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Abstract

Connected holonomy groups of conformally flat Lorentzian manifolds are classified.

It is shown that among conformally flat Lorentzian manifolds there are two classes of

spaces with special holonomy: pp-waves with a certain potential and some spaces with

the holonomy group Sim(n), the local structure of these spaces is found.

1 Introduction and the main result

It is known [10] that a conformally flat Riemannian manifold is either a product of two spaces

of constant sectional curvature, or it is a product of a space of constant sectional curvature

with an interval, or its restricted holonomy group is the identity component of the orthogonal

group. The last condition represents the general case and among various manifolds satisfying

the last condition one can emphasize only the spaces of constant sectional curvature.

In the case of pseudo-Riemannian manifolds can appear an additional possibility for the holon-

omy group. Namely, the holonomy group can be weakly irreducible (this means that it does not

preserve any non-degenerate proper vector subspace of the tangent space) and not irreducible

in the same time, i.e. it may preserve a degenerate vector subspace of the tangent space.

The main result of the present paper is the complete local description of conformally flat

Lorentzian manifolds (M, g) with weakly irreducible not irreducible holonomy groups. Let

dimM = n + 2. The holonomy algebra (i.e. the Lie algebra of the holonomy group) g ⊂

so(1, n + 1) of such manifold preserves an isotropic line of the tangent space (identified with

the Minkowski space R
1,n+1). Hence g is contained in the maximal subalgebra of so(1, n + 1)

preserving an isotropic line. This algebra is denoted by sim(n) and it admits the decomposition

sim(n) = (R⊕ so(n))⋉R
n.
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Manifold (M, g) with such holonomy algebra admits (locally) a distribution of isotropic lines

and they are called the Walker manifolds. On such manifold there exist the so called Walker

coordinates v, x1, ..., xn, u and the metric g has the form

g = 2dvdu+ h + 2Adu+H(du)2, (1)

where h = hij(x
1, ..., xn, u)dxidxj is an u-dependent family of Riemannian metrics, A =

Ai(x
1, . . . , xn, u)dxi is an u-dependent family of one-forms, and H is a local function on M

[11]. The vector field ∂v defines the parallel distribution of isotropic lines.

Theorem 1 Let (M, g) be a conformally flat Lorentzian manifold of dimension n + 2 ≥ 4.

Then the holonomy algebra g of (M, g) is weakly irreducible and not irreducible if and only if

one of the following holds:

1) g = R
n ⊂ sim(n), i.e. (M, g) is a pp-wave, and locally there exist coordinates v, x1, ..., xn, u

and a function a(u) such that

g = 2dvdu+
n∑

i=1

(dxi)2 + a(u)
n∑

i=1

(xi)2(du)2,

and a(u) 6= 0 for some system of coordinates;

2) g = sim(n) and locally there exist coordinates v, x1, ..., xn, u and functions a(u), Bi(u),

Ci(u), D(u) such that

g = 2dvdu+

n∑

i=1

(dxi)2 + 2Adu+ (vH1 +H0)(du)
2,

where

A = Aidx
i,

Ai =
1

4

(
2Bj(u)x

jxi −Bi(u)

n∑

j=1

(xj)2

)
,

H1 = Bj(u)x
j,

H0 =
1

16

n∑

k=1

B2

k(u)

n∑

i,j=1

(xixj)2 + a(u)

n∑

i=1

(xi)2 + Ci(u)x
i +D(u),

and
∑

iB
2
i (u) 6= 0 for some system of coordinates.

The Ricci operator of the first metric has the form

Ric =
1

2
a(u)∂v ⊗ du,
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in particular, Ric2 = 0.

In [3] complete conformally flat Lorentzian manifolds (M, g) satisfying the condition

[R(X, Y ),Ric] = 0. (2)

are studied. It is shown that these manifolds are exhausted by the spaces of constant sectional

curvature, by the products of two spaces of constant sectional curvature, and by products of

spaces of constant sectional curvature with intervals.

The Ricci operator of the first metric obtained in this paper satisfies (2), but the metric is not

complete [6], i.e. the assumption of completeness in [3] is essential.

For the second metric it holds Ric2 6= 0 and Ric3 = 0. Condition (2) is not satisfied.

In [4] pseudo-Riemannian conformally flat manifolds (M, g) satisfying (2) are studied. It is

shown that in addition to the obvious cases, (M, g) may be a complex sphere or a space satisfying

Ric2 = 0. Various examples of conformally flat manifolds with Ric2 = 0 are constructed in [5].

Remark that an important fact is that a simply connected conformally flat spin Lorentzian

manifold admits the spaces of conformal Killing spinors of maximal dimension [1].

2 Decomposability of conformally flat pseudo-Riemannian

manifolds

In [10] Kurita proved the following theorem for the case of Riemannian manifolds.

Theorem 2 Let (M, g) be an n-dimensional conformally flat Riemannian manifold. Then its

local restricted holonomy group Hx (x ∈ M) is in general SO(n). If Hx 6= SO(n), then for some

coordinate neighborhood U of x one of the following holds:

1) Hx is identity and the metric is flat in U ;

2) Hx = SO(k)×SO(n−k) and U is a direct product of a k-dimensional manifold of constant

sectional curvature K and an (n−k)-dimensional manifold of constant sectional curvature

−K (K 6= 0);

3) Hx = SO(n − 1) and U is a direct product of a straight line (or a segment) and an

(n− 1)-dimensional manifold of constant sectional curvature.

We generalize this theorem for the case of pseudo-Riemannian manifolds. We also make it more

precise.
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Theorem 3 Let (M, g) be a conformally flat pseudo-Riemannian manifold of signature (r, s)

with the restricted holonomy group Hol0(M, g). If (M, g) is not flat, then one of the following

holds:

1) Hol0(M, g) = SO(r, s);

2) Hol0(M, g) is weakly irreducible and not irreducible (in particular, it preserves a degener-

ate subspace of the tangent space);

3) Hol0(M, g) = SO(r1, s1) × SO(r − r1, s − s1) and each point x ∈ M has a neighborhood

that is either flat or it is a product of a pseudo-Riemannian manifold of constant sec-

tional curvature K and signature (r1, s1) and a pseudo-Riemannian manifold of constant

sectional curvature −K (K 6= 0) and signature (r − r1, s− s1);

4) Hol0(M, g) = SO(r − 1, s) (resp., Hx = SO(r, s − 1)) and each point x ∈ M has a

neighborhood that is either flat or it is a product of a pseudo-Riemannian manifold of

constant sectional curvature and signature (r − 1, s) (resp., (r, s − 1)) and the space

(L,−dt2) (resp., (L, dt2)), L is the straight line or a segment.

Proof. Let (M, g) be a pseudo-Riemannian manifold of signature (r, s) and dimension d = r+s.

The vector bundle so(TM) of skew-symmetric endomorphisms of the tangent bundle TM can

be identified with the space of bivectors ∧2TM in such a way that

(X ∧ Y )Z = g(X,Z)Y − g(Y, Z)X

for all vector fields X, Y, Z on M . The Weyl tensor W of the pseudo-Riemannian manifold

(M, g) is defined by the equality

W = R +RL, (3)

where the tensor RL is defined by

RL(X, Y ) = LX ∧ Y +X ∧ LY, (4)

L =
1

d− 2

(
Ric−

s

2(d− 1)
id

)

is the Schouten tensor and s is the scalar curvature.

Suppose that the restricted holonomy group Hol0(M, g) is not weakly irreducible. The Wu

decomposition Theorem [12] states that each point of M has a neighborhood U such that

(U, g|U) is a product

(U, g|U) = (M1 ×M2, g1 + g2)
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of two pseudo-Riemannian manifolds (M1, g1) and (M2, g2). Let d1 and d2 be the dimensions of

these manifolds. For the curvature tensors, Ricci operators and the scalar curvatures it holds

R = R1 +R2, Ric = Ric1+Ric2, s = s1 + s2.

First suppose that d ≥ 4. In this case W = 0 and we get

R1 +R2 = −RL. (5)

Assume that d1 ≥ d2 and d1 ≥ 2. The curvature tensor R1 can be written in the form

R1 = W1 − RL1
. Considering (5) restricted to TM1, we get that W1 = 0 and

1

d1 − 2

(
Ric1−

s1

2(d1 − 1)
id

)
=

1

d− 2

(
Ric1−

s1 + s2

2(d− 1)
id

)
. (6)

If d2 ≥ 2, then taking the trace in (6), we get

s1

d1(d1 − 1)
= −

s2

d2(d2 − 1)
.

Substituting this back to (6), we obtain

Ric1 =
s1

d1
id . (7)

Since s1 is a function on M1 and s2 is a function on M2, the both functions must be constant.

Next,

R1(X, Y ) =
s1

d1(d1 − 1)
X ∧ Y. (8)

The same holds for the second manifold. For the sectional curvatures we get

k1 =
s1

d1(d1 − 1)
= −

s2

d2(d2 − 1)
= −k2.

If d2 = 1, than (6) is equivalent to (7) and this implies (8). From this and the Schur Theorem it

follows that k1 is constant. If d1 = 2, then the curvature tensor R1 satisfies R1(X, Y ) = fX∧Y

for some function f on M1. The proof in this case is the same.

If d = 3, then d1 = 2 and d2 = 1. It holds R = R1 and R1(X, Y ) = fX ∧ Y for some function

f on M1. In this case (M, g) is conformally flat if and only if the Cotton tensor C defined by

C(X, Y, Z) = g((∇ZL)X, Y )− g((∇YL)X,Z)

is zero. This implies that f is constant, i.e. (M1, g1) has constant sectional curvature.

Now we have to prove that if Hol0(M, g) is irreducible, then it coincides with SO(r, s). Suppose

that Hol0(M, g) is irreducible and it is different from SO(r, s) and U( r
2
, s
2
). Then the manifold

is Einstein [2]. Since (M, g) is in addition conformally flat, (M, g) has constant sectional

curvature and its connected holonomy group must be either trivial or SO(r, s), i.e. we get a

contradiction. Thus we need only to prove that Hol0(M, g) 6= U( r
2
, s
2
). This will follow from

the following (probably known) statement.
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Proposition 1 If a pseudo-Kählerian manifold is conformally flat, then it is flat.

Proof. Let (M, g) be a pseudo-Kählerian conformally flat manifold of dimension 2n. Then its

curvature satisfies

−R(X, Y ) = RL(X, Y ) = LX ∧ Y +X ∧ LY.

Since R(X, Y ) commutes with J , we get

g(LX, JZ)Y − g(Y, JZ)LX + g(X, JZ)LY − g(LY, JZ)X

= J(g(LX,Z)Y − g(Y, Z)LX + g(X,Z)LY − g(LY, Z)X).

Fix a local basis X1, ..., X2n of vector fields such that g(Xi, Xj) = ǫiδij , where ǫi = ±1. Note

that for any vector field it holdsX =
∑

i ǫig(X,Xi)Xi. Putting in the above equation X = ǫiXi,

Z = Xi and taking the sum over i, we get

(2d− 4)LJY = −J(trL)Y.

Hence,

(2d− 4)L = −(trL) id .

This implies L = 0, i.e. R = 0. �

This proves Theorem 3. �

3 The Weyl curvature tensor of Walker metrics

In order to prove Theorem 1 we give some information about the curvature tensor of the Walker

metric (1). For the fixed coordinates v, x1, ..., xn, u consider the fields of frames

p = ∂v, Xi = ∂i − Ai∂v, q = ∂u −
1

2
H∂v.

Consider the distribution E = span{X1, ..., Xn}. From the results of [8] it follows that the

curvature tensor R of the metric g can be written in the form

R(p, q) =− λp ∧ q − p ∧ ~v, R(X, Y ) = R0(X, Y )− p ∧ (P (Y )X − P (X)Y ),

R(X, q) =− g(~v,X)p ∧ q + P (X)− p ∧ T (X), R(p,X) = 0

for all X, Y ∈ Γ(E). Here λ is a function, ~v ∈ Γ(E), T ∈ End(E) is symmetric, T ∗ = T , R0 is

the family of the curvature tensors of the family of Riemannian metrics h(u), and the tensor

P ∈ E∗ ⊗ so(E) satisfies

g(P (X)Y, Z) + g(P (Y )Z,X) + g(P (Z)X, Y ) = 0 for all X, Y, Z ∈ Γ(E).
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These element may be found in terms of the coefficients of the metric (1). For example,

λ = −
1

2
∂2

vH, ~v = −
1

2

(
∂i∂vH −Ai∂

2

vH
)
Xjh

ij . (9)

The expressions for the other elements are more difficult and we will give them only in some

partial cases.

The Ricci operator has the following form:

Ric(p) =− λp, Ric(X) = g(X, R̃icP − ~v)p+ Ric(h)(X), (10)

Ric(q) =(trT )p+ R̃ic(P )− ~v − λq, (11)

where R̃icP = hijP (Xi)Xj. For the scalar curvature we get s = 2λ+ s0, where s0 is the scalar

curvature of h. Using this, we may compute the tensor RL,

RL(p,X) =
1

n
p ∧

(
Ric(h)−

(n− 1)λ− s0

n + 1
id

)
X, (12)

RL(p, q) =
1

n

(
2nλ− s0

n + 1
p ∧ q + p ∧ (~v − R̃icP )

)
, (13)

RL(X, Y ) =
1

n

(
p ∧ (g(X, v − R̃icP )Y − g(Y, v − R̃icP )X) (14)

+

(
Ric(h)−

s

2(n + 1)

)
X ∧ Y +X ∧

(
Ric(h)−

s

2(n+ 1)

)
Y

)
,

RL(X, q) =
1

n

(
(trT )p ∧X + g(X,~v − R̃icP )p ∧ q +X ∧ (~v − R̃icP ) (15)

+

(
Ric(h)−

(n− 1)λ− s0

n + 1
id

)
X ∧ q

)
.

The Weyl tensor W can be computed using this and (3).

4 Proof of Theorem 1

Suppose that the metric (1) is conformally flat, i.e. W = 0. Using the computations of the

previous section, it is easy to show that this is equivalent to the following equations:

λ = 0, R0 = 0, P (X) = ~v ∧X, T = f idE, (16)

where f is a function. In particular, it holds R̃icP = −(n− 1)~v. Since R0 = 0, each metric in

the family h is flat, hence, changing the coordinates, we may assume that

h = δijdx
idxj .

From (9) and the equality λ = 0 it follows that ∂2
vH = 0, hence

H = vH1 +H0, ∂vH1 = ∂vH0 = 0.
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Using (9), we get

~v = −
1

2
∂iH1δ

ijXj.

For the case of h independent of u the curvature tensor of the metric (1) is computed in [9].

Let P (Xk)Xj = P i
jkXi and T (Xj) =

∑
i TijXj. Then

P i
jk = Ri

jkq, Tij = −Ri
qjq.

Using the computations from [9], for our metric we obtain

P i
jk =

1

2
∂kFij , (17)

Tij = −
1

2
∂i∂j(vH1 +H0) +

1

4

∑

k

FikFjk +
1

4
H1(∂iAj + ∂jAi) +

1

2
(Ai∂jH1 + Aj∂iH1), (18)

where

Fij = ∂iAj − ∂jAi

is the differential of the 1-form A.

Consider the following two cases:

1) ~v = 0 for any coordinate system;

2) ~v 6= 0 for some coordinate system.

Case 1). We have ~v = 0 for any coordinate system. Then the curvature tensor satisfies

R(E,E) = 0. Consequently, (M, g) is a pp-wave (see e.g. [7]), i.e. locally g can be written in

the form

g = 2dvdu+

n∑

i=1

(dxi)2 +H(du)2, ∂vH = 0

i.e. A = 0, H1 = 0, and H0 = H . We obtain the equation

fδij = −
1

2
∂i∂jH0.

Taking the trace, we may find f , and we obtain

1

n
∆H0δij = ∂i∂jH0. (19)

The general solution of this equation has the form

H0 = a(u)
n∑

i=1

(xi)2 + Ci(u)x
i +D(u).
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Using some transformations of coordinates, we get

H0 = a(u)
n∑

i=1

(xi)2.

Case 2). Suppose that ~v 6= 0. Since P (X) = ~v ∧X , we get

P i
jk = δki~vj − δkj~vi,

where ~v =
∑

j ~vjXj . We obtain the system of equations

∂kFij = −δki∂jH1 + δkj∂iH1. (20)

These equations can be rewritten in the form

∂i(∂kAj − δkjH1)− ∂j(∂kAi − δkiH1).

This system of equation is equivalent to

dGk = 0,

where we define the 1-forms

Gk = Gk
i dx

i, Gk
i = ∂kAi − δkiH1.

We conclude that there exist functions fk such that

Gk
i = ∂if

k.

Our system of equations takes the form

∂kAi − δkiH1 = ∂if
k.

This implies

F = dA = −df, where f =
∑

k

fkdxk

and

A = −f + dϕ

for some function ϕ. Since ∂2
vH = 0, the gauge transformation

v 7→ v − φ

changes the metric in the following way [9]:

A 7→ A + dφ, H1 7→ H1, H0 7→ H0 +H1φ+ 2∂uφ. (21)
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Hence, changing the coordinates, we get dA = −df . Our equations take the form

∂iAj + ∂jAi = δijH1. (22)

Conversely, this system of equations implies (20).

Consider now (18). Since Tij = fδij for some function f , we get that f = vf1 + f0, where

∂vf1 = ∂vf0 = 0. Applying ∂v to (18), we get

f1δij = −
1

2
∂i∂jH1.

Taking the trace, we get f1 = − 1

2n
∆H1, where ∆ is the Euclidean Laplacian. We get the

equation

n∆H1δij = ∂i∂jH1.

Clearly, this implies

H1 = a(u)
∑

i

(xi)2 +Bi(u)x
i + c(u).

From (22) it follows that for each i it holds

∂iAi =
1

2
H1.

Integrating this equation, we get

Ai =
1

2

(
a(u)xi

∑

j 6=i

(xj)2 +
a(u)

3
(xi)3 +

∑

j 6=i

Bj(u)x
jxi +

Bi(u)

2
(xi)2 + c(u)xi + ci(x

k, u)

)
, ∂ici = 0.

Let i 6= j. Substituting the obtained Ai to (22), we get

4a(u)xixj +Bj(u)x
i +Bi(u)x

j + ∂jci + ∂icj = 0.

Applying ∂i, we get

4a(u)xj +Bj(u) + ∂2

i cj = 0.

Applying ∂j , we get a(u) = 0. We conclude that

∂2

i cj = −Bj(u), ∂jcj = 0.

This implies

cj = −
Bj(u)

2

∑

k 6=j

(xk)2 + djk(u)x
k + fj(u), djj(u) = 0.

Using (22) for i 6= j, we get

dij(u) = −dji(u).
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Thus,

H1 = Bi(u)x
i + c(u), (23)

Ai =
1

2

(
Bj(u)x

jxi −
Bi(u)

2

∑

j

(xj)2 + c(u)xi + dik(u)x
k + fi(u)

)
. (24)

Since ~v 6= 0, it holds ∑

j

B2

j (u) 6= 0.

Consider the coordinate transformation with the inverse one

v = ṽ, xi = x̃i + bi(ũ), u = ũ

such that Bi(u)b
i(u) + c(u) = 0. After that H1 = Bi(u)x

i, i.e. we may assume that c(u) = 0.

Next, consider the coordinate transformation with the inverse one

v = ṽ, xi = Ai
j(ũ)x̃

j , u = ũ,

where Ai
j(u) is a family of orthogonal matrices. It is easy to check that

H̃1 = Bi(u)A
i
j(u)x̃

j, Ãi =
∑

k

Ak
i (u)(∂uA

k
l (u))x̃

l + Ak
i (u)Ai.

The obtained metric has the same form and it holds

B̃i(u) = Bj(u)A
j
i (u), d̃ij(u) =

∑

k

Ak
i (u)∂uA

k
j (u)+

1

2
Ar

i (u)drk(u)A
k
j (u), f̃i(u) = Ak

i (u)fk(u).

Consider the equation d̃ij(u) = 0. Since
∑

k A
k
i (u)A

k
j (u) = δij , it can be written in the form

∂uA
k
i (u) = A

j
i (u)

1

2
djk(u).

Since djk(u) is skew-symmetric, 1

2
djk(u) is a curve in the Lie algebra so(n). Then Ak

i (u) sat-

isfying the above equation is nothing else es the development of the curve 1

2
djk(u) in the Lie

group SO(n). Thus, applying such transformation, we may assume that dij(u) = 0. Applying

(21), we may assume that fi(u) = 0. Thus,

H1 = Bi(u)x
i, Ai =

1

2

(
Bj(u)x

jxi −
Bi(u)

2

∑

j

(xj)2

)
.

Note that

Fij = Bi(u)x
j − Bj(u)x

i

and (22) holds. The equation Tij = fδij takes the following form:

f0δij = −
1

2
∂i∂jH0 +

1

4

∑

k

B2

k(u)x
ixj +

1

4
H2

1δij .
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It can be rewritten in the form

1

n

(
−
1

2
∆H0 +

1

4

∑

k

B2

k(u)
∑

l

(xl)2

)
= −

1

2
∂i∂jH0 +

1

4

∑

k

B2

k(u)x
ixj .

Clearly, the function

H0 =
1

16

n∑

k=1

B2

k(u)

n∑

i,j=1

(xixj)2

is a partial solution of this equation. On the other hand,

a(u)

n∑

i=1

(xi)2 + Ci(u)x
i +D(u)

is the general solution of the corresponding homogeneous system.

Let us compute the holonomy algebra of the obtained metric. Let x ∈ M be a point such that

~vx 6= 0. The condition on the curvature tensor shows that

Rx(px, qx) = −px ∧ ~vx, Rx(X, Y ) = px ∧ ((X ∧ Y )~vx).

This shows that px ∧ Ex ⊂ g. Next,

Rx(~vx, qx) = −g(~vx, ~vx)px ∧ qx − px ∧ Tx(~vx),

which implies Rpx ∧ qx ⊂ g. Finally,

Rx(X, qx) = −g(~vx, X)px ∧ qx + ~vx ∧X − px ∧ Tx(X).

Since the bivectors of the form ~vx ∧X generate the Lie algebra so(Ex), we conclude that

g = Rpx ∧ qx + so(Ex) + px ∧ Ex ≃ sim(n).

This proves the theorem. �
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