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Abstract

We obtain new results for the probabilistic model introduced in [3] and [4] which
involves a d-ary regular tree. All vertices are coloured in one of d distinct colours so
that d children of each vertex all have different colours. Fix d

2 strictly positive random
variables. For any two connected vertices of the tree assign to the edge between them
a label which has the same distribution as one of these random variables, such that
the distribution is determined solely by the colours of its endpoints. A value of a
vertex is defined as a product of all labels on the path connecting the vertex to the
root. We study how the total number of vertices with value of at least x grows as
x ↓ 0, and apply the results to some other relevant models.

1 Introduction

In [4] Volkov showed how the 5x+1 problem can be approximated by a probabilistic model
involving a binary tree with randomly labeled edges, with distributions of the random
variables assigned to edges being determined by their directions, these random variables
being independent.

Menshikov et al. [3] studied a similar model, where random variables assigned to edges
of the tree were dependent both on the type of parent vertex and the type of the child, as
described below. At the same time, the results in [3] did not give the answers to all the
questions answered in [4], and this is the purpose of the current paper. We want to stress
that answering these questions is not a straightforward application of the previous results,
but requires some new additional arguments.

Let d ≥ 2. We consider the d-ary regular rooted tree Td with vertex set V (that is, the
tree where every vertex has degree d+ 1 with the exception of the root, u0 ∈ V, which has
degree d). For the vertices u, w ∈ V, the following quantities are defined:

• ℓ(u) is the unique self-avoiding path connecting u to the root;

• |u| is the number of edges in ℓ(u);

• Vn = {u ∈ V : |u| = n} is the set of dn vertices that lie at graph-theoretical distance
n from the root;
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• u ∼ w means that u and w are connected by an edge.

Among d distinct colours we arbitrarily choose one to colour the root. All other vertices
are coloured from left to right, so that all d children of each vertex have different colours.
We denote by c(u) ∈ {1, 2, .., d} the colour assigned to the vertex u.

Now we assign a random variable (label) to each edge as follows. First, consider d2

strictly positive and non-degenerate random variables, ξ̃ij, with i, j ∈ {1, 2, ...d}, of known
joint distribution. Now for u, w ∈ V such that u ∼ w we assign the random variable, ξuw
to the undirected edge (u, w) ≡ (w, u), so that:

• for every edge (u, w) such that u is the parent of w, ξuw
D
= ξ̃c(u)c(w) where X

D
= Y

means that X and Y have the same distribution, and

• for any collection of edges of the tree (u1, w1), (u2, w2), ..., (um, wm), where ui is the
parent of wi ∀i ∈ 1, 2, ...m and ui 6= uj whenever i 6= j, the random variables {ξuiwi

}mi=1

are independent.

For u ∈ V, we define value ξ[u] to be the product of all the random variables assigned
to the edges of ℓ(u). The main object of interest in the present paper is

Z(x) := card{u ∈ V : ξ[u] ≥ x}.

In [4] the ultimate object of interest was the complimentary quantity Q(x) = card{u ∈
V : ξ[u] ≤ x}, however, one can easily see that these two problems are equivalent once we
replace ξ̃ij and x by its inverses (ξ̃ij)

−1 and x−1 respectively; we have chosen to study Z
here in order to be consistent with notations in [3].

Similar to [3], we will randomize the colouring to avoid the disadvantage of the above
colouring method, consisting in the fact that for different u, w ∈ Vn the distribution of ξ[u]
may differ from that of ξ[w]. In order to achieve equality of the distributions of ξ[u] for all
u ∈ Vn, let the colouring be done recursively for n = 1, 2, . . . as follows. We first colour
the root in any of the possible d colours; next, assuming that the vertices up to level n− 1
(i.e., the vertices that belong in V1,V2, . . . ,Vn−1) are already coloured, independently for
each v ∈ Vn−1 we colour each of its children in some colour so that no two children have
the same colour, with all d! colourings of the children of v being equally likely. As a result,
each one of the (d!)d

n−1

possible colourings of Vn has the same probability.
As before, to each edge (u, w) we assign a random variable ζuw, which distribution

satisfies the conditions imposed on ξuw. Define ζ [u] in the same way as ξ[u]; then it is
clear that at every level n the distribution of the unordered set {ζ [u], u ∈ Vn} is the same
as the distribution of {ξ[u], u ∈ Vn}. This means that the two models will give the same
results for a number of problems, while the randomized colouring ensures that for any

u, w ∈ Vn ζ [u]
D
= ζ [w], even though ζ [u] and ζ [w] could be dependent. In particular,

Z(x) = card{u ∈ V : ζ [u] ≥ x}.

2 Results from [3]

Let probability P and expectation E be with respect to the measure generated both by
a random colouring c = {c(u), u ∈ V} and a random environment ζ = {ζuw, u, w ∈



V such that u ∼ w}. Define the d× d matrix m(s), s ∈ [0,∞), as

m(s) :=











E[ξ̃11]
s

E[ξ̃12]
s . . . E[ξ̃1d]

s

E[ξ̃21]
s

E[ξ̃22]
s . . . E[ξ̃2d]

s

...
...

. . .
...

E[ξ̃d1]
s

E[ξ̃d2]
s . . . E[ξ̃dd]

s











.

Let ρ(s) be its largest eigenvalue, then ρ(s) is positive by Perron-Frobenius theorem for
matrices with strictly positive entries.

Let D =
{

s ∈ R : E[ξ̃ij ]
s < ∞ ∀ i, j ∈ {1, 2, ..., d}

}

and Int(D) be its interior. As-

sume that the conditions below are satisfied:

[0, 1] ⊆ D,
0 ∈ Int(D),

E| log ξ̃ij| < ∞ ∀ i, j ∈ {1, 2, ..., d},

E|ξ̃ij log ξ̃ij| < ∞ ∀ i, j ∈ {1, 2, ..., d}.

(1)

Theorem 1 (Theorem 2 in [3]) Suppose x > 0,

λ = inf
s≥0

ρ(s)

and conditions (1) are fulfilled. Then

(a) if λ < 1, then Z(x) < ∞ a.s.;

(b) if λ > 1, then Z(x) = ∞ a.s.

For a vertex u ∈ Vn, let u0, u1, . . . , un−1, un ≡ u be the consecutive vertices of the path
ℓ(u). The proof of the above theorem is largely based on the following statement from [2].

Lemma 1 (Lemma 1 in [3]) Let Sn =
∑n

i=1 log(ζui−1ui
) and kn(s) =

(

E[esSn ]
)1/n

=
(

E

[

∏n
i=1 ζ

s
ui−1ui

])1/n

. Suppose (1) is fulfilled. Then

(a) k(s) = limn→∞ kn(s) ∈ [0,∞] exists for all s;

(b) Λ(s) = log ρ(s)− log d = log k(s) ∈ (−∞,+∞] is convex;

(c) the rate function Λ∗(z) = sups≥0(sz − Λ(s)), z ∈ R, is convex, lower semi-continuous
and differentiable in Int(D). Moreover,

Λ∗(z) =

{

s0(z)z − Λ(s0(z)), if z ≥ Λ′(0),

0, if z ≤ Λ′(0),

where s0(z) is the solution of equation z − Λ′(s) = 0;

(d) for all a > 0,

lim
n→∞

1

n
logP

(

Sn

n
≥ log a

)

= −Λ∗(log a).



3 Expectation of Z(x)

Here we will need one additional assumption:

E

[

ξ̃ij

]s

∈ C2(R+) ∀ i, j ∈ {1, 2, ..., d} (2)

as functions of s, which is required to ensure that Λ ∈ C2(R+). Indeed, the characteristic
polynomial P (s, λ) = det(m(s)− λI) of m(s) can be written as

P (s, λ) =

d
∑

k=0

ak(s)λ
k.

where ak(s) ∈ C2(R+), k = 0, 1, ..., d, are its coefficients and I is d× d identity matrix. By
the Perron-Frobenius theorem, ρ(s) is a simple root of this polynomial, hence it is not a

root of the polynomial ∂P (s,λ)
∂λ

= 0. Hence

∂P (s, λ)

∂λ

∣

∣

∣

∣

λ=ρ(s)

6= 0

and by the implicit function theorem we obtain that ρ(s) is continuously differentiable in
s as ai(s) are, i.e. ρ(s) ∈ C2(R+) and therefore Λ ∈ C2(R+).

Suppose conditions (1) are fulfilled. By Theorem 1 if λ < 1 then Z(x) < ∞ a.s. Also,
since

Λ∗(z) = sup
s≥0

(sz − Λ(s)) = sup
s≥0

(sz − log ρ(s) + log d)

we have

Λ∗(0) = sup
s≥0

(− log ρ(s) + log d) = − log

(

inf
s≥0

ρ(s)

)

+ log d = − log λ+ log d.

Therefore,

λ < 1 ⇐⇒ Λ∗(0) > log d. (3)

From now on assume that indeed λ < 1 and hence Z(x) is a.s. finite for all x > 0.
Observe that Z(x) increases to +∞ as x ↓ 0. We are now ready to give the main theorem
describing the asymptotical behaviour of E[Z(x)], thus generalizing the result of Theorem 3
in [4] to a more general setup of [3] described above.

Theorem 2 Suppose that conditions (1) and (2) are fulfilled, and moreover the following
are true:

(A1) λ < 1;

(A2) µ := −Λ′(0) > 0 (equivalently, ρ′(0) < 0).

Then

lim
t→∞

logE [Z(e−t)]

t
exists and is given by M = max

u∈[0,µ]

log d− Λ∗(−u)

u
.



Proof. Let

f(u) =
log d− Λ∗(−u)

u
.

By the definition of the rate function Λ∗(z) ≥ 0 for all z ∈ R, and also Λ∗(−µ) = 0. Since

Λ∗ is a differentiable and convex function we have Λ∗′(−µ) ≡ dΛ∗(z)
dz

∣

∣

∣

z=−µ
= 0. Also

lim
u→+0

f(u) = −∞ (because of A1 and (3));

f(µ) =
log d− Λ∗(−µ)

µ
=

log d

µ
> 0 (because of A2);

f ′(µ) =
µ · Λ∗′(−µ)− log d+ Λ∗(−µ)

µ2
= −

log d

µ2
< 0.

We conclude that maxx∈[0,−Λ′(0)] f(x) exists and is achieved strictly inside the interval (0, µ).
Let u∗ ∈ (0, µ) denote the point where the maximum of f(u) is achieved.

Keeping in mind that ζ [·] is the same for the vertices which appear at the same level of
the tree, we derive an expression for E[Z(e−t)] similar to [4]:

E[Z(e−t)] =
∑

u∈V

P
(

ζ [u] ≥ e−t
)

=

∞
∑

n=0

∑

u∈Vn

P(ζ [u] ≥ e−t) =

∞
∑

n=0

∑

u∈Vn

P (log ζ [u] ≥ −t)

=

∞
∑

n=0

dn · P

(

log

(

n
∏

i=1

ζui−1ui

)

≥ −t

)

=

∞
∑

n=0

dn · P (Sn ≥ −t) ,

where

Sn =
n
∑

i=1

log
(

ζui−1ui

)

.

Hence

E[Z(e−t)] =
∞
∑

n=0

exp {n log d+ log P (Sn ≥ −t)} =
∞
∑

n=0

etUn

where

Un =
log d+ 1

n
logP (Sn/n ≥ −t/n)

t/n
.

First we get the upper bound for E[Z(e−t)].
By Lemma 1 Λ∗ is a continuous function and Λ∗(0) > log d, therefore, there are ǫ ∈ (0, µ)

and δ̄ > 0 such that for all δ ∈ (0, δ̄) we have Λ∗(−ǫ) > log d+ 2δ. In turn, by part (d) of
Lemma 1 there is an n0 = n0(ǫ, δ) ∈ N such that for all n ≥ n0

1

n
log P (Sn/n ≥ −ǫ) ≤ −Λ∗(−ǫ) + δ ≤ −(log d+ δ). (4)

On the other hand, when n ≥ t/ǫ

P (Sn/n ≥ −ǫ) ≥ P (Sn/n ≥ −t/n) . (5)



Plugging the inequalities (4) and (5) into the expression for Un for n ≥ max {n0, t/ǫ} we
obtain Un ≤ −nδ

t
. Assume that t is sufficiently large. Then t/ǫ > n0 yielding

∞
∑

n=⌊ t
ǫ
⌋+1

etUn ≤

∞
∑

n=0

e−nδ =
1

1− e−δ
. (6)

Secondly,

⌊ t
µ⌋
∑

n=0

dn · P (Sn ≥ −t) ≤

⌊ t
µ⌋
∑

n=0

dn ≤

(⌊

t

µ

⌋

+ 1

)

e
t log d

µ ≤

(

t

µ
+ 1

)

etM (7)

since log d
µ

= f(µ) ≤ M .
To complete the first part of the proof for the upper bound, we need to study the case

when

n ∈

[

t

µ
,
t

ǫ

]

⇐⇒
t

n
∈ [ǫ, µ]. (8)

The proof of the following statement is deferred until Section 4.3.

Proposition 1 Let a1, a2 ∈ R be such that a1 < a2. Then for any δ > 0 there is an
n1 = n1(a1, a2, δ) such that

1

n
log P

(

Sn

n
≥ a

)

≤ −Λ∗(a) + δ for all a ∈ [a1, a2] and n ≥ n1.

Set

a = −
t

n
, a1 = −µ, a2 = −ǫ.

Note that (8) implies a ∈ [a1, a2], hence the conditions of Proposition 1 are fulfilled, as long
as t is large enough, namely t > µn1. Consequently,

1

n
logP (Sn/n ≥ −t/n) ≤ −Λ∗ (−t/n) + δ

yielding

Un ≤
log d− Λ∗ (−t/n) + δ

t/n
≤ f(t/n) +

nδ

t
≤ M + δ/ǫ

since t/n satisfies (8). As a result

⌊ t
ǫ⌋
∑

n=⌊ t
µ⌋+1

etUn ≤
t

ǫ
· et(M+δ/ǫ). (9)



Consequently, combining (6), (7) and (9) together for t sufficiently large we can obtain the
upper bound as follows:

E[Z(e−t)] =

⌊ t
µ⌋
∑

n=0

etUn +

⌊ t
ǫ⌋
∑

n=⌊ t
µ⌋+1

etUn +
∞
∑

n=⌊ t
ǫ⌋+1

etUn

≤

(

t

µ
+ 1

)

etM +

(

t

ǫ

)

et(M+δ/ǫ) +
1

1− e−δ

= C(t, ǫ, µ, δ,M) ǫ−1 tet(M+δ/ǫ) (10)

where

lim
t→∞

C(t, ǫ, µ, δ,M) = 1

for all δ > 0. Taking the logarithm of (10) we obtain

lim sup
t→∞

log (E[Z(e−t)])

t
≤ M + δ/ǫ

Thus by letting δ → 0 we have

lim sup
t→∞

log (E[Z(e−t)])

t
≤ M. (11)

Now, we obtain the lower bound for E[Z(e−t)]. Recall that u∗ is the value such that
f(u∗) = M . Fix a small δ > 0. By part (d) of Lemma 1 there is n2 = n2(δ) such that for
all n ≥ n2

1

n
logP

(

Sn

n
≥ −u∗

)

≥ −Λ∗(−u∗)− δ. (12)

For any t > n2u
∗ define n∗ = n∗(t) = ⌊t/u∗⌋ ≥ n2. Then t/n∗ ≥ u∗, moreover t/n∗ =

u∗[1 +O(1/t)]. Therefore, using (12) we obtain

Un∗ ≥
log d+ 1

n∗
log P (Sn∗/n∗ ≥ −u∗)

t/n∗
≥

log d− Λ∗(−u∗)− δ

u∗[1 +O(1/t)]

= M − δ/u∗ +O(1/t).

Recalling

E[Z(e−t)] =

∞
∑

n=0

etUn ≥ etUn∗

we obtain

lim inf
t→∞

logE[Z(e−t)]

t
≥ M − δ/u∗.

Since δ > 0 is arbitrary, this yields lim inft→∞
logE[Z(e−t)]

t
≥ M which, together with (11),

concludes the proof.

In fact, the result of Theorem 2 can be rewritten in a somewhat simpler form.



Corollary 1 Suppose that all the assumptions made in Theorem 2 hold. Then

lim
t→∞

logE [Z(e−t)]

t
= min{s ∈ D : ρ(s) = 1}.

Before we present the proof, observe that ρ(0) = d ≥ 2 and infs≥0 ρ(s) ≡ λ < 1, hence
min{s ∈ D : ρ(s) = 1} is well defined.
Proof. Form Lemma 1, part (b), it follows that we only need to show that

min{s ∈ D : Λ(s) = − log d} = M

where M is defined in the statement of Theorem 2.
By Lemma 1, part (c),

Λ∗(z) = zs0(z)− Λ(s0(z)) (13)

where s0(z) solves Λ′(s0(z)) = z. Note that s0(z) = (Λ′)−1(z) is uniquely defined, since
Λ is strictly convex due to non-degeneracy assumptions (see [3], Section 5.4, right after
formula (5.10) there), yielding that Λ′(s) is strictly increasing. Since Λ′(s) ∈ C(R+) from
the arguments after equation (2), we conclude that s0(z) is continuously differentiable and
increasing in z. This implies

Λ∗′(z) = s0(z) for all z. (14)

Recall that

f(u) =
log d− Λ∗(−u)

u
and u∗ is the point where the maximum of f on the segment [0, µ] is achieved; in the proof
of Theorem 2 we have shown that 0 < u∗ < µ. Using (13) and (14) have

f ′(u) =
uΛ∗′(−u)− log d+ Λ∗(−u)

u2
=

us0(−u)− log d+ [−us0(−u)− Λ(s0(−u))]

u2

= −
log d+ Λ(s0(−u))

u2
=

s0(−u)− f(u)

u
. (15)

We know Λ(0) = 0, and from (A1) it follows that infs≥0Λ(s) < − log d, hence from the
strict convexity of Λ it follows the set {s ≥ 0 : Λ(s) = − log d} contains either 1 or 2
points. Now, if 0 < s1 < s2 are such that Λ(s1) = Λ(s2) = − log d, from the convexity
it follows Λ(s) + log d > 0 for s < s1 and s > s2, while Λ(s) + log d < 0 for s ∈ (s1, s2).
Suppose s1 = s0(−u1) and s2 = s0(−u2), then u1 > u2 (recall that s0(z) is increasing), and
f ′(u) < 0 for u < u2 and u > u1 while f ′(u) > 0 for u ∈ (u2, u1). This implies that u∗ = u1

is the point where the maximum is really achieved. On the other hand, from (15) we see
that f ′(u) = 0 implies f(u) = s0(−u) thus yielding M = f(u1) = s0(−u1) = s1 which
concludes the proof.

4 Applications and remaining proof

The construction studied in this paper relates to many other probabilistic models; see [3].
These applications include random walks in random environment, first-passage percolation,
multi-type branching walks among others. Here, we will only focus on the two of them for
which Theorem 2 provides additional information.



4.1 First-passage percolation

Consider the coloured tree Td as constructed in Section 1. To each edge (u, w), where u
is the parent of w we assign a random variable τuw which denotes the passage time from
vertex u to vertex w and can be one of the d2 possible types τ̃ij , i, j = 1, . . . , d; the type
is determined by the colours of the edge’s endpoints. We assume for simplicity that all the
passage times are independent. We want to study

R(t) = card{u ∈ V :
∑

(v,w)∈ℓ(u)

τvw ≤ t}

that is, the number of vertices of the tree which can be reached by a particle traveling at
unit speed by time t; as in Section 5.3 of [3], we allow the passage times to be negative,
indicating a sort of ‘speeding up’ of the motion. Proposition 3 in [3] provides a criterion
for finiteness of R(t). Using our Theorem 2 and Corollary 1 we obtain a much finer result:

Proposition 2 Let ξ̃ij = e−τ̃ij , i, j = 1, . . . , d. Suppose that m(s), ρ(s), D, and λ are the
same as in Section 2. If λ < 1 and ρ′(0) < 0 then

lim
t→∞

E[R(t)]

t
= min{s ∈ D : ρ(s) = 1}.

4.2 Multi-type branching random walks on R

Suppose there are d different types of particles and d2 positive random variables, τij , i, j =
1, 2, . . . , d, whose joint distribution is non-degenerate, and define the following process on
R. The process starts at time n = 0 with one particle of type j ∈ {1, 2, . . . , d} located at

point 0, write this as X
(0)
1 = 0. At time n = 1 this particle splits into d other particles

which have different types and take their position X
(1)
1 , X

(1)
2 , ..., X

(1)
d on the real line. The

distributions of the jumps X
(1)
k −X

(0)
m are assumed to be independent for different k’s and

m’s. Now, at time n = 2 the first generation particles split into other particles, following
the same rules as the original particle, giving a total of d2 new particles located somewhere
on R. If we let this procedure to continue, at time n we will get exactly dn particles with
positions X

(n)
1 , X

(n)
2 , ..., X

(n)
dn ∈ R. Suppose that the jump from an ancestor to a descendant,

say X
(n)
k − X

(n−1)
m , has the distribution of τij provided the particle at X

(n−1)
m is of type i

and the particle at X
(n−1)
k is of type j, thus the jump distribution depends on the types of

both the parent and the offspring. Such a model was considered in [1] and [3].
Again, set ξ̃ij = e−ηij and let ρ(s) and λ be the same as in Section 2.

Proposition 3 (Proposition 5 in [3]) Let x0 ∈ R be the unique solution of the equation
infs≥0 e

sx0ρ(s) = 1. Then

lim
n→∞

min{X
(n)
k , k = 1, 2, . . . , dn}

n
= x0 a.s.

Observe that the definition ξ̃ij above implies that Z(e−t) corresponds to the number of
particles of all generations that lie to the left of t. Hence, our Theorem 2 and Corollary 1
give the following result about the expected number of visits to (−∞, t] by particles of all
generations of our branching random walk:



Proposition 4 Suppose that λ < 1 and ρ′(0) < 0. Then

lim
t→∞

log
(

E

[

∑∞
n=1 card

{

i ∈ {1, 2, . . . , dn} : X
(n)
i ≤ t

}])

t
= min{s ∈ D : ρ(s) = 1}.

4.3 Proof of Proposition 1

Firstly, we know that Λ∗ is continuous on a compact set [a1, a2] ⇐⇒ Λ∗ is uniformly
continuous on [a1, a2] by uniform continuity theorem.

Fix δ > 0. Then we can choose τ > 0 small so that, for x
′

, x
′′

∈ [a1, a2]

|Λ∗(x′)− Λ∗(x′′)| ≤
δ

2
whenever |x′ − x′′| ≤ τ. (16)

Then we choose an m ∈ Z and a sequence of real numbers x1, x2, · · · , xm such that,

a1 = x1 < x2 < . . . < xm−1 < xm = a2 and
xi+1 − xi < τ ∀ i ∈ {1, 2, · · · , m− 1}.

By Lemma 1, for each i ∈ {1, 2, · · · , m} there is an ni such that

1

n
· log P

(

Sn

n
≥ xi

)

≤ −Λ∗(xi) +
δ

2
∀n ≥ ni. (17)

Define ñ := max{n1, n2, · · · , nm} < ∞.
Now, ∀ a ∈ (a1, a2) there is a j ∈ {1, 2, · · · , m − 1} such that xj ≤ a ≤ xj+1. Conse-

quently, for all n ≥ ñ

1

n
· log P

(

Sn

n
≥ a

)

≤
1

n
· logP

(

Sn

n
≥ xj

)

(by 17)
≤ −Λ∗(xj) +

δ

2

≤

[

−Λ∗(a) +
δ

2

]

+
δ

2
= −Λ∗(a) + δ.

where the final inequality follows from (16) and the fact that |a− xj+1| < τ .
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