v/2
Yy (a) = N7 cos(Nx) / e de + N19+2 cos(N ) / e e

— —v/2

A direct computation shows that

Un(€) = N7*2 (xp+ (€) + x5-(6)) + N 2x(, 0,502 (€). (5.17)
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Clearly ||y || gsa ~ 1. Note ¢z # ¢3 and ¢3 # 0. Inserting (B.17) into (5.14)), we have

[ Aoy (V8 ()] 2 N2 x0.41(€) + (remainder terms),
and
| Aga(n)(8)] 2 N™5H442 ¢y vig(€) + (remainder terms).

Therefore we obtain

N+~

gl 1/2 1/2
P </ |£|2a+2d£> | Nstdat2 (/ |£|2s+2d£) .
0 N
(5.18)

[ A2 () (B)]

If @ < —3/2, the first term of the right hand side of (I8]) diverges. When we
assume a > —3/2, ||Az(tn)(t)||gee is greater than C(N—2(s+20+2) 4 Nalat1/4)y - 1f
s < —2a—2ora>—1/4, ||[Ay(vn)(t)]

claim since ||ty |

gsa — 00 as N — oo, which implies the

Hs.a ™~ 1
Finally, we prove Theorem [[.4] (iii). Similar to above, we seek for the initial data

such that, for |¢| bounded,

A3 (o) ()l 710 S Mol Free (5.19)

fails. By using the similar argument to [5], we prove that (5.19)) fails for s < —1/4.

As(ug) is the cubic term of the Taylor expansion of the flow map as follows:
As(ug)(t) = As1(uo)(t) + As2(uo)(t) + (remainder terms),

where

Az 1 (up)(t) := _Cl/o U(t — 5)0,(ui(s))3ds,

and

As o(up)(t) := —03/0 U(t — 5)02(uy(s)As(ug)(s))ds.

We put the initial data {¢n}3_, € H* as follows:
N—3/2
on(z) := N=573/% cos(Nx) / e de.

—N-—3/2

A simple calculation shows that

ON(E) = N7H4 (e (6) + xo-(6)), (5.20)
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where C* := [N — N~%2 £N + N=3/2]. Clearly ||¢n||zrsa ~ 1. A straightforward
computation shows that

Az 1(uo)(t) = —a1 /exp(i(fl + &+ &)+ i(6 + &2+ €3)°t)

1 — exp(—igot
" exp(—igo )(
q2

1+ &o + &3)U0(&1) U0 (§2)t0(E3)dE1dEdEs,  (5.21)

where

q2 = g(fl + &) (6 + &) (& +E){ (6 + &)+ (&L +8)° + (& +6)°)

Next we calculate As(ug). From the definition of the quadratic term As,

R Br L (e ¢ \B
Aofu)®) = 2(es 2 eng1§2+ S — S e m(e - e
5
Cg — C9 / 52 —|—ij 5 t 0(51)@0(5 — fl)dfl + (remainder terms).

(5.22)
Substituting (5.22)) into As2(ug), we have

1 — exp(—igat)
q2

Analuo)(0) = Seales = ca) [ explila + &+ E)a -+ i+ &2+ 6)°)

y (614 &+ &)°
&+E&+ &+ &)

— §C3(C3 — ) /exp(z'(& + &+ &) + (& + &+ &)%)

(& +&+8&)°
fz +&+ (L + &)
We assume that & € Ct, & € C~ and & € C*. Following (5.21) and (5.23)), we

have

50(§1)0(§2)0(§3)dE1dE2dEs

1 — exp(—igst)
q3

5 U0(&1) U0 (82) 00 (E3)dE1dE2dEs + (remainder terms). (5.23)

[Ag(9x)(8)] = [exp(i€®)
X /{ <103(C3 - 02) - C1> L= eXp(—iqgt) - 1(03 — cg) 1- eXp(—z'q3t)}
5 b}

a2 as
X QSN(&)QSN(EQ)QS (=& — & dfld&‘ + (remainder terms). (5.24)

Here we used the change variables from &3 to & = & +&+&;. From ¢ # 2c3(c3 —c2)
and (5.24)), we obtain

1 S—
‘ = 2| ‘Cl - 303(03 —02)} N33/ 1€ IX v —n-3/2 N n—3/2)(§)

CN—38 9/4 |§|X[N_N,3/27N+N73/2} (5))

| As(on) (1)
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where C' > 0 is some constant. Thus there exists a constant C’ > 0 such that
’|A3(¢N>(t)||Hs,a > C/N_23_1/2 _ 20]\/‘—23—3.

Therefore, when s < —1/4 and a € R, there is no positive constant C' such that, for
bounded |[t|,

3
Hs.a-

| As(on)(1)]

moa < Cllon|

6. APPENDIX

We mention the typical counterexamples of (L9)) for (LI0).

Example 1. (high x high — low interaction)
We define the rectangles Py, P, as follows:

Pr:={(1,6) € R*; [¢ = N| < N9 |7 — (5N'¢ —4N°)| < 1/2},
Py :={(1,6) e R*; (—7,—¢) € A4 }.
Here we put
f(1.8) == xp(7.€), 9(7.§) == xp,(7, ). (6.1)
Then we have
fx9(1,6) 2 N2 xn,(7,6), (6.2)
where
Ry = {(r,§) e R*; £ € [1/2N"*2 3/ANT*2], |r — 5N*¢| < 1/2}.
Inserting (61)) and (6.2]) into (), the necessary condition for (LC9) is b < 3a/5 +
4s/5411/10. Thus b < 3a/5+ 9/10 if (LI) for s = —1/4.
Example 2. (high x low — high interaction)
We define the rectangle () as follows:
Q={(r. €R?; [¢ - 2N/ < N7, |7 — (5N*¢)| < 1/2}.
Here we put
f(7.6) = xp(7,6), 9(1,§) = Xa(T,§). (6.3)

Then we have

fr9(1,6) 2 N2 xpy(7,6), (6.4)
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where
Ry:={(1,6) €R?; | = N| < N*2/4, |7 — (BN*¢ — AN®)| < 1/2}.
Substituting (6.3) and (€.4) into (L9), the necessary condition for (L9]) is b >
3a/5 + 9/10.

Example 3. (high x high — high interaction)
We put

f(Tv g) = XP (Tv 5)7 9(7—7 5) = XpP (7—7 g) (65>
Then we have

f*g(r.€) Z N7 xgy (7,6), (6.6)

where
Ry:={(r,§) e R*; [¢ —2N| < N32/2, |7 — (5N*¢ — 8N")| < 1/2}.

Inserting (6.5]) and (6.6]) into (I.9]), the necessary condition for (L9) is b < s/5411/20

for s = —1/4.
On the other hand, we put
F(1,8) = X (7,€), 9(7.§) = xp (7, §). (6.7)
Then we have
frg(r,€) 2 N7 X, (7,€). (6.8)

Substituting (6.7) and (6.8) into (L9), the necessary condition for (L9) is b > 1/2
for s = —1/4.
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