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A Dilution Test for the Convergence of
Subseries of a Monotone Series

Lasse Leskelä and Mikko Stenlund

1. INTRODUCTION. Cauchy’s condensation test allows to determine the convergence of
a monotone series by looking at a weighted subseries that only involves terms of the original
series indexed by the powers of two. It is natural to ask whether the converse is also true:Is
it possible to determine the convergence of an arbitrary subseries

∑
k≥1

as(k) = as(1)+as(2)+as(3)+ · · ·

of a monotone series∑n≥1an by looking at a suitably weighted version of the original series?
In this note we show that the answer is affirmative and introduce a new convergence test
particularly designed for this purpose.

2. CAUCHY’S AND SCHLÖMILCH’S CONDENSATION TESTS. Consider a series
which is monotone in the sense that its terms satisfya1≥a2≥ ·· ·≥0. Cauchy’s condensation
test (e.g. [3, Theorem 2.3]) states that a monotone series∑n≥1an converges if and only if

∑
k≥0

2ka2k = a1+2a2+4a4+16a16+ · · ·

converges, thereby allowing to determine the convergence of a monotone series by only look-
ing at its terms indexed by the powers of two. Schlömilch’s extension (e.g. [3, Theorem 2.4])
allows to replace the powers of two by a more general subsequences(1)< s(2)< s(3)< · · ·
of the positive integers, assuming that the forward differences

∆s(k) = s(k+1)−s(k) (1)

do not grow too fast.

Theorem 1(Schlömilch). For any monotone series∑n≥1an and subsequence of the integers
such that for some c> 0,

∆s(k+1)
∆s(k)

≤ c for all k≥ 1, (2)

the series∑n≥1an converges if and only if∑k≥1 as(k)∆s(k) converges.

Cauchy’s condensation test can be recovered as a special case of Theorem 1 by substi-
tuting s(k) = 2k−1. We will next present a short proof of Schlömilch’s result tohighlight its
structural similarity to our new test given in Section 3.
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Proof of Theorem 1.Because the terms of∑n≥1an are nonincreasing, we see that

as(k+1)∆s(k) ≤ as(k)+ · · ·+as(k+1)−1 ≤ as(k)∆s(k) (3)

for all k≥ 1. Inequalities (3) combined with assumption (2) imply that

c−1as(k+1)∆s(k+1) ≤ as(k)+ · · ·+as(k+1)−1 ≤ as(k)∆s(k).

By summing the above display overk we now find that

c−1 ∑
k≥2

as(k)∆s(k) ≤ ∑
n≥s(1)

an ≤ ∑
k≥1

as(k)∆s(k),

so that all three series above either converge or diverge together.

3. DILUTION TEST. Cauchy’s and Schlömilch’s condensation tests are designedfor de-
termining the convergence of a monotone series by looking ata weighted subseries of the
original series. We will now reverse this line of thought andprove a converse to these re-
sults, which allows to determine the convergence of a subseries of a monotone series using
a weighted version of the original series. Suitable weightscan be defined in terms of the
forward differences (1) and the counting function

S(n) = #{k : s(k)≤ n}

of a sequences(1) < s(2) < · · · . It is interesting to note that the growth condition of the
forward differences in Theorem 1 is not needed below. The weights∆s(S(n)) in Theorem 2
measure the distance between points of the subsequence nearest ton; see Figure 1.
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Figure 1: The weight∆s(S(n)).

Theorem 2. For any monotone series∑n≥1an and any infinite subsequence of the integers,
the subseries∑k≥1as(k) converges if and only if

∑
n≥s(1)

an

∆s(S(n))
< ∞. (4)
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Proof. The monotonicity of the series implies the validity of (3). After dividing the terms
in (3) by ∆s(k), we find that

as(k+1) ≤
as(k)

∆s(k)
+ · · ·+

as(k+1)−1

∆s(k)
≤ as(k). (5)

BecauseS(n) indexes the last member of the sequences(1) < s(2) < · · · not exceedingn,
it follows thatS(n) = k for all n such thats(k) ≤ n≤ s(k+1)−1. This is why (5) may be
rephrased as

as(k+1) ≤
s(k+1)−1

∑
n=s(k)

an

∆s(S(n))
≤ as(k).

After summing the above display overk, we find that

∑
k≥2

as(k) ≤ ∑
n≥s(1)

an

∆s(S(n))
≤ ∑

k≥1
as(k),

which shows that all series above either converge or divergetogether.

4. THINNING OUT A DIVERGENT SERIES INTO A CONVERGENT ONE. Given
a divergent monotone series∑n≥1an, one may ask whether it can be made convergent by
deleting some of its terms. If limn→∞ an>0, this is obviously not possible, while if limn→∞ an=
0 this can always be done by selecting terms of the series along a sparse enough subsequence.
Indeed, in this case the series may even be thinned out to sum to an arbitrary positive real
number (Banerjee and Lahiri [1]).

For a divergent monotone series∑n≥1an such thatan → 0, a more specific question is to
quantify a sufficient degree or sparsity required for the thinning subsequence. The following
corollary of the dilution test presents a sufficient condition.

Theorem 3. Consider a monotone divergent series∑n≥1an such that∑n≥1ap
n converges for

some p> 1. A sufficient condition for the convergence of the subseries∑k≥1as(k) is that

∑
k≥1

s(k)−1/p < ∞. (6)

Proof. Observe that the series (4) in Theorem 2 can be written as∑k≥1Ak, where

Ak =
1

∆s(k)

s(k+1)−1

∑
n=s(k)

an

is the average of the termsas(k), . . . ,as(k+1)−1. Because all these terms are less than or equal
to the termsa1, . . . ,as(k), we see thatAk is bounded from above by the average

Bk =
1

s(k)

s(k)

∑
n=1

an.
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Jensen’s inequality implies that

Bp
k ≤

1
s(k)

s(k)

∑
n=1

ap
n ≤

1
s(k)

∞

∑
n=1

ap
n,

so that

∑
n≥s(1)

an

∆s(S(n))
= ∑

k≥1
Ak ≤ ∑

k≥1
Bk ≤

(

∞

∑
n=1

ap
n

)1/p

∑
k≥1

s(k)−1/p.

The now claim follows as a consequence of Theorem 2.

5. SPARSE SUBSERIES OF THE HARMONIC SERIES. The harmonic series∑n≥1
1
n

is probably the best-known example of a divergent series; see [3, Section 3] for a lively
discussion. Kempner has shown [4] that, rather surprisingly, we obtain a convergent series by
deleting from the harmonic series all terms whose decimal representation contains the digit
‘9’. Kempner’s curious series has afterwards attracted lots of interest, with several articles
generalizing and sharpening the basic result; see for example Schmelzer and Baillie [6] and
references therein.

The following corollary of Theorem 3 shows that the harmonicseries converges over
any polynomially sparse subsequence. A subsequence of the integers is calledpolynomially
sparseif its density among the firstn positive integers decreases fast enough asn grows,
according to

S(n)/n≤ cn−α (7)

for somec> 0 andα ∈ (0,1). A simple counting argument (e.g. Behforooz [2]) may be used
to verify that Kempner’s no-‘9’ fulfills (7) withc= 10 andα = 1− log9

log10.

Theorem 4. The harmonic series converges over any polynomially sparsesubsequence.

Proof. Fix an integerk ≥ 1, and letc andα be such that (7) holds for alln. The definition
of the counting function implies thats(k)≥ n+1 for all integersn such thatS(n)< k, and in
particular for all integersn such thatn< (k/c)β , whereβ = 1/(1−α). By letting n be the
largest integer strictly less than(k/c)β , we see thats(k) ≥ (k/c)β . Therefore, condition (6)
of Theorem 3 is valid for anyp ∈ (1,β ). The claim now follows by Theorem 3, because
the series∑n≥1n−p converges for allp> 1 (this well-known fact is usually proved by using
Cauchy’s condensation test).

Theorem 4 may also be proved as a consequence of a stronger result specialized to the
harmonic series (Powell and Šalát [5]): The harmonic seriesover a subsequence converges if
and only if the counting function of the subsequence satisfies ∑n≥1S(n)/n2 < ∞.
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6. CONCLUDING REMARK. Many nonmonotone series∑n≥1an encountered in appli-
cations admit a monotone majorant series∑n≥1bn. In this case, the dilution test can be applied
to subseries of the majorant series; if∑k≥1bs(k) converges, then so does the corresponding
subseries∑k≥1as(k) of the original nonmonotone series.
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