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Topological disentangler for the valence-bond-solid chain
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We discuss topological disentangler for S = 1 quantum spin chains in the Haldane phase. We first
point out that Kennedy-Tasaki’s(KT) nonlocal unitary transformation is the perfect disentangler
for Affleck-Kennedy-Lieb-Tasaki model. We then demonstrate that the KT transformation can be
reconstructed as an assembly of pair disentanglers. Finally, we show that the KT transformation can
be regarded as a topological disentangler, which selectively disentangles the double-fold degeneracy
in the entanglement spectrum of the S = 1 Heisenberg chain.

PACS numbers: 75.10.Kt,03.65.Ud

Topological aspects of low-dimensional quantum many
body systems have been attracting considerable inter-
est in modern physics. One of the most fundamen-
tal examples is the Haldane-gap system for S =integer
spin chains.[1] According to the continuous efforts since
the Haldane’s conjecture based on the non-linear sigma
model, a couple of interesting concepts in the low-
dimensional physics have been developed: valence-bond-
solid(VBS) states and effective S = 1/2 edge spins[2],
topological string order[3], spontaneous breaking of the
hidden Z2×Z2 symmetry[4], Z2 Berry phase[5], etc. Re-
cently, the topological order in quantum spin systems
has been illuminated by the entanglement spectrum. It
is shown that the non-trivial degeneracy appears in the
entanglement spectrum[6], which is closely related to the
topological order protected by the symmetry[7]. This
suggests that the connection between the entanglement
and the topological order becomes important.

The entanglement of the groun dstate wavefunction
also provides an indispensable view point for numerical
renormalization groups of quantum many body systems.
It is well established that density matrix renormalization
group(DMRG)[8] is a variational method for the matrix
product(MP) type wavefunction[9], which maximizes the
block entanglement entropy. Recently, multi-scale en-
tanglement renormalization(MERA) is proposed to be a
powerful numerical simulation method[10]. A key point
in MERA is that the entanglement entropy is reduced by
the combination of the usual block-spin transformation
and the local unitary transformation called “disentan-
gler” that disentangles the quantum entanglement of the
neighboring effective spins. Successive operations of the
disentanglers and the block-spin transformations drasti-
cally improve accuracy in contrast to the conventional
renormalization group. This suggests that the disentan-
gler is deeply related to the structure of the ground state
wavefunction. In this sense, to understand how the disen-
tangler controls the entanglement is an essential problem
in physics of quantum many body systems.

In order to discuss the connection of the disentan-
gler and topological order, the most striking play ground
is Affleck-Kennedy-Lieb-Tasaki(AKLT) model, whose

ground state is exactly described by the VBS state[2].
Let us recall that the Kennedy-Tasaki’s(KT) non-local
unitary transformation plays a central role to clarify the
topological order and the hidden Z2 × Z2 symmetry in
the Haldane phase[4]. The KT transformation converts
the nonlocal string order parameter into the classical fer-
romagnetic order parameter with the manifest Z2 × Z2

symmetry. In this letter, we point out that the KT trans-
formation is nothing but the perfect disentangler of the
VBS state. We then demonstrate that the KT transfor-
mation can be reconstructed by the pair disentanglers,
which disentangle any pair of spins in the AKLT chain. In
addition, for the case of S = 1 Heisenberg chain, the KT
transformation particularly disentangles the two-fold de-
generacy of the entanglement spectrum originating from
the topological order, which implies that the KT transfor-
mation can be interpreted as a topological disentangler.
The Hamiltonian of the AKLT model is given by

HAKLT ≡
∑

i hi,i+1 with

hi,i+1 = ~Si · ~Si+1 +
1

3
(~Si · ~Si+1)

2, (1)

where ~S represent the S = 1 spin matrices. The
KT transformation, which is denoted as U , leads U ~Si ·
~Si+1U

−1 = −S̃x
i S̃

x
i+1− S̃y

i S̃
y
i+1+ S̃x

i e
iπ(Sz

i +Sx
i+1)S̃x

i+1. For
the AKLT Hamiltonian transformed by the KT transfor-
mation, the infinite-volume ground state is calculated by
diagonalizing the local Hamiltonian h̃i,i+1 = Uhi,i+1U

−1,

|Φν〉 = · · · |φν〉⊗ |φν〉⊗ |φν〉⊗ · · · , for ν = 1, 2, 3, 4. (2)

where

|φ1〉 =
√

2/3|+〉+
√

1/3|0〉,

|φ2〉 =
√

2/3|+〉 −
√

1/3|0〉,

|φ3〉 =
√

2/3|−〉+
√

1/3|0〉,

|φ4〉 =
√

2/3|−〉 −
√

1/3|0〉. (3)

Since these four degenerating states |Φν〉 are represented
as the direct products of |φν〉, there is no correlation be-
tween different sites and thus the entanglement entropy
for any block size is exactly zero. This implies that the
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FIG. 1: Schematic diagram of the KT transformation for a
4 spin system. The KT transformation is represented as a
assembly of the disentanglers for all pairs

KT transformation works as the perfect disentangler of

the VBS state with an appropriate boundary condition.
The KT transformation is originally introduced as a se-

quential operation for a spin alignment along the chain.[4]
Here, let us assign the site index 1 to N from left to right
along the chain, where N is an even integer representing
the length of the chain. If the number of “+” and “−”
spins sitting in the left of a certain site j is odd, then
the spin at the j-th site is flipped. In addition, if the
total number of “0” spins at the odd sites in the entire
chain is odd, then a minus sing is assigned to the state
vector. This is a complicated operation for the Hilbert
space, but the explicit from of the KT transformation
can be written as

U =

N
∏

l=1

l−1
∏

k=1

Dk,l (4)

where Dk,l = D−1
k,l ≡ eiπS

z
k⊗Sx

l and the overall sing is
omitted.[11] Here, we also present another form of Dk,l,
which is convenient in practical calculations,

Dk,l = P±
k ⊗ eiπS

x
l + P 0

k ⊗ 11l

= eiπS
z
k ⊗Q±

l + 11k ⊗Q0
l (5)

where 11k is the 3×3 identity matrix for S = 1 spin at kth
site and P±

k (P 0
k ) is the projection operator into the Sz =

±1(Sz = 0) space at kth site. Explicitly, we have P±
l =

1
2 (11k−eiπS

z
k) and P 0

k = 1
2 (11k+eiπS

z
k). Similarly, Q±

l (Q
0
l )

is the projection operator into Sx = ±1(Sx = 0) space
in the Sx-diagonal representation. As was pointed out in
Ref.[11], [Dk,l, Dk′,l′ ] = 0 for k < l and k′ < l′, implying
that the order of the D operators is not relevant in Eq.
(4). Thus the KT transformation can be constructed as
the assembly of D for the all spin pairs, as is depicted in
Fig. 1. This suggests that the entanglement of any spin
pair in the VBS state is disentangled by D. We thus call
D “pair disentangler” in the following.
Let us discuss disentangling the VBS state by the pair

disentanglers. The degenerating ground state (2) was
originally obtained by diagonalizing the KT-transformed
Hamiltonian h̃i,i+1. Here, we directly investigate how the
pair disentangler disentangles the VBS state. The VBS
state for the AKLT model can be compactly written in
the MP form,[12]

Ψ = A1A2 · · ·ANΩ, (6)

n N1 n+1n-1

1,nD Dn,N

n-1,nD n,n+1D

FIG. 2: Disentangling the spin at nth site.

where Ψ is the 2×2 matrix and the four entries corre-
spond to the four degenerating eigenstate of the AKLT
Hamiltonian with the open boundary condition. The ex-
plicit form of the matrix A is given by

Ai =





−
√

1
3 |0〉i

√

2
3 |+〉i

−
√

2
3 |−〉i

√

1
3 |0〉i



 (7)

where the kets represent the Sz-diagonal bases of the S =
1 spin at site i. Here, it should be noted that these states
are the non-orthogonal basis of a finite size system and
the orthogonality is recovered in the infinite size limit.
In Eq. (6), we have also introduced the boundary matrix

Ω ≡

(

1 1
−1 1

)

, (8)

which just yields a linear combination of the four degen-
erating VBS states. A possible physical interpretation of
Ω is as follows. According to Eq. (5), we can see that the
spins in the left side of the pair disentangler are written
in the usual Sz-diagonal representation, while the Sx-
diagonal basis is rather natural for the spins in the right
side of the pair disentangler. In order to treat the both
right and left edges equivalently in the pair disentangler,
it is appropriate to take the Sx-diagonal representation of
the spin at the right edge. Then, for π/2-rotation around
the y axis, we find

eiπS
y/2A = Ω−1AΩ. (9)

This suggests that the boundary matrix Ω adjusts the
quantization axis at the right edge and a certain domain
wall is possibly inserted in the MP state of the bulk re-
gion.

We now demonstrate that a certain nth site in the VBS
state can be disentangled by the disentanglers depicted
in Fig. 2. We operate the pair disentanglers between the
nth site and the other sites to the MP wavefunction,

Ψ̃ =

n−1
∏

j=1

Dj,n

N
∏

j=n+1

Dn,jΨ. (10)
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Using Eq. (5), we have

n−1
∏

j=1

Dj,n = eiπS
z
1 ⊗ eiπS

z
2 ⊗ · · · eiπS

z
n−1 ⊗Q±

n

+ 111 ⊗ 112 · · · ⊗ 11n−1 ⊗Q0
n, (11)

N
∏

j=n+1

Dn,j = P±
k ⊗ eiπS

x
n+1 ⊗ eiπS

x
n+2 · · · ⊗ eiπS

x
N

+ P 0
n ⊗ 11n+1 ⊗ 11n+2 · · · ⊗ 11N . (12)

When applying these operators to the MP state, the fol-
lowing relations are useful,

eiπS
z

A = σzAσz , eiπS
x

A = σxAσx, (13)

where σz and σx are the Pauli matrices acting in the
axially space. Since the adjacent Pauli matrices in the
bulk part can be canceled with each other, σx,z emerges
at the boundaries. Then, Eq. (10) becomes

σzA1 · · ·An−1σ
z(P±

n Q±
nAn)σ

xAn+1 · · ·ANσxΩ

+σzA1 · · ·An−1σ
z(P 0

nQ
±
nAn)An+1 · · ·ANΩ

+A1 · · ·An−1(P
±
n Q0

nAn)σ
xAn+1 · · ·ANσxΩ

+A1 · · ·An−1(P
0
nQ

0
nAn)An+1 · · ·ANΩ. (14)

Here, we introduce the notation,

A1 · · ·An−1 =

(

|α1〉 |β1〉
|γ1〉 |δ1〉

)

,

An+1 · · ·AN−1 =

(

|α2〉 |β2〉
|γ2〉 |δ2〉

)

.

These matrix elements are complex linear combinations
of the S = 1-kets for 1 · · ·n−1 or n+1 · · ·N sites. But we
do not need the explicit form below. A straightforward
calculation yields

Ψ̃ =

(

|φ1〉 ⊗ |X11〉 |φ2〉 ⊗ |X12〉
|φ4〉 ⊗ |X21〉 |φ3〉 ⊗ |X22〉

)

, (15)

where |Xlm〉 with l,m = 1, 2 are also complex lin-
ear combinations of the S = 1 kets corresponding to
j = 1 · · ·n − 1, n + 1 · · ·N spins. They are explicitly
given by

|X11〉 = |α1〉|β2〉+ |β1〉|δ2〉 − |α1〉|α2〉 − |β1〉|γ2〉,

|X12〉 = |α1〉|β2〉+ |β1〉|δ2〉+ |α1〉|α2〉+ |β1〉|γ2〉,

|X21〉 = |γ1〉|α2〉+ |δ1〉|γ2〉 − |γ1〉|β2〉 − |δ1〉|δ2〉, (16)

|X22〉 = −|γ1〉|α2〉 − |δ1〉|γ2〉 − |γ1〉|β2〉 − |δ1〉|δ2〉,

where the symbol of tensor product is omitted for sim-
plicity. A significant point of Eq. (15) is that, in each of
the four matrix elements, |φν〉 of the nth site targeted is
clearly decoupled from |Xlm〉 by the direct tensor prod-
uct. Thus we can verify that the spin at the nth site can
be disentangled with the other spins in the chain.

We construct the single-spin density matrix at the nth
site for |φ1〉 ⊗ |X11〉 or |φ

2〉 ⊗ |X12〉. The result is easily
obtained as

ρ̃ =







2
3

√
2
3 0√

2
3

1
3 0

0 0 0






. (17)

The entanglement spectrum is clearly (1, 0, 0) and its en-
tanglement entropy is S = 0. Also we have the similar
results for |φ4〉 ⊗ |X21〉 and |φ3〉 ⊗ |X22〉. This result
should be contrasted to the entanglement spectrum of
the original VBS state. The single-spin density matrix
of the VBS state is obtained as ρ =

∑

m=+,0,−
1
3 |m〉〈m|

with the appropriate edge spins and then the entangle-
ment entropy is S = ln 3, implying that the single spin
in the VBS state is maximally entangled with the other
spins.[13] Thus our disentangler completely disentangles
the spin at nth site from the other spins.
A generalization to the general block entanglement is

straightforward. When we disentangle a system block
of a finite length from the other part of the chain, we
should construct a couple of the pair disentanglers for
the all pairs linking the system and the bath. Moreover,
recursively disentangling the spins from left to right in
the similar manner to Eq. (15), we can finally reproduce
Eq. (2).
We turn to the S = 1 Heisenberg chain, which is

described by H ≡
∑

i
~Si · ~Si+1. Although the ground

state of the Heisenberg chain is adiabatically connected
to the VBS state, it can not be expressed by the MP
state with a finite dimension. What happens on the en-
tanglement spectrum of the KT-transformed Heisenberg
model H̃ = UHU−1 ? In order to discuss the relation be-
tween the KT transformation and the entanglement spec-
trum for the Heisenberg case, we employ the product-
wavefunction renormalization group[14], which is a vari-
ant of the infinite-system-size DMRG and enables for us
to directory deal with the bulk limit. We then evaluate
the eigenvalue spectrum of the reduced density matrix for
the half-infinite chain. Note that, as was mentioned in
Ref. [4], the SU(2) symmetry is masked by the KT trans-
formation and the total-Sz conservation is not available
in DMRG computation of H̃.
The eigenvalues spectrum λ of the half-infinite den-

sity matrix is shown in Fig.3, where the retained num-
ber of basis in the DMRG computation is m = 200
and the spectrum is normalized by the largest eigenvalue
λmax. The spectrum of the Heisenberg model shows the
double-fold degeneracy, which reflects the topological Z2

symmetry. On the other hand, the spectrum for H̃ has
no double-fold degeneracy. Then, an interesting point is
that the spectra of H̃ and H are identical to each other
except for the double-fold degeneracy; We have confirmed
λ̃i = λ2i within the numerical accuracy, where λ̃i and λi

respectively denote the entanglement spectra for H̃ and
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FIG. 3: Entanglement spectrum of the half-infinite reduced
density matrix for the S = 1 Heisenberg chain(open circles)
and the Kennedy-Tasaki transformed chain(solid circles). The
spectrum is normalized by the largest eigenvalue.

H. As a result, we note that the variational calculation
for H̃ in Ref. [4] is eventually equivalent to that of the
MP state for H with the matrix size m = 4, which is also
the same as a DMRG computation with m = 4.
In the context of physics, the topological Z2×Z2 sym-

metry is spontaneously broken in H̃ and one of the four
degenerating state is selected. The KT transformation
affects only the degeneracy in the entanglement spectrum
originating from the Z2-edge spin. Accordingly, the en-
tanglement entropy of H̃ is reduced from that of H by
S̃ = S − ln 2, corresponding to the topological entan-
glement entropy[15]. We therefore conclude that the KT
transformation and the pair-disentangler (5) play the role
of the topological disentangler. In other words, the dis-
entangler for the topological symmetry is distinguishable
from the disentangler associated with the entanglement
spectrum of the other dynamical behaviors.
To summarize, we have constructed the exact topolog-

ical disentangler for the arbitrary block of the Haldane-
gap chains by combining the pair disentaglers. Then, the
important point is that the KT transformation, which is
nothing but the disentangler of the entire system, can be
reconstructed by the pair disentanglers for the all spin
pairs. The exact topological disentangler involves a cou-
ple of implications for physics in the low-dimension. The
Heisenberg model results indicates that the entanglement
due to the topological symmetry can be distinguished
from that of the other dynamical origin. This suggests
that, through the disentangler, the topological symmetry
can be priori taken into account in the MP formulation
including numerical computation. Next, although con-
struction of a non-local transformation has been a highly
non-trivial problem, the decomposition and reconstruc-
tion of the pair disentanglers provide a systematical ap-
proach to find the non-local transformation for the gen-
eral topological orders. Indeed, the generalized string or-
der for the higher-S spin chain are actually obtained in
Ref.[11]. This implies that the topological disentangler

can be straightforwardly constructed for a class of the
VBS states. We further mention that the exact disentan-
gler is also important from the numerical-simulation view
point. For example, the global entanglement in MERA
is reduced by the layered structure of the tensor network
state, and the disentanglers are obtained as numerics af-
ter several optimization process. Then, the exact disen-
tangler is of great use to check the quality of the disen-
tangler in numerical simulations. We finally point out an
interesting connection to the MP formulation of Bethe
ansatz. In the present construction of the disentangler,
the boundary matrix Ω appears. In a recent study of the
MP Bethe ansatz, the very similar domain-wall bound-
ary matrix also appears, where the gauge transformation
like Eqs. (13) and (14) plays a crucial role.[16] The con-
struction of the disentangler for the integrable system
may be an essential future problem. We believe that the
exact disentangler develops various frontiers of quantum
many-body physics.
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