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AVERAGING SEQUENCES

FERNANDO ALCALDE CUESTA AND ANA RECHTMAN

Abstract. In the spirit of Goodman-Plante average condition for the exis-
tence of a transverse invariant measure for foliations, we give an averaging con-
dition to find tangentially smooth measures with prescribed Radon-Nikodym
cocycle. Harmonic measures are examples of tangentially smooth measures for
foliations; we also present sufficient hypothesis on the averaging condition in
order to obtain a harmonic measure.

1. Introduction

Averaging sequences for foliations were introduced in the pioneering work of J.
F. Plante [20] on the influence that the existence of transverse invariant measures
exerts on the structure of a foliation. Although only the case of sub-exponential
growth was dealt with in [20], Plante’s approach is clearly reminiscent of the classic
work of E. Følner on groups. Using the same kind of ideas, S. E. Goodman and
J. F. Plante exhibited an averaging condition which guarantees the existence of
transverse invariant measures for compact foliated spaces [10].

In this paper we formulate a more general averaging condition which gives rise to
a tangentially smooth measure for a compact foliated space (M,F) (Theorem 4.10).
This condition may be related to the η-Følner condition of [2], in the same spirit
as Følner, but using a modified Riemannian metric along the leaves. The modifi-
cation is done by replacing any complete Riemannian metric along the leaves with
the product with a certain tangentially smooth function. When this function is
harmonic, we obtain a harmonic measure.

We can use the discrete approach to study foliations, which is the equivalence
relation defined on any total transversal. Such an equivalence relation is also the
orbit equivalence relation under the holonomy pseudogroup. In fact, this is the
point of view adopted at first by S. E. Goodman and J. F. Plante in [20] and [10].
Similarly, we start by showing an averaging condition for orbit equivalence relations
R defined by finitely generated pseudogroups acting on compact spaces and con-
tinuous cocycles δ : R → R∗

+ (Theorem 3.3). Under some additional conditions, if
δ is harmonic, the measure obtained is harmonic. As in the classic case, our result
is reminiscent of Kaimanovich’s characterization of amenable equivalence relations
[13].

Given a continuous cocycle δ : R → R∗
+, the Radon-Nikodym problem is to deter-

mine the existence of probability measures which are quasi-invariant and admit δ as
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their Radon-Nikodym derivative. In the foliated setting, discrete equivalence rela-
tions and cocycles can be replaced by compact foliated spaces and modular forms.
According to Theorem 3.3, the existence of an δ-averaging sequence gives a positive
answer to the Radon-Nikodym problem. Similarly, according to Theorem 4.10 that
involves a boundedness condition, any η-averaging sequence defines a tangentially
smooth measure whose modular form is equal to η.

2. Preliminaries

2.1. Foliations and equivalence relations. A compact p-dimensional space M
admits a d-dimensional foliation F of class Cr, with 2 ≤ r ≤ ∞ or r = ω, if there
exists a cover of M by open sets Ui homeomorphic to the product of an open disc
Pi in Rd centered at the origin 0 and a locally compact separable metrizable space
Ti. Thus, if we denote the corresponding foliated chart by ϕi : Ui → Pi × Ti, each
Ui splits into plaques ϕ−1

i (Pi × {y}). Each point y ∈ Ti can also be identified with

the point ϕ−1
i (0, y) in the local transversal ϕ−1

i ({0} × Ti). In addition, the change

of charts ϕj ◦ ϕ
−1
i : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj) is given by

(2.1) ϕj ◦ ϕ
−1
i (x, y) = (ϕy

ij(x), γij(y))

where γij is an homeomorphism between open subsets of Ti and Tj and ϕy
ij is a

Cr-diffeomorphism depending continuously on y in the Cr-topology. We say that
A = {(Ui, ϕi)}i∈I is a good foliated atlas if it satisfies the following conditions:

(i) the cover U = {Ui}i∈I is locally finite, hence finite;
(ii) each open set Ui is a relatively compact subset of a foliated chart;
(iii) if Ui ∩Uj 6= ∅, there is a foliated chart containing Ui ∩ Uj , implying that each

plaque of Ui intersects at most one plaque of Uj.

Each foliated chart Ui admits a tangentially C∞-smooth Riemannian metric gi =
ϕ∗
i g0 induced from a C∞-smooth Riemannian metric g0 on Rp. If F is C∞, we can

glue together these local Riemannian metrics gi to a global one g using a tangentially
C∞-smooth partition of unity. In fact, any C1 compact foliation equipped with a
C1 foliated atlas A admits a complete Riemannian metric along the leaves because
there is a C∞ foliated atlas C1-equivalent to A. We refer to Lemma 2.6 of [1].

A discrete equivalence relationR is defined by F on the total transversal T = ⊔Ti:
the equivalence classes are the traces of the leaves on T . We can see R as the orbit
equivalence relation defined by the action of the pseudogroup Γ, called the holo-
nomy pseudogroup of F , generated by the local diffeomorphisms γij . These diffeo-

morphisms form a finite generating set, which we will denote Γ(1), which defines a
graphing of R. This means that each equivalence class R[y] is the set of vertices of a
graph, and there is an edge joining two vertices z and w if there is γ ∈ Γ(1) such that
γ(z) = w. We can define a graph metric dΓ(z, w) = min {n / ∃γ ∈ Γ(n) : g(z) = w },
where Γ(n) are the elements that can be expressed as words of a length of at
most n in terms of Γ(1). This approach makes it possible to turn R into an
étale equivalence relation since the graphs of the elements of Γ form a topology
whereby the maps ((y, γ(y)), (γ(y), γ′(γ(y))) ∈ R ∗ R 7→ (y, γ′

◦γ(y)) ∈ R and
(y, γ(y)) ∈ R 7→ (γ(y), y) ∈ R are continuous, and the left and right projections
β : (y, z) ∈ R 7→ y ∈ T and α : (y, z) ∈ R 7→ z ∈ T are local homeomorphisms. A
transverse invariant measure for F is a measure on T that is invariant under the
action of Γ. It is quite rare for a measure of this kind to exist.
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2.2. Compactly generated pseudogroups. In the last section, we obtained we
obtained a pseudogroup from a foliated atlas. Here we will recall the Haefliger equiv-
alence for pseudogroups obtained from different atlases and its metric counterpart
in the compact case [11]. For any compact foliated space (M,F) the holonomy
pseudogroup Γ is compactly generated in the sense of [11], meaning that:

(i) T contains a relatively compact open set T1 meeting all the orbits;
(ii) the reduced pseudogroup Γ|T1 (whose elements have domain and range in T1)

admits a finite generating set (called a compact generation system): each ele-
ment γ : A → B extends to an element γ of Γ whose domain contains the
closure of A.

Observe that T is covered by the domains of a family of elements of Γ with range in
T1. The union of these elements and their inverses defines the fundamental equiva-
lence between the holonomy pseudogroup Γ and the reduced pseudogroup Γ|T1 .
The notion of Haefliger equivalence is modelled by this definition:

Definition 2.1. Two pseudogroups Γ1 and Γ2 acting on the spaces T1 and T2,
respectively, are Haefliger equivalent if they are reductions (to open sets meeting
all the orbits) of a same pseudogroup Γ acting on the disjoint union T = T1 ⊔ T1.

In general, the quasi-isometric type of the orbits is not preserved by Haefliger
equivalence. However, if T1 and T2 are two relatively compact open subsets of
T meeting all the orbits of Γ, the reduced pseudogroups Γ|T1 and Γ|T2 become
Kakutani equivalent (i.e. the orbits of Γ|T1 and Γ|T2 are quasi-isometric in the
sense of Gromov) with respect to some good compact generation system [16].

In this context, any probability measure νK on the compact set K = T1 that is
preserved by the action of Γ|K extends to a unique Borel measure ν on T which is
Γ-invariant and finite on compact sets. We refer to Lemma 3.2 of [20].

2.3. Existence of transverse invariant measures. In this section we will dis-
cuss a sufficient condition for the existence of a transverse invariant measure, which
serves as motivation for Theorem 3.3. In [10], Goodman and Plante formulate:

Proposition 2.2 (Goodman-Plante [10]). Let {An} be an averaging sequence for
Γ, i.e. a sequence of finite subsets An of T such that for all γ ∈ Γ(1) (and then for
all γ ∈ Γ),

lim
n→∞

|∆γAn|

|An|
= 0

where ∆γA = A∆ γ(A) = (A \ γ(A)) ∪ (γ(A) \ A) and |A| denotes the cardinality
of A. Then {An} gives rise to a transverse invariant measure ν whose support is
contained in the limit set limn→∞ An = {y ∈ T | ∃yn ∈ An : y = limn→∞ yn}.

The idea of the proof is the following. Assuming that T is compact, we may
construct a Γ-invariant probability measure on T from the sequence of probability
measures νn defined by νn(B) = |B ∩ An|/|An| for every Borel set B ⊂ T . Accor-
ding to Riesz’s representation theorem, each measure νn can be identified to the
functional In on the space C(T ) of continuous real-valued functions on T given by

In(f) =
1

|An|

∑

y∈An

f(y).
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By passing to a subsequence, if necessary, In converges in the weak topology to a
positive functional I which determines a unique Borel regular measure ν such that
I(f) =

∫
T
fdν for every f ∈ C(T ). The averaging condition implies that I and ν

are Γ-invariant since for every γ ∈ Γ and every f ∈ C(T ) with support on the range
of γ, we have

|I(f◦γ)− I(f)| ≤ ‖f‖
∞

lim
n→∞

|∆γAn|

|An|
= 0.

Finally, it is clear that ν(T ) = 1 and supp(ν) = limn→∞ An.
In the non-compact case, for any good compact generation system, the holonomy

pseudogroup Γ is Kakutani equivalent to its reduction Γ|K to a compact total
transversalK. Then any averaging sequence An for Γ defines an averaging sequence
An ∩ K for Γ|K , and we obtain a probability measure νK on K that is invariant
under Γ|K . Now, we can extend νK to a unique Borel measure ν on T which is
Γ-invariant and finite on compact sets.

Example 2.3. Consider a graph with bounded geometry, as for example any orbit
Γ(x) of the holonomy pseudogroup of a compact foliated space. This graph is said
to be Følner if it contains a sequence of finite subsets of vertices An such that
|∂An|/|An| → 0, where ∂An denotes the boundary set with respect to the graph
structure. Since ∆γA ⊂ ∂A ∪ γ−1(∂A) for any γ ∈ Γ(1), we get that |∆γAn| ≤
2|∂An|, and we have an averaging sequence. In particular, any orbit Γ(x) having
sub-exponential growth is an example of Følner graph, in this case we have

lim inf
n→∞

|An+1 −An−1|

|An|
= 0,

where An = Γ(n)(x).

Using the one-to-one correspondence between foliated cycles and transverse in-
variant measures stablished by D. Sullivan [21], it is not difficult to show the fol-
lowing continuous version of Goodman-Plante’s result:

Proposition 2.4 (Goodman-Plante [10]). Let {Vn} be an averaging sequence for
F , i.e. a sequence of compact domains Vn (of dimension d) in the leaves such that

lim
n→∞

area(∂Vn)

vol(Vn)
= 0

where area denotes the (d − 1)-volume and vol the d-volume with respect to the
complete Riemannian metric along the leaves. Then {Vn} gives rise to a trans-
verse invariant measure ν whose support is contained in the saturated limit set
limn→∞ Vn = { p ∈ M / ∃pn ∈ Vn : p = limn→∞ pn }.

Recall that a foliated d-form α ∈ Ωd(F) is a family of differentiable d-forms over the
plaques of A depending continuously on the transverse parameter and which agree
on the intersection of each pair of foliated charts. A foliated r-cycle is a continuous
linear functional ξ : Ωd(F) → R strictly positive on strictly positive forms and null
on exact forms with respect to the leafwise exterior derivative dF . Thus, Sullivan’s
result identifies the space of transverse invariant measures with the positive cone
H+

d (F) in the d-th homology group of foliated currents. Any averaging sequence
Vn gives us the sequence of foliated currents

ξn(α) =
1

vol(Vn)

∫

Vn

α
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where α is a foliated d-form. By passing to a subsequence, if necessary, we have
a limit current ξ = limn→∞ ξn. Since the boundaries of the domains Vn vanish
asymptotically, Stokes’ theorem implies that ξ is a foliated d-cycle [21].

3. Averaging sequences in the discrete setting

The main objective of this section is to prove the existence of a harmonic measure
for an étale equivalence relation R using some kind of averaging sequence. The
equivalence relationR is given by the action of a pseudogroup Γ on a compact space
T , but all the results are still valid if we take a compactly generated pseudogroup
acting on a locally compact Polish space. The main result is proved in section 3.2.

3.1. Quasi-invariants measures. Let ν be a quasi-invariant measure on T . In-
tegrating the counting measures on the fibers of the left projection β(y, z) = y
with respect to ν gives the left counting measure dν̃(y, z) = dν(y). The same is
valid for the right projection α(y, z) = z and we get the right counting measure
dν̃−1(y, z) = dν̃(z, y) = dν(z). Then ν̃ and ν̃−1 are equivalent measures if and
only if ν is quasi-invariant, in which case the Radon-Nikodym derivative is given
by δ(y, z) = dν̃/dν̃−1(y, z). The map δ is known as the Radon-Nikodym cocycle of
(R, T, ν). We will denote | · |z the measure on R[y] given by |y|z = δ(y, z).

More generally, a cocycle with values in R∗
+ is a map δ : R → R∗

+ satisfying
δ(x, y)δ(y, z) = δ(x, z) for all (x, y), (y, z) ∈ R. As we mentioned in the introduc-
tion, given a continuous cocycle δ : R → R∗

+, the Radon-Nikodym problem is to
determine the set of probability measures ν on T which are quasi-invariant and
admit δ as their Radon-Nikodym derivative.

3.2. Discrete averaging sequences. We are interested in giving a sufficient con-
dition to solve the Radon-Nikodym problem in the discrete setting. We will state
this condition using the notion of modified averaging sequence of V. A. Kaimanovich
(see [13] and [15]):

Definition 3.1. Let δ : R → R∗
+ be a cocycle of R. Let {An} be a sequence of

finite subsets of T such that An ⊂ R[yn] for each n ∈ N. We will say that {An} is
a δ-averaging sequence for Γ if

lim
n→∞

|∆γAn|yn

|An|yn

= 0

for all γ ∈ Γ(1). An equivalence classR[y] is δ-Følner ifR[y] contains an δ-averaging
sequence {An} such that |∂An|y/|An|y → 0 as n → +∞.

Definition 3.2. Ameasure ν on T is harmonic or stationary (for the simple random
walk on R) if it satisfies any one of the following equivalent properties (see [19]):

(i) for every bounded measurable function f : T → R, we have
∫
∆f dν = 0;

(ii) D∗ν = ν;
(iii) the Radon-Nikodym cocycle δ : R → R∗

+ is harmonic, i.e. for ν-almost every
y ∈ T and every z ∈ R[y], we have

(3.1) δ(z, y) =
1

deg(z)

∑

w∼z

δ(w, y)

where w ∼ z means that w is a neighbor of z in the graph R[y] and deg(z) is the
number of neighbors of z.
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Recall that D : L∞(T, ν) → L∞(T, ν) is the Markov operator defined by

Df(y) =
1

deg(y)

∑

z∼y

f(z),

D∗ is the dual operator acting on the space of positive Borel measures on T , and
∆ : L∞(T, ν) → L∞(T, ν) is the Laplace operator defined by ∆f(y) = Df(y)−f(y).
Finally, we will use D to denote the set of discontinuities of the degree function
deg.

Theorem 3.3. Let R be the orbit equivalence relation defined by a finitely generated
pseudogroup Γ acting on a compact space T . Let δ : R → R

∗
+ be a continuous

cocycle. Any δ-averaging sequence {An} gives rise to a positive Borel measure ν
on T whose support is contained in the limit set of {An}, which is quasi-invariant
and has δ as Radon-Nikodym cocycle. Moreover, if we assume that δ is harmonic
and ν(D) = 0, then ν is a harmonic measure.

Proof. We start by constructing a sequence of probability measures νn given by
νn(B) = |B ∩ An|yn

/|An|yn
for every Borel subset B of T . By passing to a subse-

quence, the sequence νn converges in the weak topology to a positive Borel measure
ν on T . First, we will prove that ν is a quasi-invariant measure having a Radon-
Nikodym cocycle equal to δ. For every local transformation γ ∈ Γ an every function
f ∈ C(T ) with support on the range of γ, we have

∫
f(z) d(γ∗ν)(z) =

∫
f(γ(y)) dν(y) = lim

n→∞

1

|An|yn

∑

y∈An

f(γ(y))δ(y, yn)

and ∫
f(y)δ(z, y) dν(y) = lim

n→∞

1

|An|yn

∑

y∈An

f(y)δ(γ(y), y)δ(y, yn)

= lim
n→∞

1

|An|yn

∑

y∈An

f(y)δ(γ(y), yn)

where z = γ(y). Therefore

0 ≤

∣∣∣∣
∫

f(z) d(γ∗ν)(z)−

∫
f(y)δ(z, y) dν(y)

∣∣∣∣

≤ lim
n→∞

1

|An|yn

∣∣∣∣∣∣

∑

y∈An

f(γ(y))δ(y, yn)− f(y)δ(γ(y), yn)

∣∣∣∣∣∣

≤ lim
n→∞

‖f‖
∞

|∆γAn|yn

|An|yn

= 0

and thus ∫
f(z) d(γ∗ν)(z) =

∫
f(y)δ(z, y) dν(y),

proving the claim.

On the other hand, if ν(D) = 0, then
∫

∆f dν = lim
n→∞

∫
∆f dνn
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for all f ∈ C(T ). If δ is harmonic, we have

∫
∆f(y) dνn(y) =

1

|An|yn

∑

y∈An

(
1

deg(y)

∑

z∼y

f(z)− f(y)

)
δ(y, yn)

=
1

|An|yn

∑

y∈An

1

deg(y)

∑

z∼y

f(z)δ(y, yn)− f(y)

(
1

deg(y)

∑

z∼y

δ(z, yn)

)

=
1

|An|yn

∑

y∈An

1

deg(y)

∑

z∼y

f(z)δ(y, yn)− f(y)δ(z, yn)

and then

0 ≤

∣∣∣∣
∫

∆f(y) dν(y)

∣∣∣∣

≤ lim
n→∞

1

|An|yn

∣∣∣∣∣∣

∑

y∈An

∑

z∼y

f(z)δ(y, yn)− f(y)δ(z, yn)

∣∣∣∣∣∣

≤ lim
n→∞

‖f‖
∞

∑

γ∈Γ(1)

|∆γAn|yn

|An|yn

≤ lim
n→∞

2 ‖f‖
∞
|Γ(1)|

|∂An|yn

|An|yn

= 0. �

In general, the above theorem remains valid when the Laplace operator ∆ pre-
serves continuous functions. This is always true when D = ∅, as in the following
case:

Corollary 3.4. Let R be the orbit equivalence relation defined by a group of finite
type Γ acting freely on a compact space T . Let δ : R → R∗

+ be a continuous
harmonic cocycle. Any δ-averaging sequence {An} gives rise to a harmonic measure
ν on T supported by the limit set of {An}.

Arguing as in the invariant case, we can extend Theorem 3.3 to any compactly
generated pseudogroup Γ acting on a locally compact Polish space T . Moreover, in
the 0-dimensional case, the degree function is again continuous. This applies in par-
ticular to solenoids [3] and foliated spaces defined by repetitive graphs (introduced
in [8] and studied in [1], [4] and [17]):

Corollary 3.5. Let R be the orbit equivalence relation defined by compactly gen-
erated pseudogroup Γ acting on a locally compact separable 0-dimensional space T .
Let δ : R → R∗

+ be a continuous harmonic cocycle. Any δ-averaging sequence {An}
gives rise to a harmonic measure ν on T supported by the limit set of {An}.

4. Averaging sequences in the continuous setting

We are interested in stating the previous results in the continuous setting, namely
for a foliated space (M,F). Instead of working with quasi-invariant measures, we
are going to use tangentially smooth measures. These were introduced in [2] and
form a larger class than harmonic measures. As previously mentioned, transverse
invariant measures for foliations are rather rare, but harmonic measures always
exist. Harmonic measures were introduced by L. Garnett in [7].
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4.1. Tangentially smooth measures. Consider now a regular Borel measure µ
onM . Using a Cr foliated atlasA, we can give a local decomposition µ =

∫
λy
i dνi(y)

on each foliated chart Ui, where λy
i is a measure on the plaque ϕ−1

i (Pi × {y}) and
νi a measure on Ti. Assume that F is a Cr-foliation.

Definition 4.1 ([2]). A measure µ on M is tangentially smooth if for every i ∈ I
and νi-almost every y ∈ Ti, the measures λy

i are absolutely continuous with respect
to the Riemannian volume dvol restricted to the plaque passing through y, and the
density functions hi(x, y) = dλy

i /dvol(x, y) are smooth functions of class Cr−1 on
the plaques.

Observe that the local decomposition of µ is not necessarily unique. Let µ|Ui
=∫

λy
i dνi(y) =

∫
λ̄y
i dν̄i(y) be two decompositions. Then we obtain

∫

Ti

∫

Pi×{y}

hi(x, y) dvol(x, y) dνi(y) =

∫

Ti

∫

Pi×{y}

h̄i(x, y) dvol(x, y) dν̄i(y),

and we can consider the Radon-Nikodym derivative δi(y) = dνi/dν̄i(y) such that
h̄i(x, y) = δi(y)hi(x, y). This situation arises naturally in the intersection of two fo-
liated charts Ui and Uj . Indeed, if Ui∩Uj 6= ∅, we have that µ|Ui∩Uj

=
∫
λy
i dνi(y) =∫

λy
jdνj(y). Thus, as before, we deduce that

(4.1) δij(y) = dνi/d((γji)∗νj)(y) =
hj(ϕ

y
ij(x), γij(y))

hi(x, y)
.

Then the functions hi verify that log hj − log hi = log δij on Ui ∩ Uj . Since δij
is a function on Ti, we have that dF log hi = dF log hj . Then η = dF log hi is a
well-defined foliated 1-form of class Cr−2 along the leaves, which makes it possible
to estimate the transverse measure distortion under the holonomy.

Definition 4.2. The foliated 1-form η is the modular form of µ.

Since the functions hi coincide on the intersections of the plaques modulo multipli-
cation by a constant, they define a primitive of the induced 1-form on the holonomy
covering of each leaf L. If F has no essential holonomy, the functions log hi can be
glued together to obtain a measurable primitive log h of η.

According to [7], any harmonic measure is an example of tangentially smooth
measure since the densities hi are positive harmonic functions of class Cr−1 on the
plaques. In particular, any transverse invariant measure combined with the Rie-
mannian volume on the leaves gives a harmonic measure which is called completely
invariant. A harmonic measure µ is completely invariant if and only if η = 0 (we
refer to corollary 5.5 of A. Candel’s paper [5]).

4.2. Modular form associated with a cocycle. We have just associated a 1-
foliated form to any tangentially smooth measure. Since our objective is to cons-
truct a measure for (M,F) starting with a continuous cocycle and an averaging
sequence, we will now describe the construction of a continuous modular form
η ∈ Ω1(F) associated with any continuous cocycle δ : R → R∗

+. We will start by
considering the tangentially Cr-smooth continuous functions cki : Ui∩Uk → R given
by cki(ϕ

−1
k (x, y)) = log δki(y) where δki(y) = δ(y, γki(y)) for all (x, y) ∈ Pk × Tk.

By choosing a tangentially Cr-smooth partition of unity {ρi}mi=1 subordinated to
the foliated atlas A, we can glue the functions cki obtaining tangentially Cr-smooth
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continuous functions ci : Ui → R given by ci =
∑m

k=1 ρkcki. The cocycle condition
implies that cij = ckj − cki, so that

cj − ci =

m∑

k=1

ρkckj −
m∑

k=1

ρkcki =

(
m∑

k=1

ρk

)
cij = cij .

Hence, for each i = 1, . . . ,m we can define a tangentially Cr−1-smooth continuous
foliated 1-form ηi =

∑m
k=1(dFρk) cki on Ui. Each local 1-form ηi is exact

ηi =

m∑

k=1

(dFρk) cki = dFci = dF log hi

where hi = eci : Ui → R∗
+ is a continuous function of class Cr along the leaves.

Proposition 4.3. There is a well-defined continuous foliated 1-form η ∈ Ω1(F),
that will be called the modular form of δ, such that η|Ui

= ηi.

Proof. For each pair i, j ∈ {1, . . . ,m}, we have that:

ηj − ηi =

m∑

k=1

(dFρk) ckj −
m∑

k=1

(dFρk) cki =

(
m∑

k=1

dFρk

)
cij = 0

on Ui ∩ Uj . Then the 1-form η is well defined and continuous. �

Remark 4.4. The modular form η of a continuous cocycle δ admits a continuous
primitive log h on the residual set of leaves without holonomy. In general, by passing
to the holonomy covers of the leaves, we may find a global continuous primitive on
the holonomy groupoid Hol(F), see [2].

4.3. Modular form of a harmonic measure. In the case when µ is a harmonic
measure (and assuming that M is compact), we know from the Ph.D. thesis of B.
Deroin [6] (see Lemma 4.19 on page 116) that the modular form η is bounded. Let
us look at the proof in order to specify properties of the primitive log h and the
cocycle δ. Let A = {(Ui, φi)}i∈I be a good Cr foliated atlas of (M,F), and hi the
local density functions of µ. Assume that A is a refinement of a good atlas A′ =
{(U ′

i , φ
′
i)}i∈I , and h′

i are the corresponding local densities. Thus, every plaque of Ui

is relatively compact in a plaque of U ′
i . In fact, using a vertical reparameterization,

we can suppose that φ−1
i (Pi×{y}) ⊂ (φ′

i)
−1(P ′

i×{y}) for every y ∈ Ti. There exists

a relatively compact open set V ⊂ P ′
i such that φ−1

i (Pi × {y}) ⊂ (φ′
i)

−1(V × {y})
for every y ∈ Ti. Since hi is harmonic, the Harnack inequality implies the existence
of a constant Ci > 0 such that

(4.2)
1

Ci
hi(x0, y) ≤ hi(x, y) ≤ Cihi(x0, y),

for all x, x0 ∈ Pi and for all y ∈ Ti. Since the atlases A and A′ are finite, we have
the following result:

Proposition 4.5. If µ is a harmonic measure, then η is a bounded foliated 1-form
having a measurable uniformly tangentially Lipschitz primitive log h. �

In fact, if we replace the plaques φ−1
i (Pi × {y}) by disjoint disks Ey around the

points φ−1
i (0, y) and if we denote the plaques (φ′

i)
−1(V × {y}) as Vy , then the axis

T of A is ∗-recurrent in the sense of [18], see also [12]. For each point p ∈ M , let
Lp be the leaf of F passing through p. According to Theorem 5 of [18], there is an
assignment of a probability measure πp on Lp ∩ T satisfying:
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(i) πp(q) > 0 for each point q ∈ Lp ∩ T ;
(ii) f(p) =

∑
q∈Lp∩T πp(q)f(q) for each bounded harmonic function f on Lp.

If both p and q belong to the geometric realization of T , and and as a result they
are identified with two points y and z of T , we obtain a random walk on R with
transition probabilities π(y, z) = πp(q) for all (y, z) ∈ R. Thus, the Radon-Nikodym
cocycle δ(y, z) = δ(y, γij(y)) = δij(y) given by (4.1) has the following property:

Proposition 4.6. If µ is a harmonic measure, then the Radon-Nikodym cocycle is
π-harmonic, i.e. δ(z, y) =

∑
w∈R[y] π(z, w)δ(w, y) for ν-almost every point y ∈ T

and every z ∈ R[y]. �

Reciprocally, if we choose V in such way that the sets Vy are pairwise disjoint,
then Theorem 1 of [12] tells us that the modular form of a π-harmonic cocycle has
a primitive log h with h harmonic. Thus, by replacing the simple random walk
with the random walk whose transition kernel is π, the discrete and continuous
approaches become equivalent from the point of view of harmonicity:

Proposition 4.7. A tangentially smooth measure µ is harmonic if and only if the
measure ν (well defined up to equivalence) is π-harmonic. �

4.4. Continuous averaging sequences. In the present setting, we can reformu-
late the Radon-Nikodym problem as the problem of determining tangentially smooth
measures µ on M which admit η as their modular form. The aim of this section
is to establish Theorem 3.3 for foliations. First, we need a continuous analogue of
Definition 3.1. Consider a d-dimensional foliation F of class Cr on a compact space
M , endowed with a tangentially Cr-smooth Riemannian metric g, and a continuous
cocycle δ : R → R∗

+. The modular form η admits a continuous tangentially Cr-
smooth primitive log h on the residual set of leaves without holonomy. In restriction
to each leaf without holonomy Ly passing through y ∈ T , we can multiply g by the
normalized density function h/h(y) in order to obtain a modified metric (h/h(y))g.

Definition 4.8. Let {Vn} be a sequence of compact domains with boundary con-
tained in a sequence of leaves without holonomy Lyn

. We will say that {Vn} is a
η-averaging sequence for F if

lim
n→∞

areaη(∂Vn)

volη(Vn)
= 0

where areaη denotes the (d − 1)-volume and volη the d-volume with respect to
the modified metric along Lyn

. A leaf Ly is η-Følner if it contains an η-averaging
sequence {Vn} such that areaη(∂Vn)/volη(Vn) → 0 as n → +∞.

Remarks 4.9. (i) The isoperimetric ratio areaη(∂Vn)/volη(Vn) does not depend
on the choice of y and h in the second definition. This justifies the notation, which
is slightly different from that used in [2].
(ii) When µ is a completely invariant harmonic measure, the normalized density
function is equal to 1 and thus the modified volume and the Riemannian volume
coincide. Hence, we recover the common definition of averaging sequence.
(iii) In general, for harmonic measures, Harnack’s inequalities (4.2) imply that the
modified volume of the plaques and the modified area of their boundaries remain
uniformly bounded. Repeating the same argument as in the classical case, we have
that the leaf Ly is η-Følner if and only if the graph R[y] is δ-Følner.
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Theorem 4.10. Let (M,F) be a compact foliated space of class Cr, 2 ≤ r ≤ ∞
or r = ω, and let R be the equivalence relation induced by F on a total transversal
T . Consider a continuous cocycle δ : R → R∗

+, and let η be the modular form of δ.
Assume that F admits a foliated atlas such that the modified volume of the plaques
is bounded. Any η-averaging sequence {Vn} for F gives rise to a tangentially smooth
measure µ whose support is contained in the limit set of {Vn} and whose modular
form is equal to η. In particular, if we assume that η has a primitive log h such
that h is harmonic, then µ is a harmonic measure.

Proof. As in the discrete case, we will start by constructing a sequence of foliated
d-currents

ξn(α) =
1

volη(Vn)

∫

Vn

h

h(yn)
α,

where α is a foliated d-form. By passing to a subsequence, the sequence ξn converges
to a foliated d-current ξ. Let µ be the measure on M associated with the current
ξ. For every function f ∈ C(T ), we have

∫
f dµ = ξ(fω) where ω = dvol is the

volume form along the leaves.

Now, we will prove that µ is a tangentially smooth measure with modular form
η. Consider a good Cr foliated atlas A = {(Ui, φi)}i∈I obtained by refinement
from a given good atlas, and whose plaques have bounded modified volume. Since
the modified volume of the plaques of A and the modified area of their boundaries
remain bounded, the traces An = Vn∩T of the domains Vn on the total transversal
T form a δ-averaging sequence. In fact, since Vn is covered by the plaques Py of A
centered at the points y of An, we have that:

volη(Vn) =

∫

Vn

ωη ≤
∑

y∈An

∫

Py

ωη =
∑

y∈An

(∫

Py

h(x, y)

h(0, y)
dvol(x, y)

)
δ(y, yn)

where ωη is the modified volume form along the leaves and h(x, y) denotes the
density function restricted to a foliated chart Uy containing the plaque Py. Then
there is a constant C > 0 such that volη(Vn) ≤ C|An|yn

Actually, we can choose
C > 0 such that 1

C ≤ volη(Vn)/|An|yn
≤ C. Thus, by passing to a subsequence,

we may assume that the ratio volη(Vn)/|An|yn
converges to a constant c > 0.

Now, as stated in the proof of Theorem 3.3, we may also assume that the sequence
of measures νn(B) = |B ∩ An|yn

/|An|yn
converge to a quasi-invariant measure ν

on T whose Radon-Nikodym derivative is equal to δ. Combined with the modified
Riemannian volume along the leaves, this transverse measure gives us a tangentially
smooth measure µ′ on M . Thus, for every function f ∈ C(M) with support in Ui,
we have ∫

f dµ′ =

∫

Ti

∫

Pi×{y}

f(x, y)
hi(x, y)

hi(0, y)
dvol(x, y) dν(y).

Then
∫

f dµ′ = lim
n→+∞

1

|An|yn

∑

y∈Vn∩Ti

(∫

Pi×{y}

f(x, y)
hi(x, y)

hi(0, y)
dvol(x, y)

)
δ(y, yn)

= lim
n→+∞

1

|An|yn

∑

y∈Vn∩Ti

∫

Pi×{y}

f ωη.(4.3)
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On the other hand, by definition, we have
∫

f dµ = ξ(fω) = lim
n→+∞

1

volη(Vn)

∫

Vn

fωη

= lim
n→+∞

1

volη(Vn)

∑

y∈Vn∩Ti

∫

Pi×{y}

f ωη(4.4)

Comparing identities (4.3) and (4.4), we deduce that µ = 1
c µ

′ is a tangentially
smooth measure with Radon-Nikodym cocycle δ.

To conclude, we will prove that µ is harmonic when h is harmonic. Recall that
according to Theorem 1 of [12], see also Proposition 4.7, this is always the case when
δ is π-harmonic. We will start by denoting hn = h/h(yn) as the normalized density
function on the leaf Lyn

. Since the Laplace operator ∆F preserves continuous
functions, we have that

∫
∆Ff dµ = lim

n→∞

1

volh(Vn)

∫

Vn

(∆Ff)hn ω,

for all f ∈ C(T ). Green’s formula implies that
∫

Vn

(∆Ff)hn ω =

∫

Vn

((∆Ff)hn − f (∆Fhn)ω =

∫

∂Vn

hn igrad(f)ω − f igrad(hn)ω.

Since hn is harmonic, we have
∫

∂Vn

ιgrad(hn)ω =

∫

Vn

div(grad(hn))ω =

∫

Vn

(∆Fhn)ω = 0

and then

0 ≤

∣∣∣∣
∫

∂Vn

fιgrad(hn)ω

∣∣∣∣ ≤ ‖f‖
∞

∫

∂Vn

ιgrad(hn)ω = 0

for all n ∈ N. On the other hand, since f is bounded, there exists a constant k > 0
depending only on f such that we have

0 ≤

∣∣∣∣
1

volh(Vn)

∫

∂Vn

hn ιgrad(f)ω

∣∣∣∣ ≤ lim
n→∞

k
areaη(∂Vn)

volη(Vn)
= 0

and therefore ∫
∆Ff dµ = lim

n→∞

1

volh(Vn)

∫

Vn

(∆Ff)hn ω = 0. �

According to Remark 4.4, the notion of η-Følner remains valid for the holonomy
covers of the leaves of F . Thus, it suffices to replace F with the lifted foliation in
the holonomy groupoid Hol(F) in order to globalize the previous result.

5. Examples

5.1. Discrete averaging sequences for amenable non Følner actions. There
are amenable actions of non amenable discrete groups whose orbits contain ave-
raging sequences [15]. For example, let ∂Γ be the space of ends of the free group
Γ with two generators γ1 and γ2 whose elements are infinite words x = γ1γ2 . . .
with letters γn in Φ = {γ±1

1 , γ±1
2 }. If ν denotes the equidistributed probability

measure on ∂Γ (such that all cylinders consisting of infinite words with fixed first
n letters have the same measure), then Γ acts essentially freely on ∂Γ by sending
each generator γ and each infinite word x = γ1γ2 . . . to γ.x = γγ1γ2 . . . . Since
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this action is amenable, according to Theorem 2 of [13] (see also Proposition 4.1 of
[2]), we know that ν-almost every orbit is δ-Følner (where δ is the Radon-Nikodym
derivative of ν). We will recall here an explicit construction by V. A. Kaimanovich
in [15].

For each x ∈ ∂Γ, let bx : Γ → R be the Busemann function defined by

bx(γ) = limn→+∞

(
dΓ(γ, x[n])− dΓ(1, x[n])

)

where dΓ is the Cayley graph metric, x[n] is the word consisting of first n letters of
x and 1 is the identity element. The level sets Hk(x) = { γ ∈ Γ / bx(γ) = k } are
the horospheres centered at x. The Radon-Nikodym derivative of ν is given by

δ(γ−1.x, x) =
dγ.ν

dν
(x) = 3−bx(γ)

where γ.ν is the translation of ν by γ. Since | · |x = δ(·, x) is a harmonic measure
on Γ.x, ν is also a harmonic measure. In fact, as stated in Theorem 17.4 of [14], ν
is the unique harmonic probability measure on ∂Γ.

Let Ax
n be the set of all points γ−1.x in Γ.x such that 0 ≤ bx(γ) = dΓ(1, γ) ≤ n.

Since |Ax
n ∩ Hk(x)|x =

∑
bx(γ)=dΓ(1,γ)=k δ(γ

−1.x, x) = 3k 1
3k

= 1 for all 0 ≤ k ≤ n,

we have that |An|x = n + 1. But ∂Ax
n = {1} ∪ (Ax

n ∩ Hn(x)) and so |∂Ax
n|x = 2.

The δ-averaging sequence {Ax
n} defines a harmonic measure (which is equal to ν

up to multiplication by a constant).

5.2. Averaging sequences for hyperbolic surfaces. The geodesic and horocy-
cle flows are classical examples of flows on the unitary tangent bundle of a compact
hyperbolic surface. They are given by the right actions of the diagonal subgroup

D =

{ (
et/2 0

0 e−t/2

)∣∣∣ t ∈ R

}

and the unipotent subgroup

H+ =

{ (
1 s
0 1

) ∣∣∣ s ∈ R

}

of G = PSL(2,R) on the quotient Γ\G by the left action of a uniform lattice Γ.
If H denotes the hyperbolic plane, we can identify Γ\G with the unitary tangent
bundle of the compact hyperbolic surface Γ\H. The right action of the normalizer
A of H+ in PSL(2,R) defines a foliation F by Riemann surfaces on Γ\G. Since
A is an amenable group, F is an amenable non Følner foliation. Moreover, there
is an invariant measure µ on Γ\G. In [7], L. Garnett proved that µ is a harmonic
measure by describing its density function on a foliated chart.

We can identify G/A with the boundary ∂H by sending each coset of A in G to
the center of the horocycle defined by the corresponding coset of H+ in G. For each
point z ∈ ∂H, there is a unique probability measure νz on ∂H which is invariant
by the action of all isometries of H fixing z. This measure is the image of the
normalized Lebesgue measure on the circle of the tangent plane at z under the
exponential map, and is called the visual measure at z. According to Proposition 2
of [7], the normalized density function is given by dνz/dνz0(x) where z, z0 ∈ H and
x ∈ ∂H. In particular, for x = ∞, we have that

dνz
dνz0

(∞) =
y

y0
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where z = x+iy and z0 = x0+iy0. In the leaf passing through x = ∞, the sequence
V∞
n = { z ∈ H | −1 ≤ x ≤ 1 , e−n ≤ y ≤ 1 } becomes a η-averaging sequence (where

η is the modular form of µ). Indeed, on the one hand, we have that

areaη(V
∞
n ) =

∫

V ∞

n

dνz
dνi

(∞) dvol(z) =

∫

V ∞

n

y
dx ∧ dy

y2
=

∫ 1

1

dx

∫ 1

e−n

dy

y
= 2n.

On the other hand, the modified length of a smooth curve σ(t) = x(t)+ iy(t) (with

0 ≤ t ≤ l) is given by lengthη(σ) =
∫ l

0

√
x′(t)2 + y′(t)2dt, and so we have that

lengthη(∂V
∞
n ) = 2(2 + (1− en)) ≤ 6.

As before, this η-averaging sequence defines a harmonic measure (which is equal to
µ up to multiplication by a constant). In fact, all leaves are η-Følner since for each
point x ∈ ∂H obtained as the image of ∞ under g ∈ G, the sets V x

n = g(V∞
n ) form

a η-averaging sequence in the leaf passing through x.

5.3. Averaging sequences for torus bundles over the circle. To conclude,
we will present other examples of foliations on homogeneous spaces studied by
É. Ghys and V. Sergiescu in [9]. Each matrix A ∈ SL(2,Z) with |tr(A)| > 2
defines a natural representation ϕ : Z → Aut(Z2) which extends to a representation
Φ : R → Aut(R2) given by Φ(t) = At. If λ > 1 and λ−1 < 1 are the eigenvalues of
A, then Φ is conjugated to the representation Φ0 given by

Φ0(t) =

(
λt 0
0 λ−t

)
.

Let T 3
A be the homogeneous space obtained as the quotient of the Lie group G =

R2⋊ΦR with group law (x, y, t).(x′, y′, t′) = ((x, y)+At(x′, y′), t+t′) by the uniform
lattice Γ = Z2⋊ϕZ with a similar law. Observe that G is isomorphic to the solvable
group Sol3 = R2⋊Φ0R with group law (x, y, t).(x′, y′, t′) = (x+λtx′, y+λ−ty′, t+t′)
(where x and y are the first and second coordinate with respect to the eigenbasis)
and T 3

A is diffeomorphic to the quotient of Sol3 by a uniform lattice Γ0. The right
action of the image A of the monomorphism

(a, b) ∈ R⋉ R
∗ 7→

(
a, 0,

log b

logλ

)
∈ Sol3

defines a foliation F on T 3
A. The Lebesgue measure on T 3

A defined by the volume
form Ω = dx ∧ dy ∧ dt is a tangentially smooth measure. Since the Riemannian
volume along the right orbits is given by

da ∧ db

b2
= (logλ)λ−tdx ∧ dt

the density function is equal to λt

log λ . In the orbit of the identity element, the

sequence Vn = { (a, b) ∈ A/ − 1 ≤ a ≤ 1 , e−n log λ ≤ b ≤ 1 } becomes a η-averaging
sequence (where η is the modular form of µ). Indeed, on one hand, we have that

areaη(Vn) =

∫

Vn

1

logλ
λt(log λ)λ−tdx ∧ dt =

∫ 1

1

dx

∫ 0

−n

dt = 2n.

On the other hand, the modified length of a smooth curve σ(t) = (a(t), b(t) (with

0 ≤ t ≤ L) is given by lengthη(σ) =
∫ L

0

√
a′(t)2 + b′(t)2dt, and so we have that

lengthη(∂Vn) = 2(2 + (1− en log λ)) ≤ 6.
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By replacing the orbit corresponding to y = 0 with another orbit, it is easy to
see that all leaves are η-Følner. As in the previous example, all η-averaging se-
quences define (up to multiplication by a constant) the same harmonic measure:
the Lebesgue measure.
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de Ghys-Kenyon. Astérisque, 323 (2009), 1–16.

[2] F. Alcalde Cuesta, A. Rechtman. Minimal Følner foliations are amenable. Preprint, 2010.
[3] R. Benedetti, J.-M. Gambaudo. On the dynamics of G-solenoids. Applications to Delone sets.

Ergodic Theory Dynam. Systems, 23 (2003), 673–691.
[4] E. Blanc. Propriétés génériques des laminations. Thèse Université Claude Bernard de Lyon,
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