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Abstract

We calculate the longitudinal (σxx) and Hall (σxy) optical conductivities for two-dimensional

metals with thermally disordered antiferromagnetism using a generalization of an approximation

introduced by Lee, Rice and Anderson for the self energy. The conductivities are calculated from

the Kubo formula, with current vertex function treated in a conserving approximation satisfying

the Ward identity. In order to obtain a finite DC limit, we introduce phenomenologically impurity

scattering, with relaxation time τ . σxx(Ω) satisfies the f -sum rule. For the infinitely peaked spin

correlation function, χ(q) ∝ δ(q − Q), we recover the expressions for the conductivities in the

mean-field theory of the ordered state. When the spin correlation length ξ is large but finite, both

σxx and σxy show behaviors characteristic of the state with long-range order. The calculation runs

into difficulty for Ω . 1/τ . The difficulties are traced to an inaccurate treatment of the very low

energy density of states within the Lee-Rice-Anderson approximation. The results for σxx(Ω) and

σxy(Ω) are qualitatively consistent with data on electron-doped cuprates when Ω > 1/τ .
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I. INTRODUCTION

Long-range antiferromagnetic order can have a profound effect on the electronic excitation

spectrum of metals, opening a gap over some or all of the Fermi surface.1 By continuity,

it seems reasonable to believe that even in the absence of long-range order, finite-range

correlations may also have an important effect on the electronic excitation spectrum. The

effects may be expected to be particularly large in two-dimensional systems with Heisenberg

symmetry, because in this case long ranged order can only exist at temperature T = 0. Even

in the presence of weak coupling into a third dimension or weak Ising anisotropy, a wide

range of temperatures will exist where the physics is controlled by the thermally disordered

magnetic state. Such a state, which following the usual conventions we refer to as a spin-

density wave (SDW), is believed to occupy a significant portion of the phase diagram of

electron-doped cuprates.2 Extensive experimental studies, including optical conductivity,3–5

Hall effect,6,7 and infrared magnetotransport,8 of these materials in the doping range where

the ground state has long-range SDW order, have revealed signatures characteristic of partial

gap opening starting at a temperature high compared to the Néel temperature TN(x). This

gap seems to be closely related to that in the SDW state, since the measured quantities

evolve smoothly across TN(x).
7,8 Furthermore, a recent inelastic neutron scattering study9

on the Nd2−xCexCuO4±δ materials found that the spin correlation length ξ remains large

for temperatures high above TN . This motivates the theoretical proposal that the scattering

of electrons off thermal spin fluctuations may hold the key to understanding the transport

data above TN(x).
10,11

While the experimental phenomenology is clear, our theoretical understanding of this

regime is incomplete. In a seminal paper, Lee, Rice, and Anderson12 (LRA) proposed a

model for the study of electron dynamics in the presence of long but finite ranged density

wave order. In this model, electrons are coupled to quasi-static (relevant frequencies less than

kBT ) order-parameter fluctuations, resulting in suppression of the single-particle density of

states at low energies, a phenomenon sometimes referred to as a “pseudogap”. The Lee-Rice-

Anderson analysis was generalized by Sadovskii13 and then was extended to two-dimensional

systems close to the antiferromagnetic instability by Vilk, Tremblay, and co-workers.10,11 who

argued that such long but finite ranged antiferromagnetic fluctuations controlled important

aspects of the physics of the electron-doped cuprates. In a further theoretical development,
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Schmalian et al argued that the electron Green’s function can be exactly calculated for

the two-dimensional LRA model of electrons with a cuprate band dispersion scattered from

antiferromagnetic spin fluctuations,14 generalizing the method first used by Sadovskii in

the study of one-dimensional charge-density fluctuations.13 Tchernyshyov15 analyzed the

underlying assumptions of the Sadovskii’s solution, and argued that it should be used with

caution in the generical two-dimensional situation. However, he concluded that in particular

regions of momentum space termed “hot spots”, the method could be safely applied, and it

is near these momentum points that Schmalian et al found pseudogap behavior in agreement

with the previous work of Vilk and Tremblay.10,11 There has been an attempt to calculate

the conductivity using this method.16 However, the restriction to the vicinity of the hot

spots makes the Sadovskii solution unsuitable for the study of transport properties in two-

dimensional systems, because a summation over the entire Brillouin zone is needed. A

generalization of the LRA theory to transport phenomena is required.

In this paper, we provide the missing generalization. We use the two-dimensional LRA

model in which electrons are coupled to themal (quasi-static) antiferromagnetic spin fluctua-

tions to study the optical and Hall conductivities of electron-doped cuprates at temperatures

above TN . As in Refs [10–12], we calculate the electron self-energy in the leading order of per-

turbation theory. The new feature of our work is a calculation of the current vertex function

in a conserving approximation.17,18 We find that although the vertex function corresponding

to the LRA self energy leads to a conductivity which fulfills the f -sum rule, the dynamic

(+−) current vertex function has unphysical features at low frequencies; leading in some

cases to an unphysical negative conductivity in the very low frequency region. The difficulty

is traced to an incorrect treatment of the subgap density of states in the LRA calculation.

We discuss ways of curing the difficulty and also present results at higher frequencies which

are not significantly affected by the problem.

The rest of the paper is organized as follows. In Sec. II, we use the spin-fermion model to

motivate the LRA model, calculate the electron self-energy in the leading-order perturbation

theory, and discuss the pseudogap phenomenon in the resulting single-particle spectral func-

tion. In Sec. III, we study the optical conductivity with a proper treatment of the current

vertex function. In Sec. IV, we study the Hall conductivity, developing a calculation scheme

which can reproduce the mean-field result in the proper limit. In Sec. V, we summarize

our results, and discuss the implications. Some technical details and a brief summary of the
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mean-field theory can be found in various Appendices.

II. MODEL AND ELECTRON SELF-ENERGY

Γ M
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FIG. 1: Quadrant of two-dimensional Brillouin zone showing the Fermi surface (solid line) for

electron-doped cuprates, its translation (‘backfolding’) by wavevector Q = (π, π) (dashed line),

‘hot spot’ p∗ and other Fermi surface points referred to in subsequent discussions.

In this section, we present the model, the basic approximation we use, and results for

the self energy. The results reproduce those previously derived10–15 and are presented

here to establish notation. Our starting point is electrons moving with a two-dimensional

dispersion chosen, for concreteness, to resemble that believed to be relevant to high-Tc

superconductors:19

εp = −2t(cos px + cos py) + 4t′ cos px cos py − 2t′′(cos 2px + cos 2py)− µ, (1)

where t = 0.38eV, t′ = 0.32t, t′′ = 0.5t′, and µ is the chemical potential. Figure 1 shows the

resulting Fermi surface for electron doping x ≈ 0.16 (solid line). Throughout this paper, we

choose units such that the lattice constant a = 1, ~ = 1, and measure energy in units of t,

unless otherwise stated.

We represent the effects of magnetism via the spin-fermion model, which has been used

extensively in the study of itinerant electrons in systems close to or in long-range magnet-
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ically ordered states.20–26 It is a low-energy effective theory with an intrinsic cutoff energy

Λ, and is conveniently formulated as an effective action24

S =−
∫ β

0

dτ

∫ β

0

dτ ′
∑

pσ

c†pσ(τ)G
−1
0 (p, τ − τ ′)cpσ(τ

′)

+
1

2

∫ β

0

dτ

∫ β

0

dτ ′
∑

q

χ−1
0 (q, τ − τ ′)Sq(τ) · S−q(τ

′)

+ g

∫ β

0

dτ
∑

q

S−q(τ) · sq(τ),

(2)

where cpα is the fermionic field operator, G−1
0 (p, τ) is the inverse of the bare fermionic Green’s

function, Sq is an emergent field describing collective antiferromagnetic spin fluctuations

which are important to the low-energy physics, χ0(q, ω) = χ0/[ξ
−2 + (q − Q)2 − (ω/vs)

2]

is the bare susceptibility in the spin-fermion model with Q = (π, π), sq =
∑

p c
†
p+qασαβcpβ

is the spin density operator of electrons with σ the Pauli matrices, and g is the effective

coupling constant between electrons and spin fluctuations.

G0(p, τ) is the Fourier transform of

G0(p, iǫn) =
1

iǫn − εp +
i
2τ
sgnǫn

, (3)

where ǫn = (2n+1)πT , and we have explicitly introduced the impurity scattering rate 1/2τ ,

which will be discussed in the next section. Eq (3) has been extensively used in studies

of the fluctuation conductivity close to the Peierls transition27,28 and the superconducting

transition.29,30 When two different scattering processes, spin fluctuations and impurities,

are present, it is necessary to consider their interference.31,32 The renormalization of the

spin-fermion interaction vertex g by impurity scattering and that of the impurity scattering

relaxation time τ by the spin-fermion interaction are discussed in Appendix A, where it is

demonstrated that both renormalizations are finite. Thus, as long as we keep g and τ as

adjustable parameters of the calculation, we can neglect their mutual renormalizations.

The third term in Eq (2) represents the interaction between electrons and spin fluctua-

tions, and effectively arises from an interaction Hamiltonian,

Hsf = g
∑

p,q

S−q · c†p+qασαβcpβ. (4)

In this paper, we consider the state without long-range order, < Sq >= 0, and assume that

the spin fluctuations are isotropic. As a result, the spin indices on electrons are irrelevant
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for the calculation of charge transport coefficients. After properly redefining g to account

for the three S directions and two electron spin projections, the interaction Hamiltonian can

be written as

Hsf = g
∑

p,q,σ

S−qc
†
p+qσcpσ, (5)

which bears the form of the electron-phonon interaction with Sq playing the role of the

phonon field operator Aq = aq + a†−q.
33 There are important differences between the spin-

fermion model in Eq (5) and the electron-phonon problem. The phonon degrees of freedom

are extrinsic to electrons. Because of the large mass of nuclei compared to electrons, the

Migdal’s theorem applies, which allows the electron-phonon interaction in conventional met-

als to be treated in a controlled manner.34 However, the spin-fluctuation degrees of freedom

in the spin-fermion model are intrinsic to electrons. For the Migdal’s theorem to be applica-

ble, one usually resorts to one or another variant of the large-N limit where N is the number

of fermion flavors35 or the number of hot spots.24 As in the electron-phonon problem, the

bare spin-fluctuation propagator χ0(q, ω) is renormalized by creation and annihilation of

electron-hole pairs, which leads to the Landau damping term, iω/ωsf . In the random phase

approximation, the renormalized spin-fluctuation propagator has the form

χ(q, ω) =
χ0

ξ−2 + (q−Q)2 + iω/ωsf

, (6)

where ωsf/ξ
2 sets the energy scale for spin fluctuations, and can be expressed as combina-

tions of the parameters in Eq (2) (see e.g. Ref [24]). We note that Eq (6) has the same

form as that proposed phenomenologically by Millis et al,36 can be obtained from the self-

consistent renormalization theory,20,37 and has the generic form in the theory of quantum

phase transitions involving itinerant electrons.21,22,38 We thus argue that the applicability

of Eq (6) is independent of microscopic details and approximations involved in deriving it.

The remaining question is to calculate effects of the interaction in Eq (5) on fermions.

When the temperature T is relatively large compared to ωsf/ξ
2, the dynamic term in Eq

(6) can be neglected (for more discussion, see Appendix B, and for a related discussion in the

context of superconducting fluctuations, see Ref [29]). In terms of Matsubara frequencies,

the static spin-fluctuation propagator is written as

χ(q, iωn) =
χ0

ξ−2 + (q−Q)2
δn,0, (7)

which is the two-dimensional generalization of the LRA model.
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FIG. 2: Feynman diagrams used in this paper. (a) The Lee-Rice-Anderson approximation to the

electron self energy, (b) the current vertex function corresponding to the Lee-Rice-Anderson self

energy and (c) diagrams needed for the longitudinal conductivity. The thin solid lines in (a) and

(b) represent the bare electron Green’s function G0 in Eq (3), the thick solid lines in (b, c) represent

the dressed Green’s function G in Eq (16), the wavy lines are the spin-fluctuation propagator χ

in Eq (7), and the solid circle in (c) represents the current vertex function ΓJ and is calculated

according to (b).

Using Eq (3) and Eq (7), we calculate the electron self energy to leading order in g, shown

in Figure 2 (a),

Σ(p, iǫn) = g2T

∫

dq

(2π)2
χ0

(q−Q)2 + ξ−2

1

iǫn − εp+q + isgnǫn/(2τ)
. (8)

As discussed above, there is a cut-off energy scale Λ below which the spin-fermion model is

defined. Since the above integral is convergent at large q, we assume that all energies under

consideration are below Λ. To proceed, we change q → q+Q and write q = (q‖, q⊥) where q‖

and q⊥ are the components parallel and perpendicular to vp+Q, respectively. The q‖-integral

can be done by the residue method, and the remaining q⊥-integral is elementary. The

retarded self-energy is obtained by analytical continuation to the real axis via iǫn → ω + iδ

with δ a positive infinitesimal,

ΣR(p, ω) =
λ

iε0
F
(ω − εp+Q + i/2τ

iε0

)

. (9)

Here we introduce the effective coupling constant λ and energy scale ε0 defined by

λ = g2Tχ0/(2π), (10)

ε0 = vp+Qξ
−1, (11)
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where the weak p-dependence of ε0 will be neglected in subsequent calculations. The function

F is given by

F (z) =

∫ ∞

0

dx√
x2 + 1

1

z +
√
x2 + 1

=
1√

z2 − 1
ln

1 + z +
√
z2 − 1

1 + z −
√
z2 − 1

. (12)

In the limit 1/τ → 0, we reproduce the result of Refs [10,11],

ΣR
if (p, ω) =

λ
√

(ω − εp+Q)2 + ε20

{

sgn(ω − εp+Q) ln
ε0

√

(ω − εp+Q)2 + ε20 − |ω − εp+Q|
− iπ/2

}

.

(13)

We note that ImΣR
if (p, ω) < 0 as expected and have verified that ReΣR

if (p, ω) and

ImΣR
if (p, ω) are related by the Kramers-Krönig relation,

ReΣR
if (p, ω) =

1

π
P
∫ ∞

−∞

dω̄
ImΣR

if (p, ω̄)

ω̄ − ω
. (14)

Using the one-dimensional analogue of Eq (8), one obtains the result of Lee et al,12

ΣR
1D(p, ω) =

∆2

ω − εp+Q + i/2τ + iε0
, (15)

where ∆2 = g2Tχ0ξ/2. We note that ΣR
1D(p, ω) has a simple pole at ω = εp+Q − i/2τ − iε0

in the lower-half ω-plane, as expected.

We now discuss the physical content of the results. The retarded Green’s function is

GR(p, ω) =
1

ω − εp + i/2τ − ΣR(p, ω)
, (16)

and the spectral function A is

A(p, ω) = −2ImGR(p, ω). (17)

For comparison to previous results, we will sometimes present results based on Eq (13)

(i.e. for the model without an explicit additional impurity scattering). We denote the

corresponding Green’s function and spectral function as GR
if and Aif , respectively.

The situation is particularly simple in the one-dimensional case. If we linearize the

dispersion near the Fermi level εp → vp, εp+Q → −vp, measure momenta relative to the

Fermi momentum ±kF , and assume Q = 2kF , then

GR
1D(p, ω) =

ω + vp+ i
2τ

+ iε0

ω2 − (vp)2 −∆2 + i
(

1
2τ

+ ε0
)

(ω − vp) + i
2τ
(ω + vp)

, (18)
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exhibiting a gap of size ∆2 + (vp)2 broadened by the impurity scattering rate and by the

finite correlation length (parametrized by ε0). In obtaining this result, it is crucial to use

the bare Green’s function in Eq (8). Self-consistent one-loop approximations (and related

approximations such as the fluctuation-exchange approximation (FLEX)) do not obtain a

pseudogap.

In the two-dimensional case of main interest here, the situation is more complicated

because the Green’s function depends both on position on the Fermi surface and on dis-

placement of the momentum away from it. However, a few general statements can be made.

We note that Eq (13) can be written as ΣR
if (p, ω) = ε0

[

(λ/iε20)F (ω/iε0 − εp+Q/iε0)
]

. Thus,

the spectral function shows scaling behavior: ε0Aif(p, ω/ε0) is invariant if energies and

frequencies are measured in units of ε0 at fixed p and λ/ε20.

Precise results can be obtained in the limit that the spin-fluctuation propagator χ(q) is

infinitely peaked at Q (the Kampf-Schrieffer model39)

χKS(q, iωn) = χ0δn,0δ(q−Q). (19)

Eq (8) gives

ΣR
KS(p, ω) =

∆2
s

ω − εp+Q + i/2τ
, (20)

where ∆2
s = g2Tχ0/(2π)

2. Substituting this self-energy into Eq (16), one obtains the Green’s

function in the mean-field theory of the SDW state (the diagonal matrix elements in Eq

(C3)) without introducing a condensate.40 In the next two sections, we shall extend this

conclusion to the optical and Hall conductivities; the mean-field expressions for σxx and σxy

can be obtained from Eq (19) in the leading-order perturbation theory.

An important role in subsequent discussions is played by the “hot spots”, momenta p∗

such that both p∗ and p∗ + Q are on the Fermi surface (Figure 1). At these points, the

density of states is most strongly reduced from the non-interacting value. The structure of

the spectral function at the hot spots is parameterized by a gap scale ∆pg and the scaling

arguments of the previous paragraph show that ∆pg/ε0 depends only on λ/ε20. In the limit

λ/ε20 ≫ 1, ∆pg/ε0 ≫ 1, and is determined by the equation

∆pg = ReΣR
if (p

∗,∆pg). (21)

9
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FIG. 3: (a): comparison of the spectral functions A(p∗, ω) (solid line) and Aif (p
∗, ω) (dashed line)

at one hot-spot, p∗ (see Fig. 1). The parameters are ε0 = 0.2t, λ = 2.5ε20, and 1/2τ = 0.05t. (b):

the spectral function Aif (p, ω) at p
∗ (solid line, black online), pc = (π/2, π/2) (dashed line, green

online), p1 = (0.43π, π/2) (dash-dotted line, blue online), and p2 = (0.57π, π/2) (dotted line, red

online). The parameters are ε0 = 0.1t and λ = 10ε20.

To leading logarithmic accuracy, we find

∆pg ≈
√
λ

(

ln

√

4λ

ε20

)1/2

. (22)

Thus in the two-dimensional case, in the limit λ/ε20 ≫ 1, ∆pg is determined mainly by
√
λ

with a (weak) logarithmic dependence on ε0. This equation should be contrasted to the

one-dimensional result ∆2 = g2Tχ0ξ/2.

Panel (a) of Figure 3 shows the spectral functions A(p∗, ω) (including impurity scattering,

solid line) and Aif (p
∗, ω) (no impurity scattering, dashed line) at the hot spot p∗, for

1/2τ = 0.05t, ε0 = 0.2t, and λ = 2.5ε20. Both curves show suppression of the spectral weight

at low frequencies. We define the pseudogap ∆pg as half the distance between the two peaks

on the corresponding curve and see that the two curves have roughly equal pseudogap values,

∼ 0.4t, slightly larger than that predicted by the asymptotic result in Eq (22), ≈ 0.35t.

This panel thus demonstrates that we can use either Eq (9) or Eq (13) in discussions of the

pseudogap in the single-particle spectral function if impurity scattering is reasonably weak.

Panel (b) of Figure 3 shows Aif(p, ω) for several p (see Fig. 1), including a hot spot

(solid trace, black online), a point pc which would be at the center of the “hole pocket” in

the SDW state (dashed trace, green online), a momentum p1 far from the hot spot but on

the noninteracting Fermi surface and a momentum p2 which would be near the back side of
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FIG. 4: The spectral function A(p∗, ω) at the hot spot p∗ for 1/τ = 0.1t and µ = 0.175t. (a):

λ/t2 = 0.1 and different values of ε0. (b): λ/t
2 = 0.3 and different values of ε0.

the hole pocket. At the hot spot, one observes two peaks, symmetrically disposed around

the chemical potential. At the center of the “hole-pocket”, one also sees two identical peaks,

but this time not centered at the chemical potential. At the other two momenta, one sees a

large peak indicative of a conventional Fermi liquid quasiparticle and a small ‘shadow peak’

at the location of the other quasiparticle state. All of these features may be understood in

terms of a broadening of the mean-field solution.

In Figure 4 we investigate the dependence of the spectral function on the parameters λ

and ε0. Each panel shows the spectral function at the hot spot, computed for a fixed λ and

several different ε0. The gap scale (defined from the peak to peak distance at the smallest

ε0) increases with increasing λ. As ε0 is increased, the low-energy density of states increases

(gap fills in) and at larger ε0, the gap magnitude (defined from the peak separation, when

visible) decreases, but at a rate slower than the increase of the low-energy density of states.

Thus the suppression of the pseudogap has more to do with the gap filling in than with a

gap decrease.

Comparing our results to data suggests that it is reasonable to associate an increase in

temperature with an increase in the parameter ε0 (i.e. a decrease in the correlation length

ξ as observed in Ref [9]), while the increase of λ produces effects similar to those observed

in electron-doped cuprates when doping is decreased. To qualitatively relate theory to

experiment, we therefore fix the chemical potential and model changes in doping by changes

in λ and changes in temperature by changes in ε0.
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III. CURRENT VERTEX FUNCTION AND FREQUENCY-DEPENDENT LON-

GITUDINAL CONDUCTIVITY

The longitudinal conductivity σxx is given in terms of the polarization function Π as

σxx(iΩn) =
ΠP (iΩn) + ΠD

Ωn
(23)

where the paramagnetic P and diamagnetic D contributions to the polarization function are

given in terms of the current vertex ΓJ as

ΠP (iΩn) = 2σQ lim
q→0

T
∑

ǫn

∫

dp

(2π)2
vxpG(p, iǫn)Γ

J
x(p,p+ q, iǫn, iǫn + iΩn)G(p+ q, iǫn + iΩn),

(24)

where σQ = e2/~ is the conductance quantum and vxp = ∂εp/∂px, and

ΠD = 2σQT
∑

ǫn

∫

dp

(2π)2
εxxp G(p, iǫn), (25)

where εxxp = ∂2εp/∂p
2
x.

The magnitude of the current vertex function ~ΓJ is related to the relative sizes of the

frequency and momentum dependence of the self energy. We have seen in the previous

section that the momentum dependence of the self energy is not negligible and thus expect

the current vertex correction to be important. An important constraint on calculations is

the Ward identity following from current conservation; this ensures that the conductivity

obeys the “f -sum” rule. The Ward identity relates the density vertex Γρ and current vertices

~ΓJ to the electron propagator via

G−1(p+q, iǫ+iΩ)−G−1(p, iǫ) = iΩΓρ(p,p+q, iǫ, iǫ+iΩ)−q·~ΓJ (p,p+q, iǫ, iǫ+iΩ). (26)

Taking the q → 0 limit with Ω fixed to 0 gives

lim
q→0

~ΓJ(p,p+ q, iǫ, iǫ) = vp +
∂Σ(p, iǫ)

∂p
. (27)

To obtain the vertex function, we follow the procedure outlined in Refs [41,42]: insert the

free vertex on each bare electron line in the diagrammatic expansion of the electron Green’s

function, and then amputate the resulting diagrams. The diagrammatic expansion for the

current vertex function is shown in Fig 2 (b), and the corresponding analytic expression is

12



(henceforth we drop the superscript J and remove one of the two momentum arguments

because we deal only with the current vertex in the q → 0 limit)

Γx(p, iǫn, iǫn + iΩn) = vxp + g2T

∫

dq

(2π)2
χ0

ξ−2 + (q−Q)2

×G0(p+ q, iǫn)G0(p+ q, iǫn + iΩn)v
x
p+q. (28)

Approximating vp+q ≈ vp+Q, Eq (28) is evaluated as

Γx(p, iǫn, iǫn + iΩn) = vxp +
Σ(p, iǫn)− Σ(p, iǫn + iΩn)

iΩn + i[sgn(ǫn + Ωn)− sgnǫn]/2τ
vxp+Q, (29)

which is consistent with Eq (27) because Eq (9) shows that ∂Σ(p, iǫn)/∂pα =

−vαp+Q∂Σ(p, iǫn)/∂(iǫn). We therefore conclude that Eq (29) for the current vertex function

is a conserving approximation.

In the study of the fluctuation conductivity near the superconducting transition, the

Aslamazov-Larkin (AL) contribution is usually important (see e.g. Ref [29]). Its calculation

requires the inclusion of the dynamic term in the spin-fluctuation propagator χ(q, ω). We

calculated the AL contribution using Eq (6), and found that it is negligible, because χ(q, ω)

is peaked at a finite momentum Q.

The physics of the vertex correction may be understood by comparison to the mean-field

solution in the ordered state. To demonstrate the main issues with a minimum of notational

complexity, we discuss the one-dimensional model, in which we linearize the dispersion about

the Fermi energy, measure momenta from the Fermi momentum, and assume the ordering

wave vector Q = 2kF . The mean-field solution is characterized by normal (GMF ∼< c†pcp >)

and anomalous (F ∼< c†pcp+Q >) Green’s functions given for right (a = +) and left (a = −)

moving electrons by

Ga
MF (p, iω) = − iω + avp

ω2 + v2p2 +∆2
, (30)

F a
MF (p, iω) = − ∆

ω2 + v2p2 +∆2
, (31)

and the conductivity is given schematically by

σ ∝ 1

Ω
Tr [GG− FF ] , (32)

with the trace over frequency, momentum and left/right index a.
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Turning now to the theory in the fluctuation regime, we have (for ω > 0)

GLRA(p, iω) = − iω + vp+ i
2τ

+ iε0

ω2 + v2p2 +∆2 − i[(iω − vp)( 1
2τ

+ ε0) +
1
2τ
(iω + vp)]

. (33)

The absence of long-range order means that F = 0, so that σ is evaluated directly from Eq

(23) while use of Eq (29) for the vertex function and Eq (15) gives

Γ++ = v

(

1− ∆2

(

iω + iΩ + vp+ i
(

1
2τ

+ ε0
)) (

iω + vp+ i
(

1
2τ

+ ε0
))

)

, (34)

if sgn(ω + Ω) = sgn(ω) = +, and

Γ−+ = v



1−
∆2
(

1 + 2ε0
Ω+ 1

τ

)

(

iω + iΩ + vp+ i
(

1
2τ

+ ε0
)) (

iω + vp− i
(

1
2τ

+ ε0
))



 , (35)

if sgn(ω + Ω) = + but sgn(ω) = −.

Substituting into Eq (23), we see that the first of the two terms in the vertex function

reproduces the GG term. The second of the two terms reproduces the FF contribution,

which, in the ordered state, carries the coherence factors which for example distinguish

antiferromagnetism from superconductivity. Thus the vertex correction does what is required

to produce the correct form of the near gap conductivity. However, we see that in addition, in

the physically crucial sgn(ω+Ω) 6= sgn(ω) regime there is an extra term, of order ε0/(Ω+1/τ)

which diverges as Ω+ 1/τ → 0 but is unimportant for |Ω+1/τ | > ε0. The structure of this

term is a defect of the Lee-Rice-Anderson approximation. We believe it occurs because this

theory produces an incorrect form for the subgap density of states, which should vanish as

frequency ω → 0. Indeed in the one-dimensional case it is known that the low-frequency

density of states is due to amplitude singularities in the flucuating order parameter, which

become exponentially rare at low frequencies.43

The problem can also be cured by a self-consistent treatment such as FLEX, but this is

known to give an incorrect form for the pseudogap density of states.43 We have not been able

to identify a consistent and physically reasonable cure for the divergence which is applicable

also in two dimensions, so we adopt the expedient of introducing an impurity scattering

which cuts off the divergence. We shall see, however, that the theory can still produce an

unphysical dip in the low-frequency conductivity.

Returning to the two-dimensional model of primary interest in this paper, we combine

Eqs. (23,24,25,29), perform the analytical continuation, and obtain

Reσxx(Ω) = Reσ(I)
xx (Ω) + Reσ(II)

xx (Ω) + Reσ(III)
xx (Ω), (36)

14



where

Reσ(I)
xx (Ω) = σQ

∫

dp

(2π)2
(

(vxp )
2−vxpv

x
p+Q

)

∫ ∞

−∞

dω

2π

f(ω)− f(ω + Ω)

Ω
A(p, ω)A(p, ω+Ω), (37)

Reσ(II)
xx (Ω) = σQ

1/τ

Ω2 + 1/τ 2

∫

dp

(2π)2
vxpv

x
p+Q

×
∫ ∞

−∞

dω

2π

f(ω)− f(ω + Ω)

Ω

[

A(p, ω) + A(p, ω + Ω)
]

, (38)

and

Reσ(III)
xx (Ω) = 2σQ

1/τ 2

Ω2 + 1/τ 2

∫

dp

(2π)2
vxpv

x
p+Q

×
∫ ∞

−∞

dω

2π

f(ω)− f(ω + Ω)

Ω

ReG(p, ω + Ω)− ReG(p, ω)

Ω
, (39)

where f(x) is the Fermi function. In the calculation, we assume that the most important

effect of temperature is on ξ (or ε0), and neglect thermal broadening of the Fermi function.

As a result, f(x ≤ 0) = 1 and f(x > 0) = 0. In the limit τ → ∞, Reσ
(I)
xx remains finite,

Reσ
(II)
xx = ∆Sδ(Ω), and Reσ

(III)
xx (Ω) → 0. Thus, Reσ

(II)
xx is the divergence discussed above.

Its weight ∆S is given by

∆S = 2πσQ

∫

dp

(2π)2

∫

dω

2π

(

−df(ω)

dω

)

vxpv
x
p+QA(p, ω). (40)

We find that ∆S < 0 for the band dispersion appropriate to cuprates, since vxpv
x
p+Q < 0 in

most part of the Brillouin zone where A(p, 0) is appreciable.

Figure 5 shows Reσxx(Ω) calculated from Eq (36) with 1/τ = 0.1t and µ = 0.175t for

different values of λ and ε0. All curves in Figure 5 show anomalous low-frequency behavior,

arising from Eq (38). Since ∆S < 0, the DC limit can be made negative (not shown

here) for larger values of λ or τ . As Ω increases, this anomalous contribution is quickly

suppressed due to the prefactor 1/τ
Ω2+1/τ2

. In Figure 5, we see that Reσxx(Ω) behaves as

expected for Ω & 3/τ , and we shall concentrate on this regime. In this regime, for small ε0

(ε0/t = 0.05, 0.1, 0.2 in panel (a) and ε0/t = 0.1, 0.2, 0.3, 0.4 in panel (b)), there are peaks

around 2∆pg as determined from Figure 4. This peak structure is reminiscent of that in

mean-field calculations, as shown in Figure 10 (a). The peak becomes weaker for larger ε0

(smaller ξ). We now use the association of λ and ε0 with x and T as discussed in Sec. II

to relate these results to experimental observations. Comparing the two panels in Figure 5
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FIG. 5: The longitudinal conductivity per plane evaluated from Eq (36) with 1/τ = 0.1t and

µ = 0.175t. (a): λ/t2 = 0.1 and different ε0. (b): λ/t2 = 0.3 and different ε0. To convert to

physical units, one must multiply the calculated result by the conductance quantum, σQ = e2/~,

and divide it by the inter-plane distance.

suggests that at low temperatures, Reσxx has an optical peak, the peak position decreases

with doping, the peak vanishes at some temperature T ∗, T ∗ increases with underdoping,

and for fixed doping, there is a spectral weight transfer from high-frequency region to low-

frequency region, as T is increased.

We have verified numerically that the calculated conductivity obeys the f -sum rule

∫ ∞

0

dΩReσxx(Ω) =
π

2
ΠD. (41)

To see this analytically, we consider the case of small 1/τ , such that Reσ
(III)
xx (Ω) can be

neglected and
∫∞

−∞
dΩ
π
Reσ

(II)
xx (Ω) can be approximated as

∫ ∞

−∞

dΩ

π
Reσ(II)

xx (Ω) ≈ ∆S/π. (42)

At the same time,
∫∞

−∞
dΩ
π
Reσ

(I)
xx (Ω) can be evaluated using the Kramers-Krönig relation

between A(p, ω) and ReG(p, ω), and the result is

∫ ∞

−∞

dΩ

π
Reσ(I)

xx (Ω) = −2σQ

∫

dp

(2π)2
vxp (v

x
p − vxp+Q)

∫ ∞

−∞

dǫ

π
f(ǫ)A(p, ǫ)ReG(p, ǫ). (43)

ΠD is found to be equal to the sum of the above two equations. Since Reσxx(Ω) is an even

function of Ω, we obtain Eq (41).
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The conductivity σxx(Ω) in the mean-field theory of the SDW state (Eq (C4)) can be ob-

tained in the present leading-order perturbation theory, by simply substituting Eq (20) into

various Green’s functions in Eq (36). The vertex corrections are crucial in this derivation; if

we had neglected the vertex corrections, we would effectively have neglected the off-diagonal

terms in Eq (C3) (the terms proportional to ∆). The conductivity in the mean-field SDW

state for ∆ = 0.3t (solid line) and ∆ = 0.6t (dashed line) is shown in Fig 10 (a). The low-

frequency parts of these curves are well described by a Drude peak without any anomalous

dip. One possible reason is that in the limit τ → ∞, both A and GR in the mean-field theory

are singular, unlike Eqs (9, 16) which are finite due to scattering from spin fluctuations.

IV. HALL CONDUCTIVITY IN THE PERTURBATION THEORY

In this section, we develop the formalism for calculating the Hall conductivity σxy in

the leading order perturbation theory. The calculation of σxy in the self-consistent Born

approximation can be found in Refs [44–46]. At the level of approximation employed here,

we find it easier to apply the method developed in Ref [47] to the conductivity diagrams

shown in Fig 2 (c). Rewriting the diagrams in Fig 2 (c) in terms of the bare Green’s functions,

replacing every electron momentum p in the loop, according to the minimal coupling rule,

by p− e
c
A, and expanding the resulting diagrams to first order in A, we obtain the diagrams

shown in Figure 6, in which the intersections where the magnetic field lines denoted by B

meet the dressed Green’s functions G(p, iǫn) represented by thick solid lines are the dressed

magnetic vertices, which are calculated according to Fig 2 (b).

Summing all the diagrams in Figure 6 and expanding the resulting expression up to first

order in k, we find that (1) the terms independent of k vanish, and (2) the terms of first

order in k depends on B = ik×A = Bẑ, signaling gauge invariance. The Hall conductivity

on the Matsubara axis can be expressed as

σxy(iΩn) =
π

2
σQ

Ba2

Φ0

1

iΩn

∫

dp

(2π)2

{

S1 − S2 + S3 + S4 − S5

}

, (44)

where Φ0 = π~c/e is the superconducting flux quantum,

S1 = T
∑

iǫn

(

∂yΓ
x
pv

y
p − ∂yΓ

y
pv

x
p

)(

G∂xG(+)− G(+)∂xG
)

, (45)

S2 = T
∑

iǫn

(

∂xΓ
x
pv

y
p − ∂xΓ

y
pv

x
p

)(

G∂yG(+)− G(+)∂yG
)

, (46)
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FIG. 6: Diagrams for the Hall conductivity. Thick solid lines represent the dressed Green’s function

G(p, iǫn), thin solid lines represent the bare Green’s function G0(p, iǫn), and wavy lines represent

the spin-fluctuation propagator. The vertices with one dashed line are associated with vαp =

∂εp/∂pα, the vertices with two dashed lines are εαβp = ∂2εp/∂pα∂pβ, and the vertices with three

dashed lines are εαβγp = ∂3εp/∂pα∂pβ∂pγ . The Greek indices, α, · · · , refer to directions of the

external fields, E, J, and B.

S3 = T
∑

iǫn

(

Γx
pv

y
p − Γy

pv
x
p

)(

∂xG(+)∂yG − ∂xG∂yG(+)
)

, (47)

S4 = g2T 2
∑

iǫn

vypGG(+)

∫

dq

(2π)2
χ(p− q)(εxxq vyq − εxyq vxq )

(

G0(+)G2
0 − G0G0(+)2

)

, (48)

and

S5 = g2T 2
∑

iǫn

vxpGG(+)

∫

dq

(2π)2
χ(p− q)(εxyq vyq − εyyq vxq )

(

G0(+)G2
0 − G0G0(+)2

)

. (49)

In writing these equations, we have used short-hand notations: G = G(p, iǫn), G(+) =

G(p, iǫn + iΩn), Γ
x
p = Γx(p, iǫn, iǫn + iΩn), G0 = G0(q, iǫn), and G0(+) = G0(q, iǫn + iΩn).

Using the spin-fluctuation propagator in the Kampf-Schrieffer model, Eq (19), after a lengthy

calculation, we can show that Eq (44) reduces to that in the mean-field theory of the SDW
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FIG. 7: The Hall conductivity per plane divided by B, Imσxy(Ω)/B, calculated from Eq (D1)

with 1/τ = 0.1t and µ = 0.175t. (a): λ/t2 = 0.1 and different values of ε0. (b): λ/t2 = 0.3 and

different values of ε0. To convert to physical units, one must multiply the calculated result by the

conductance quantum and the in-plane unit cell area, and divide it by the superconducting flux

quantum, Φ0 = hc/2e, and the inter-plane distance.

state (Appendix C).48 The proper treatment of the vertex functions as discussed here is

crucial in arriving at this conclusion.

The frequency summation in Eq (44) is standard.33 The physical observable σxy(Ω) is

obtained by analytical continuation iΩn → Ω + iδ. The expression for Imσxy(Ω) is quite

cumbersome. Here, we focus on the results, leaving detailed expressions to Appendix D.

Figures 7 and 8 show Imσxy(Ω) calculated from Eq (D1) for 1/τ = 0.1t, µ = 0.175t,

and various values of λ and ε0. The frequency scales in Figures 7 and 8 are selected to

highlight the frequency window most relevant to experiments48 where σxy was measured for

Ω > 0.3t ≈ 1000cm−1. The low-frequency part ( Ω . 1/τ) of Imσxy(Ω) suffers from the

same difficulty as does Reσxx(Ω) due to the perturbative nature of the calculation and we

do not show results in this region.

Comparing to Ref [48] suggests that the present calculation captures important features

of data. First, Imσxy can be made negative at low frequencies, although we start with

a single-band model with a hole-like Fermi surface. A previous study suggested that the

appearance of the negative Imσxy in electron-doped cuprates is a signature of the long-range

spin-density wave order.48 Our findings here suggest that fluctuating order can also explain
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FIG. 8: The Hall conductivity per plane divided by B, Imσxy(Ω)/B, calculated from Eq (D1) with

1/τ = 0.1t and µ = 0.175t. (a): ε0/t = 0.1. (b): ε0/t = 0.3. To convert to physical units, see

Figure 7.

this behavior. The vertex corrections shown in Figure 6 are important for this conclusion.

We found that Imσxy remains positive in the entire frequency range, if only the diagrams 1-4,

11, and 12 in Figure 6 are kept and the vertex corrections to magnetic vertices are neglected.

Kontani and co-workers, using the FLEX approximation, also emphasized the importance

of the magnetic field vertex corrections.49 As shown in Figure 7, Imσxy(ω) has relatively

sharp peaks for small ε0 (ε0/t = 0.05, 0.1 in panel (a), and ε0/t = 0.1, 0.2 in panel (b))

around 2∆pg, showing precursor effect to that obtained from a mean-field calculation shown

in Figure 10 (b). The peak gradually vanishes as ε0 increases. Furthermore, fixing λ (or

doping x) and increasing ε0 (or temperature T ), Imσxy(Ω) increases from negative to positive

at low frequencies and decreases at high frequencies. This is qualitatively consistent with the

trend observed experimentally in electron-doped cuprates in the underdoped regime.48 From

Figure 8, we see that at fixed ε0, Imσxy(Ω) decreases with increasing λ (or decreasing x) from

positive to negative at low frequencies, and increases with increasing λ at high frequencies,

again qualitatively consistent with data.48 However, in our study, Imσxy(Ω) remains positive

at high frequencies, inconsistent with data.48 More quantitatively, if (following the discussion

of the longitudinal conductivity above) we assume that λ/t2 = ε0/t = 0.1 is a reasonable

representation of cuprates at 0.12 electron doping, we see that the predicted zero crossing

in σxy occurs at Ω ∼ 0.15− 0.2eV, again semiquantitatively consistent with data. However,
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our calculation exhibits more temperature dependence than is found in data.

V. SUMMARY

In this paper, we used the Lee-Rice-Anderson model to study two-dimensional electrons

scattered from static antiferromagnetic spin fluctuations, with potential applications to

electron-doped cuprates in the underdoped regime where the long-range spin-density wave

ground state is expected. Our theory is in a sense complementary to that of Kontani et al

who used a fluctuation-exchange approximation most applicable in the overdoped region.49,50

The theory has two important parameters: λ which controls the gap amplitude, and ε0 which

represents the effect of non-zero temperature.

We first discussed single-particle properties with the self-energy calculated in the leading-

order perturbation theory. There is pseudogap opening for relatively small ε0 which is related

to the spin correlation length ξ via ε0 = vF/ξ where vF is the Fermi velocity. As ε0 increases,

the pseudogap is gradually filled in with a moderate change in the size of the pseudogap. The

value of the pseudogap is primarily determined by the coupling constant λ between electrons

and spin fluctuations. We assume that λ is increasing as underdoping, and ε0 is increasing

as increasing the temperature. The conductivity Reσxx(Ω) is calculated in a conserving

approximation which respects the f -sum rule. The current vertex has unphysical low-energy

features. We found that in order to obtain a finite DC conductivity, it is necessary to include

impurity scattering. However, even with impurities, the low-frequency part of Reσxx(Ω) still

behaves anomalously. As frequency Ω increases larger than 1/τ , the anomalous contribution

is quickly suppressed. Reσxx(Ω) is characterized by a peak around twice the pseudogap value

for relatively small ε0 (large ξ). This is reminiscent of the peak in mean-field calculations for

the long-range spin-density wave ordered state. For fixed λ (or doping), there is a spectral

weight transfer from the high-frequency region to the low-frequency region as increasing ε0

(or decreasing ξ). For the Hall conductivity Imσxy(Ω), we focused on the experimentally

accessible frequency regime Ω > 0.3t, and showed that Imσxy(Ω) can be either positive or

negative at small frequencies, depending on parameters λ and ε0. A negative Imσxy(Ω)

is rather non-trivial, and is a consequence of current vertex corrections.49,50 For small ε0,

Imσxy has a peak structure, reminiscent of the mean-field calculations. For fixed λ (or

doping), Imσxy increases at low frequencies and decreases at high frequencies, as increasing
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ε0 (decreasing ξ, or increasing temperature). For fixed ε0, Imσxy increases at low frequencies

and decreases at high frequencies, as decreasing λ (or increasing doping).

In comparison to experiment, σxx calculated in our theory is ∼ 2 − 3 times larger than

data in the 0.1 < Ω < 0.5eV range (Figure 5). We believe that this reflects the inadequate

treatment of Mott correlations. Our calculated σxy is about 5 times larger than experiment

(Figure 7 and Ref [48]). The structure, with a negative σxy at low frequencies and a positive

value at higher frequencies is qualitatively consistent with data,48 except that in our study,

Imσxy stays positive at high frequencies, unlike data.48 Another minor point of difference is

that in the data there is little temperature dependence of the zero crossing in σxy, while in

the theory the zero-crossing point shifts with ε0.

One advantage of the approach in the present paper is that the results for the electron

spectral function, the conductivity, and the Hall conductivity are directly related to the

mean-field results if the spin propagator takes the Kampf-Schrieffer form χ ∝ δ(q − Q).

However, this approach is insufficient for the study of transport properties in the low fre-

quency limit.
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Appendix A: Renormalization of the impurity relaxation time and the spin-fermion

interaction vertex

In our model, the fermions are scattered by both spin fluctuations, characterized by the

interaction vertex g, and impurities, characterized by the relaxation time τ . One important

question is to study how one of the scattering process affects the other. This issue is

addressed in this Appendix. We find that both renormalizations can be neglected in the

sense to be discussed below.
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q

FIG. 9: (a): the leading order diagram for the renormalization of the spin-fermion interaction

vertex g due to impurity scattering. (b): the leading order correction to the impurity relaxation

time due to spin-fermion interaction. The dashed line is the impurity line, the solid line is the bare

electron propagator G0, and the wavy line is the spin-fluctuation propagator.

1. Renormalization of the spin-fermion interaction vertex

In this subsection, we discuss the renormalization of the spin-fermion interaction vertex

g in the presence of impurity scattering. The leading order correction is given by Fig 9 (a),

δg/g = u2

∫

dp′

(2π)2
G0(p

′, iǫn)G0(p
′ + q, iǫn), (A1)

where u2 is the impurity potential, and we only consider the static limit for the spin-

fluctuation propagator. For the momentum transfer |q−Q| ∼ ξ−1 ≪ a−1, the momentum

integral can be transformed to
∫

dεpdεp+Q, and the two integrals can be performed inde-

pendently. As a result, δg/g ∝ u2, and its dependence on iǫn and q is estimated to be

O(T/D, a|q−Q|) which can be neglected, where D is the cut-off energy of the order of the

fermion bandwidth. Applying the same argument to the impurity ladder diagrams, we find

that the summation of the ladder diagrams gives a finite constant renormalization to g. As

a result, we can neglect the diagrams that renormalizes g by properly redefining g.

2. Renormalization of the impurity relaxation time τ

We now discuss the renormalization of the impurity scattering relaxation time τ by the

spin-fermion interaction. Figure 9 (b) shows the leading order term in calculating this

renormalization,

δ
(1

τ

)

= g2T

∫

dq

(2π)2
χ(q)T (q), (A2)
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where

T (q) = u2

∫

dp′

(2π)2
G0(p

′, iǫn)
2G0(p

′ + q, iǫn). (A3)

For the momentum transfer |q − Q| ∼ ξ−1 ≪ a−1, the
∫

dp′ integral can be transformed

to
∫

dεp′dεp′+Q. Since the integral
∫

dεp′ has a double pole, this leading renormalization is

negligible. This argument persists to diagrams with more spin-fluctuation lines. Thus, the

renormalization of the impurity scattering relaxation time due to the spin-fermion interaction

is negligible.

Appendix B: The static approximation to Eq (6)

In this Appendix, we discuss the condition under which the static spin-fluctuation prop-

agator Eq (7) can be used. For simplicity, we consider the electron self-energy in the leading

order perturbation theory,

Σ(p, iǫn) = g2T
∑

iωn

∫

dq

(2π)2
χ(q, iωn)

1

iǫn + iωn − εp+q
. (B1)

Substituting the spectral decomposition (see e.g. Ref [34]),

χ(q, iωn) =

∫ ∞

−∞

dx

π

Imχ(q, x)

x− iωn
, (B2)

where χ(q, ω) is given by Eq (6), and summing over iωn, we obtain

Σ(p, iǫn) = g2
∫

dq

(2π)2

∫ ∞

−∞

dx

2π
Imχ(q, x)

coth x
2T

− tanh εp+q

2T

iǫn + x− εp+q

. (B3)

The integral over x is restricted by Imχ(q, x) to the region x . ωsfξ
−2. For ωsfξ

−2 ≪ T ,

coth x
2T

≈ 2T/x, tanh εp+q

2T
can be neglected, and Eq (B3) is approximated as

Σ(p, iǫn) ≈ g2Tχ0

∫

dq

(2π)2

∫

dy

π

ξ2

(1 + ξ2(q−Q)2)2 + y2
1

ωsfξ−2y + iǫn − εp+q
, (B4)

where y = ξ2x/ωsf . Performing the y-integral by closing the contour to avoid the pole from

the electron propagator,

Σ(p, iǫn) = g2T

∫

dq

(2π)2
χ0

ξ−2 + (q−Q)2
1

iǫn + iωsfξ−2asgnǫn − εp+q
, (B5)

where a = (1 + ξ−2(q − Q)2) is a quantity of order 1, and iωsfξ
−2asgnǫn can be neglected

compared to iǫn. This leads to Eq (8) which was obtained in the static limit using Eq (7).

For the current vertex function in the leading order perturbation theory, the use of Eq

(7) is also justified in the same way as above; we can write an equation analogous to Eq

(28), and then split the two fermion Green’s functions as was done in Sec III.
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Appendix C: Summary of the formulas in the mean-field theory of the spin density

wave state

In this Appendix, we summarize the formulas of calculating the longitudinal and Hall

conductivities in the mean-field SDW state. In calculating these quantities, the spin index σ

is irrelevant, giving an overall factor of 2, and will be neglected. The mean-field Hamiltonian

is

Hmf =
∑

p

εpc
†
pcp +∆

∑

p

c†p+Qcp ≡
∑′

p

Ψ†
pĤpΨp, (C1)

with Q = (π, π), the two-component spinor Ψ†
p = (c†p, c

†
p+Q), and Ĥp =





εp ∆

∆ εp+Q



. The

summation in the second equality is over the magnetic Brillouin zone as indicated by the

prime.

The imaginary-time (τ̃ ) electron Green’s function in the mean-field theory is defined as

Ĝ(p, τ̃ )ab = − < TτΨp,a(τ̃ )Ψ
†
p,b(0) >, (C2)

with the corresponding retarded function

ĜR(p, ǫ) =
1

ǫ− Ĥp + i/2τ
=





ǫ− εp+Q + i/2τ ∆

∆ ǫ− εp + i/2τ





(ǫ− εp + i/2τ)(ǫ− εp+Q + i/2τ)−∆2
, (C3)

where we have introduced a finite lifetime τ .

The real part of the longitudinal conductivity σxx(Ω) is given by

Reσxx(Ω) = 4σQ

∑′

p

∫ ∞

−∞

dω

2π

f(ω)− f(ω + Ω)

Ω
Tr
{

v̂xp Im[ĜR(p, ω)]v̂xp Im[ĜR(p, ω + Ω)]
}

,

(C4)

where v̂xp =





vxp 0

0 vxp+Q



. Fig 10 (a) shows Reσxx(Ω) in the mean-field theory for ∆ = 0.3t

(solid line) and 0.6t (dashed line).

The imaginary part of the Hall conductivity is given by48,51

Imσxy(Ω) =
π

2
σQ

Ba2

Φ0

1

Ω

∑′

p

{

2
∑

s=1

Rintra(s)
p ImΠ

intra(s)
R (p,Ω) +

4
∑

s=1

Rinter(s)
p ImΠ

inter(s)
R (p,Ω)

}

,

(C5)
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FIG. 10: The conductivities in the mean-field theory. (a): Reσxx(Ω) obtained from Eq (C4) with

∆ = 0.3t (solid line) and ∆ = 0.6t (dashed line). (b): Imσxy(Ω) obtained from Eq (C5) with

∆ = 0.3t (solid line) and ∆ = 0.6t (dashed line).

where

ImΠ
intra(1)
R (p,Ω) =

∫ ∞

−∞

dω

2π
[f(ω)− f(ω + Ω)]

×
{

ReG+(p, ω + Ω)A+(p, ω + Ω)A+(p, ω)

− ReG+(p, ω)A+(p, ω)A+(p, ω + Ω)
}

,

(C6)

ImΠ
intra(2)
R (p,Ω) =

∫ ∞

−∞

dω

2π
[f(ω)− f(ω + Ω)]

×
{

ReG−(p, ω + Ω)A−(p, ω + Ω)A−(p, ω)

− ReG−(p, ω)A−(p, ω)A−(p, ω + Ω)
}

,

(C7)

ImΠ
inter(1)
R (p,Ω) =

∫ ∞

−∞

dω

2π
[f(ω)− f(ω + Ω)]

×
{

ReG+(p, ω + Ω)A+(p, ω + Ω)A−(p, ω)

− ReG+(p, ω)A+(p, ω)A−(p, ω + Ω)
}

,

(C8)

ImΠ
inter(2)
R (p,Ω) =

∫ ∞

−∞

dω

2π
[f(ω)− f(ω + Ω)]

×
{

ReG−(p, ω + Ω)A−(p, ω + Ω)A+(p, ω)

− ReG−(p, ω)A−(p, ω)A+(p, ω + Ω)
}

,

(C9)
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ImΠ
inter(3)
R (p,Ω) =

∫ ∞

−∞

dω

2π
[f(ω)− f(ω + Ω)]/2

×
{

(

ReG+(p, ω + Ω)A−(p, ω + Ω)

+ ReG−(p, ω + Ω)A+(p, ω + Ω)
)

A+(p, ω)

−
(

ReG+(p, ω)A−(p, ω)

+ ReG−(p, ω)A+(p, ω)
)

A+(p, ω + Ω)

}

,

(C10)

ImΠ
inter(4)
R (p,Ω) =

∫ ∞

−∞

dω

2π
[f(ω)− f(ω + Ω)]/2

×
{

(

ReG+(p, ω + Ω)A−(p, ω + Ω)

+ ReG−(p, ω + Ω)A+(p, ω + Ω)
)

A−(p, ω)

−
(

ReG+(p, ω)A−(p, ω)

+ ReG−(p, ω)A+(p, ω)
)

A−(p, ω + Ω)

}

,

(C11)

Rintra(1)
p = (E+y

p )2E+xx
p + (E+x

p )2E+yy
p − 2E+x

p E+y
p E+xy

p , (C12)

Rintra(2)
p = (E−y

p )2E−xx
p + (E−x

p )2E−yy
p − 2E−x

p E−y
p E−xy

p , (C13)

Rinter(1)
p = sin2 2θp

(

hy
pg

y
ph

xx
p + hx

pg
x
ph

yy
p − hx

pg
y
ph

xy
p − hy

pg
x
ph

xy
p

)

+ sin2 2θp
hp

√

h2
p +∆2

(

(hy
p)

2hxx
p + (hx

p)
2hyy

p − 2hx
ph

y
ph

xy
p

)

+
sin3 2θp

∆
(hx

pg
y
p − hy

pg
x
p )

2,

(C14)

Rinter(2)
p =sin2 2θp

(

hy
pg

y
ph

xx
p + hx

pg
x
ph

yy
p − hx

pg
y
ph

xy
p − hy

pg
x
ph

xy
p

)

− sin2 2θp
hp

√

h2
p +∆2

(

(hy
p)

2hxx
p + (hx

p)
2hyy

p − 2hx
ph

y
ph

xy
p

)

− sin3 2θp
∆

(hx
pg

y
p − hy

pg
x
p )

2,

(C15)

Rinter(3)
p = sin2 2θp

(

(hy
p)

2gxxp + (hx
p)

2gyyp − 2hx
ph

y
pg

xy
p

)

+ sin2 2θp
(

hy
pg

y
ph

xx
p + hx

pg
x
ph

yy
p − hx

pg
y
ph

xy
p − hy

pg
x
ph

xy
p

)

+ sin2 2θp
2hp

√

h2
p +∆2

(

(hy
p)

2hxx
p + (hx

p)
2hyy

p − 2hx
ph

y
ph

xy
p

)

+ 2
sin3 2θp

∆
(hy

pg
x
p − hx

pg
y
p)

2,

(C16)
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Rinter(4)
p =sin2 2θp

(

(hy
p)

2gxxp + (hx
p)

2gyyp − 2hx
ph

y
pg

xy
p

)

+ sin2 2θp
(

hy
pg

y
ph

xx
p + hx

pg
x
ph

yy
p − hx

pg
y
ph

xy
p − hy

pg
x
ph

xy
p

)

− sin2 2θp
2hp

√

h2
p +∆2

(

(hy
p)

2hxx
p + (hx

p)
2hyy

p − 2hx
ph

y
ph

xy
p

)

− 2
sin3 2θp

∆
(hy

pg
x
p − hx

pg
y
p)

2.

(C17)

In the above, we have introduced notations G±(p, ǫ) = 1/(ǫ − E±
p + i/2τ) with E±

p =

gp ±
√

h2
p +∆2, gp = (εp + εp+Q)/2, hp = (εp − εp+Q)/2, tan θp = (hp −

√

h2
p +∆2)/∆,

A±(p, ω) = −2ImG±(p, ω), and have used the short-hand notation in which the superscript

x, y on the energy functions denotes derivative with respect to the corresponding momentum,

e.g., E+x
p = ∂E+

p /∂px, E
+xx
p = ∂2E+

p /∂p
2
x, g

x
p = ∂gp/∂px, g

xy
p = ∂2gp/∂px∂py, · · · . Figure 10

(b) shows Imσxy(Ω) in the mean-field theory for ∆ = 0.3t (solid line) and ∆ = 0.6t (dashed

line).

Appendix D: Explicit expression for Imσxy in Sec IV

We now present the explicit expression for Imσxy(Ω) in Sec IV,

Imσxy(Ω) =
π

2
σQ

Ba2

Φ0

1

Ω

∫

dp

(2π)2
Im
{

SR
1 − SR

2 + SR
3 + SR

4 − SR
5

}

, (D1)

where

ImSR
i (p, ω) =

∫ ∞

−∞

dǫ

2π

[

f(ǫ)− f(ǫ+ ω)
]

Re
{

Ui1 − Ui2

}

, (D2)

with

U11 =
[

∂yΓx(p, ǫ
+, ǫ+ ω+)vyp − ∂yΓy(p, ǫ

+, ǫ+ ω+)vxp
]

×
[

GR(p, ǫ)∂xG
R(p, ǫ+ ω)−GR(p, ǫ+ ω)∂xG

R(p, ǫ)
]

, (D3)

U12 =
[

∂yΓx(p, ǫ
−, ǫ+ ω+)vyp − ∂yΓy(p, ǫ

−, ǫ+ ω+)vxp
]

×
[

GA(p, ǫ)∂xG
R(p, ǫ+ ω)−GR(p, ǫ+ ω)∂xG

A(p, ǫ)
]

, (D4)

U21 =
[

∂xΓx(p, ǫ
+, ǫ+ ω+)vyp − ∂xΓy(p, ǫ

+, ǫ+ ω+)vxp
]

×
[

GR(p, ǫ)∂yG
R(p, ǫ+ ω)−GR(p, ǫ+ ω)∂yG

R(p, ǫ)
]

, (D5)
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U22 =
[

∂xΓx(p, ǫ
−, ǫ+ ω+)vyp − ∂xΓy(p, ǫ

−, ǫ+ ω+)vxp
]

×
[

GA(p, ǫ)∂yG
R(p, ǫ+ ω)−GR(p, ǫ+ ω)∂yG

A(p, ǫ)
]

, (D6)

U31 =
[

Γx(p, ǫ
+, ǫ+ ω+)vyp − Γy(p, ǫ

+, ǫ+ ω+)vxp
]

×
[

∂xG
R(p, ǫ+ ω)∂yG

R(p, ǫ)− ∂xG
R(p, ǫ)∂yG

R(p, ǫ+ ω)
]

, (D7)

U32 =
[

Γx(p, ǫ
−, ǫ+ ω+)vyp − Γy(p, ǫ

−, ǫ+ ω+)vxp
]

×
[

∂xG
R(p, ǫ+ ω)∂yG

A(p, ǫ)− ∂xG
A(p, ǫ)∂yG

R(p, ǫ+ ω)
]

, (D8)

U41 = vyp(ε
xx
p+Qv

y
p+Q − εxyp+Qv

x
p+Q)G

R(p, ǫ)GR(p, ǫ+ ω)I(p, ǫ+, ǫ+ ω+), (D9)

U42 = vyp(ε
xx
p+Qv

y
p+Q − εxyp+Qv

x
p+Q)G

A(p, ǫ)GR(p, ǫ+ ω)I(p, ǫ−, ǫ+ ω+), (D10)

U51 = vxp (ε
xy
p+Qv

y
p+Q − εyyp+Qv

x
p+Q)G

R(p, ǫ)GR(p, ǫ+ ω)I(p, ǫ+, ǫ+ ω+), (D11)

U52 = vxp (ε
xy
p+Qv

y
p+Q − εyyp+Qv

x
p+Q)G

A(p, ǫ)GR(p, ǫ+ ω)I(p, ǫ−, ǫ+ ω+). (D12)

In writing these equations, we have used the notations ǫ± = ǫ± iδ, and ǫ+ω+ = ǫ+ω+ iδ.

The analytically continued vertex functions are

Γα(p, ǫ
+, ǫ+ ω+) = vαp +

vαp+Q

ω

(

ΣR(p, ǫ)− ΣR(p, ǫ+ ω)
)

, (D13)

and

Γα(p, ǫ
−, ǫ+ ω+) = vαp +

vαp+Q

ω + i/τ

(

ΣA(p, ǫ)− ΣR(p, ǫ+ ω)
)

. (D14)

The functions I(p, ǫ±, ǫ+ ω+) are defined as

I(p, ǫ+, ǫ+ ω+) = −γR(p, ǫ) + γR(p, ǫ+ ω)

ω
− 2

ΣR(p, ǫ)− ΣR(p, ǫ+ ω)

ω2
, (D15)

and

I(p, ǫ−, ǫ+ ω+) = −γA(p, ǫ) + γR(p, ǫ+ ω)

ω + i/τ
− 2

ΣA(p, ǫ)− ΣR(p, ǫ+ ω)

(ω + i/τ)2
, (D16)

where γA,R(p, ǫ) = ∂ΣA,R(p, ǫ)/∂ǫ. The real part of σxy(Ω) is obtained via the Kramers-

Krönig relation, Eq (14), with ΣR
if replaced by σxy.
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(pages 61) (2007).

27 B. R. Patton and L. J. Sham, Phys. Rev. Lett. 31, 631 (1973).

28 S. Takada and E. Sakai, Progress of Theoretical Physics 59, 1802 (1978).

29 A. Larkin and A. Varlamov, Theory of fluctuations in superconductors (Clarendon Press, 2005).

30 C. Caroli and K. Maki, Phys. Rev. 159, 306 (1967).

31 G. Zala, B. N. Narozhny, and I. L. Aleiner, Phys. Rev. B 64, 214204 (2001).

32 I. Paul, Phys. Rev. B 77, 224418 (2008).

33 G. D. Mahan, Many-Particle Physics (Plenum Press, 1990), 2nd ed.

34 A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinskii, Methods of Quantum Field Theory in

Statistical Physics (Prentice Hall, 1963).

35 B. L. Altshuler, L. B. Ioffe, and A. J. Millis, Phys. Rev. B 50, 14048 (1994).

36 A. J. Millis, H. Monien, and D. Pines, Phys. Rev. B 42, 167 (1990).

37 T. Moriya and K. Ueda, Advances in Physics 49, 555 (2000).

38 S. Sachdev, Quantum Phase Transitions (Cambridge University Press, 1999).

39 A. P. Kampf and J. R. Schrieffer, Phys. Rev. B 42, 7967 (1990).

40 A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

41 J. R. Schrieffer, Theory of superconductivity (Perseus Books, 1999).

42 Z. Koba, N. Mugibayashi, and S. Nakai, Progress of Theoretical Physics 6, 322 (1951).

43 H. Monien, Phys. Rev. Lett. 87, 126402 (2001).

44 H. Fukuyama, H. Ebisawa, and Y. Wada, Progress of Theoretical Physics 42, 494 (1969).

45 H. Fukuyama, Progress of Theoretical Physics 42, 1284 (1969).

46 H. Kohno and K. Yamada, Progress of Theoretical Physics 80, 623 (1988).

47 B. L. Altshuler and A. G. Aronov, Electron-Electron Interactions in Disordered Systmes (North-

Holland, 1985), chap. Electron-electron interactions in disordered systems, pp. 1–154, Modern

Problems in Condensed Matter Sciences, ISBN 0-444-86916-6.

48 A. Zimmers, L. Shi, D. C. Schmadel, W. M. Fisher, R. L. Greene, H. D. Drew, M. Houseknecht,

G. Acbas, M.-H. Kim, M.-H. Yang, et al., Physical Review B 76, 064515 (2007).

49 H. Kontani, K. Kanki, and K. Ueda, Phys. Rev. B 59, 14723 (1999).

50 G. S. Jenkins, D. C. Schmadel, P. L. Bach, R. L. Greene, X. Béchamp-Laganière, G. Roberge,
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