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The competition between superconductivity and localization raises profound questions in con-
densed matter physics. In spite of decades of research, the mechanism of the superconductor-
insulator transition (SIT) and the nature of the insulator are not understood. We use quantum
Monte Carlo simulations that treat, on an equal footing, inhomogeneous amplitude variations and
phase fluctuations, a major advance over previous theories. We gain new microscopic insights and
make testable predictions for local spectroscopic probes. The energy gap in the density of states sur-
vives across the transition, but coherence peaks exist only in the superconductor. A characteristic
pseudogap persists above the critical disorder and critical temperature, in contrast to conventional
theories. Surprisingly, the insulator has a two-particle gap scale that vanishes at the SIT, despite a
robust single-particle gap.

PACS numbers: 74.40.Kb,74.62.En,74.78.-w,74.81.-g

Attractive interactions between electrons lead to su-
perconductivity, a spectacular example of long range or-
der in physics, while disorder leads to localization of elec-
tronic states. One of the most fascinating examples of the
interplay between the effects of interactions and disorder,
is the destruction of superconductivity in thin films with
increasing disorder (or decreasing thickness or increas-
ing magnetic field), and the resulting superconductor-to-
insulator transition (SIT) [1–9].

It was recognized long ago that s-wave superconductiv-
ity is remarkably robust against weak disorder [10, 11].
But strong disorder, where the SIT occurs, is very hard
to treat theoretically in an interacting system. Early
work on critical phenomena [12] at the SIT used bosonic
models to describe fluctuations of the phase of the su-
perconducting order parameter. A more microscopic ap-
proach, involving the fermionic degrees of freedom, leads
to a highly inhomogeneous state [13–16]. Even though
the disorder potential varies on an atomic scale, the su-
perconducting pairing amplitude forms “self-organized”
puddles on the scale of the coherence length and results in
large suppression of the superfluid density [13, 14]. How-
ever, the inhomogeneous mean field theory by itself fails
to capture the SIT, which necessarily requires inclusion
of phase fluctuations.

In this paper we make a major advance by using quan-
tum Monte Carlo (QMC) simulations of a microscopic
model for an s-wave superconductor (SC) in a random
potential, which treats on an equal footing the inhomo-
geneous variations of the pairing amplitude and thermal
and quantum phase fluctuations. What is new in our pa-
per are calculations of one-particle and two-particle spec-
tral functions across the SIT which allows us to answer
the questions about the mechanism of the transition, the
evolution of the local excitation spectrum across the SIT
and the nature of the resulting insulator.

Our main results are as follows:
(1) Single-particle gap: At T = 0 the gap in the single-

particle density of states (DOS) survives through the
SIT, so that one goes from a gapped superconductor to a
gapped insulator. Although both states are highly inho-
mogeneous, the local density of states (LDOS) is gapped
at every site.
(2) Coherence peaks: Coherence peaks – characteristic
pile-ups in the DOS at the gap edges – are strongly corre-
lated with superconducting order and vanish as the tem-
perature is raised above Tc, or as the disorder is increased
across the SIT.
(3) Pseudogap: Near the SIT, a pseudogap – a suppres-
sion in the low-energy DOS – persists well above the su-
perconducting Tc, in marked deviation from BCS theory.
A pseudogap also exists at finite temperatures in the in-
sulating state.
(4) Two-particle gap: There is a characteristic energy
scale ωpair to insert a pair in the insulator that collapses
upon approaching the SIT from the insulating side. How-
ever, the two-particle spectral function does not have a
hard gap since rare regions lead to a very small spectral
weight at low energies.

Our results thus provide a complete description of the
phases and the quantum critical region bounded by Tc
in the superconductor and ωpair in the insulator. Fur-
thermore, our predictions for the local tunneling density
of states and the dynamical pair susceptibility as a func-
tion of temperature and disorder have the potential to
guide future experiments using scanning tunneling spec-
troscopy (STS) [17–20] and other dynamical probes [21].

Model and methods: To model the competition be-
tween superconductivity and localization that leads to
the SIT in quench-condensed films with thicknesses less
than the coherence length, we take the simplest lattice
Hamiltonian that has an s-wave superconducting ground
state in the absence of disorder (V = 0) and exhibits
Anderson localization when the attractive interaction is
turned off (U = 0). This is the two-dimensional attrac-
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tive Hubbard model in a random potential:

H = −t
∑

〈RR′〉σ
(c†RσcR′σ + c†R′σcRσ)

−
∑

Rσ

(µ− VR)nRσ − |U |
∑

R

nR↑nR↓. (1)

with lattice sites R and R′, spin indices σ =↑ or ↓,
fermion creation and annihilation operators c† and c ,
number operators nRσ = c†RσcRσ, hopping t between
neighboring sites 〈RR′〉, and chemical potential µ. VR is
a random potential at each site drawn from the uniform
distribution on [−V,+V ], and |U | is the on-site attrac-
tion leading to s-wave SC. We will measure all energies
in units of t. At weak disorder this model has a super-
conducting ground state for any density 〈n〉 6= 1, whereas
strong disorder (V � 1) localizes the fermions and de-
stroys superconductivity.

FIG. 1: Energy and temperature scales across the
superconductor-insulator transition (SIT). The super-
conducting Tc (blue dots) decreases to zero at the critical
disorder strength Vc. The single-particle gap ωdos (black dia-
monds), obtained from the DOS shown in Fig. 2, is large and
finite in all states. The two-particle gap ωpair (red squares),
obtained from the dynamical pair susceptibility shown in
Fig. 3, is non-zero in the insulator but vanishes at the SIT.
The dashed curves are guides to the eye; extracting critical
exponents requires finite-size scaling beyond the scope of this
paper. The statistical error bars in all the figures are dom-
inated by disorder averaging and not from the QMC. These
results were obtained at fixed attraction |U | = 4 and aver-
age density 〈n〉 ≈ 0.87 on up to 100 disorder realizations on
8 × 8 lattices. ωpair and ωdos were calculated at the lowest
accessible T = 0.1.

We use the determinantal QMC method [22], which
is free of the fermion sign problem for the Hamiltonian

(1), to compute various physical observables as functions
of temperature and disorder. We work at |U | = 4, so
that the coherence length is within the system size, and
work at a density 〈n〉 = 0.875. We have made exten-
sive comparisons of the QMC results with self-consistent
Bogoliubov-deGennes (BdG) calculations, which only
take into account only the spatial amplitude variations;
see supplementary material. These comparisons permit
us to separate the effects of amplitude inhomogeneity and
phase fluctuations.

We compute frequency-dependent observables across
the SIT for the first time. The single-particle DOS,
LDOS and the pair susceptibility are obtained using the
maximum entropy method (MEM) for analytic continua-
tion [23, 24]. We have verified that these results obey var-
ious sum rules to high precision, and that the MEM cor-
rectly reproduces the low-energy structure of test spectra
as shown in the supplementary material. What gives us
confidence is that our central results on the single- and
two-particle gaps can be equally well estimated directly
from the exponential decay of the imaginary-time QMC
data, without recourse to MEM.

Phase diagram: In Fig. 1 we summarize our key re-
sults for the disorder dependence of various temperature
and energy scales. The Berezinskii-Kosterlitz-Thouless
(BKT) critical temperature Tc is estimated from the uni-
versal jump in the superfluid density ρs, calculated from
the transverse current correlator [25]. We note that this
procedure on finite systems provide an upper bound on
the actual Tc in the thermodynamic limit. As disorder
strength V increases, Tc falls and finally vanishes at the
critical disorder Vc, which defines the SIT. The single-
particle energy gap ωdos remains non-zero across the SIT,
whereas the two-particle energy gap ωpair is finite in the
insulator and goes to zero at the transition. These gap
scales are extracted from the DOS and the dynamical
pair susceptibility, discussed below. Figure 1 can be in-
terpreted as a phase diagram: Tc is the superconducting
transition temperature, ωpair is a crossover scale between
the insulator and the quantum critical region, and ωdos

is the pseudogap crossover scale described below.
Single-particle spectra: We show in Fig. 2 the disor-

der and temperature dependence of the DOS N(ω). Pan-
els (A,B) show the evolution with disorder at a very low
temperature T = 0.1. The gap ωdos clearly remains fi-
nite in both superconducting and insulating states. This
counterintuitive prediction agrees qualitatively with BdG
theory [13, 14]. Note, however, that the coherence peaks
are predominantly present in the superconducting state
and absent in the insulating state. Thus, it is the coher-
ence peaks, and not the gap, that serve as spectral signa-
tures of superconducting order.

Figure 2(C,D) show the temperature evolution of N(ω)
at weak disorder V < Vc. Unlike BCS theory, the hard
SC gap does not close with increasing T . Instead, the
coherence peaks gradually disappear as the temperature
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FIG. 2: The single-particle DOS N(ω) (upper panels) and representative spectra (lower panels), along three different cuts
through the temperature-disorder plane. Panels (A,B): Disorder dependence of N(ω) at a fixed low temperature. A hard gap
(black region) persists for all V above and below the SIT (Vc ≈ 1.6), but the coherence peaks (red) exist only in the SC state
and not in the insulator. Panels (C,D): T -dependence of the N(ω) for the superconductor (V < Vc). The coherence peaks (red)
visible in the SC state, vanish for T & Tc ≈ 0.14. A disorder-induced pseudogap (loss of low-energy spectral weight) persists
well above Tc. Panels (E,F): T -dependence of N(ω) for the insulator (V > Vc). The hard (insulating) gap at low T evolves
into a pseudogap at higher T . No coherence peaks are observed at any T .

increases across Tc. Above Tc, the gap gradually fills up,
with a pseudogap persisting well above Tc.

The temperature evolution of N(ω) at strong disorder
V > Vc is shown in Fig. 2(E,F). Here the ground state
is an insulator with a hard gap and little evidence for
coherence peaks, and the pseudogap persists up to an
even higher temperature.

Two-particle spectra: What is the energy scale
in the insulator that vanishes at the quantum criti-
cal point? We propose that it is the gap for a two-
particle excitation in the insulator. To access this
gap, we examine the pair susceptibility P (ω) obtained
by analytical continuation of the correlation function
P (τ) =

∑
R

〈
TτF (R; τ)F †(R; 0)

〉
where F (R, τ) =

cR↓(τ)cR↑(τ). Thus P (τ) is the amplitude for a pair cre-
ated at a site R at τ = 0 to be found at the same site at
a later time τ . We find that in the insulating phase P (τ)
decays exponentially, which allows us to define ωpair, the
characteristic energy scale for two-particle excitations.

In Fig. 3 we show the imaginary part of the pair sus-
ceptibility P ′′(ω) for three disorder strengths. At weak
disorder P ′′(ω) is very large at low ω, whereas at strong
disorder it has a clear two-peak structure with a char-
acteristic energy scale ωpair. This dominant scale rep-
resents the typical energy required to insert a pair into
the system. We find that ωpair collapses to zero at the

SIT because there is no cost for inserting a pair into a
condensate. Note that there is the possibility of low en-
ergy weight in P”(ω)/ω originating from rare regions but
their spectral weight is small.

Local probes: In Fig. 4 we track the behavior of var-
ious quantities with increasing disorder strengthV . We
show the LDOS N(R, ω) at representative points, maps
of the spatial variation of the density n(R), and the BdG
pairing amplitude ∆(R) = 〈cR↓cR↑〉 (which cannot be
computed in QMC). We see that the system becomes in-
creasingly inhomogeneous with increasing disorder (mov-
ing from left to right in Fig. 4). The SIT occurs due to
loss of phase coherence between superconducting islands,
seen as blue patches in the pairing amplitude ∆-map.

We predict experimentally measurable signatures of
the local density and pairing amplitude in the LDOS
N(R, ω). Let us focus on three representative sites R1,
R2, and R3. At moderate and strong disorder, R1 is
located on a potential hill, with a low density n(R1) ≈ 0
and a negligible pairing amplitude ∆(R1) ≈ 0. Thus the
LDOS at R1 is highly asymmetric LDOS, with most of
the spectral weight at ω > 0, for adding an electron. In
contrast, R3 is in a potential well, with a high density
n(R3) ≈ 2 and a negligible pairing amplitude ∆(R3) ≈ 0.
Thus R3 also has a highly asymmetric LDOS, but most of
the spectral weight is at ω < 0, for removing an electron.
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FIG. 3: Imaginary part of the dynamical pair sus-
ceptibility P ′′(ω)/ω at T = 0.1t, averaged over 10 disorder
realizations at three disorder strengths. Error bars represent
variations between disorder realizations. For V < Vc, there is
a large peak at ω = 0, indicating zero energy cost to insert a
pair into the SC. For V > Vc, there is a gap-like structure with
an energy scale ωpair, the typical energy required to insert a
pair into the insulator which increases with V .

Finally, R2 lies in a superconducting puddle close to
half-filling, n(R2) ≈ 1, which permits particle mixing,
and therefore a large pairing amplitude ∆(R2). The
LDOS at R2 is much more symmetrical, with large co-
herence peaks that persists across the SIT and even in
the insulating state. Note that all the LDOS curves have
a clear gap. Thus, the more symmetrical coherence peaks
in the LDOS, and not the local energy gap, are a clear
experimental signature of local pairing.

Conclusion: A detailed picture of the superconductor
to insulator transition has emerged from our microscopic
calculations. Even “homogeneous disorder” arising from
an uncorrelated random potential leads to a highly inho-
mogeneous state with superconducting puddles. These
puddles shrink with increasing disorder, leading to en-
hanced quantum phase fluctuations that destroy phase
coherence at the SIT, resulting in an unusual insulator

with a large single-particle gap but a much lower energy
scale for pair excitations that vanishes at the SIT. In ad-
dition, our results suggest that coherence peaks in the
DOS are destroyed by thermal fluctuations for T & Tc,
but a pseudogap persists well above Tc. This disorder-
induced pseudogap is a robust consequence of the small
superfluid stiffness [26] and would exist near the SIT even
in a highly disordered weak-coupling system.

Our goal was to model the disorder-driven SIT in s-
wave SC films, but aspects of our results bear a striking
resemblance to the completely different – and not well
understood – problem of the pseudogap in underdoped
cuprates. Features like the loss of low-energy spectral
weight persisting across thermal or quantum phase tran-
sitions, even as coherence peaks are destroyed, may well
be common to all systems where the small superfluid stiff-
ness drives the loss of phase coherence. The cuprate pseu-
dogap is driven by the proximity to the Mott insulator
and competing order parameters, with disorder proba-
bly playing a secondary role, unlike the disorder-induced
pseudogap near the SIT discussed in this paper.
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DE-FG02-07ER46423 and nsf-dmr 0706203 and compu-
tational support from Ohio Supercomputing Center.
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SUPPLEMENTAL ONLINE MATERIAL

PACS numbers:

In this supplement we provide details of the determi-
nantal QMC simulations, comparison between QMC and
inhomogeneous Bogoliubov de-Gennes (BdG) mean field
theory, and the analytic continuation procedure for ex-
tracting real frequency information from imaginary time
QMC data.

Determinantal QMC: We use the determinan-
tal Quantum Monte Carlo (QMC) algorithm [1, 2] to
calculate the quantities discussed in the paper, in-
cluding the imaginary-time Green function G(R; τ) =〈
Tτ cRσ(τ)c†Rσ(0)

〉
and pairing correlation function

P (τ) =
∑

R

〈
TτF (R; τ)F †(R; 0)

〉
where F (R, τ) =

cR↓(τ)cR↑(τ). We present results for 8 × 8 square lat-
tices with periodic boundary conditions. The lattice size
is dictated by the need for very accurate QMC data re-
quired for analytic continuation.

For a given set of parameters, the simulations are equi-
librated for up to 4 × 105 Monte Carlo steps. The final
averages for a single disorder realization are taken over
2 × 105 steps for static quantities and over 4 × 106 for
dynamical quantities. We further average over 10 disor-
der realizations for a given disorder strength. The re-
sulting maximum absolute errors are δG(τ) ∼ 10−4 and
δP (τ) ∼ 10−2.

Comparisons of QMC with BdG: In Fig. 1 we
show a comparison of the local density n(R) obtained
using QMC and self-consistent BdG, including inhomo-
geneous Hartree shifts, for one disorder pattern at dif-
ferent disorder strengths. The close agreement indicates
that phase fluctuations, not included in BdG, have very
little effect on n(R). On the other hand, the superfluid
stiffness and spectral properties at finite temperatures
and large disorder are greatly affected by thermal and
quantum phase fluctuations.

The local density is directly related to the occupied
and unoccupied part of the LDOS (see Fig. 4 of the pa-
per) via the sum rules: 2

∫∞
−∞ dωf(ω)N(R, ω) = n(R)

and 2
∫∞
−∞ dω[1− f(ω)]N(R, ω) = 1− n(R), where f(ω)

is the Fermi function and the factor of 2 comes from spin
degeneracy. We have tested these sum rules for the calcu-
lated LDOS and find excellent agreement. Further sum
rule tests are described below.

Analytic continuation: We use the maximum en-
tropy method (MEM) to extract the local density of
states N(R, ω) and the pair spectrum P ′′(ω) from the
imaginary-time Green function G(R; τ) and pairing cor-
relation function P (τ) respectively. The MEM for an-
alytic continuation [3] essentially inverts the Laplace
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FIG. 1: Comparison of the local density n(R) obtained using
QMC (top panels) and self-consistent BdG (middle panels)
for one disorder pattern at three different disorder strengths.
The densities are very similar as seen from the histograms of
their differences in the lowest panels, indicating that phase
fluctuations have very little effect on n(R).

transforms

G(R; τ) =

∫ ∞

−∞
dω

e−τω

1 + e−βω
N(R, ω), (1)

P (τ) =

∫ ∞

−∞

dω

π

e−τω

1 + e−βω
P ′′(ω) coth

βω

2
. (2)

The average DOS N(ω) is obtained from analytic contin-
uation of

∑
RG(R, τ).

We have performed extensive tests using known model
spectra as follows: (i) choose a test spectrum N(ω); (ii)
perform a Laplace transform to obtain the imaginary-
time Green function G(τ); (iii) add random numbers
δG(τ) drawn independently from a normal distribution
of width δG = 10−4, in order to simulate Monte Carlo
statistical error; and finally (iv) feed the resulting noisy
data, Gdata(τ), into our MEM routine. This procedure is
illustrated in Fig. 2. We have concluded that the MEM
is adequate for extracting the low-energy features of the
spectrum, particularly the gap.

We emphasize that two of our crucial observations re-
garding the single particle gap scale in N(ω) and the
two-particle gap scale in P ′′(ω)/ω can be directly esti-
mated, from the exponential decay at large τ of G(τ)
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FIG. 2: Demonstration of analytic continuation using the maximum entropy method (MEM). A test spectrum (blue) is chosen,
noise is added in the τ -domain, and the MEM is used to reconstruct the spectrum (red). The reconstructed Green function
GMEM(τ) fits the “data” Gdata(τ) to within its error bars. The reconstructed spectrum NMEM(ω) agrees well with the test
spectrum N(ω) at low energies, reproducing the correct gap structure, although there are deviations at higher energies. Indeed,
the magnitude of the gap can be estimated by examining the exponential decay constant of G(τ), even without using the MEM.

and P (τ) calculated from the QMC data without any
MEM analytic continuation.

We have also made extensive sum-rule checks for the
spectra obtained from MEM. We define M

(m)
R , the mth

frequency moment of the local density of states at posi-
tion R, as

M
(m)
R =

∫ ∞

−∞
dω ωmN(R, ω). (3)

These moments satisfy the following sum rules, which can
be derived rigorously by extending the analysis in Ref. [4]
to a disordered system:

M
(0)
R = 1, (4)

M
(1)
R = VR − µ+

U

2
〈nR〉 , (5)

M
(2)
R −M (1)

R
2 = zt2 +

U2

4

[
2 〈nR〉 − 〈nR〉 2

]
, (6)

where z = 4 is the coordination number. Differentiating
Eq. (1) shows that the moments are also related to the
values and derivatives of the Green function at τ = 0 and
τ = β,

M
(m)
R = (−1)m

[
∂mGR

∂τm
(0) +

∂mGR

∂τm
(β)

]
. (7)

QMC simulations produce very accurate results for
GR(0) and GR(β), with absolute errors of about 10−5.
The MEM analytic continuation procedure fits these data
points to within the error bars. We have verified that the
MEM LDOS satisfies the moment sum rules with a frac-
tional error of less than 0.001% for M (0), less than 1%
for M (1), and about 1% for M (2). In contrast, the LDOS
obtained from BdG calculations are found to violate the
sum rules.
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