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A Dilution Test for the Convergence of
Subseries of a Monotone Series
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1. INTRODUCTION. Cauchy’s condensation test allows to determine the coeveryof
a monotone series by looking at a weighted subseries thaimrdlves terms of the original
series indexed by the powers of two. It is natural to ask wdrettie converse is also truks
it possible to determine the convergence of an arbitraryssuies

2 Bs(k) = as(1) +ay2) +aa) T

K>1
of a monotone seri€s,- 1 an by looking at a suitably weighted version of the originalies?
In this note we show that the answer is affirmative and intceda new convergence test
particularly designed for this purpose.

2. CAUCHY’S AND SCHLOMILCH’S CONDENSATION TESTS.  Consider a series
which is monotone in the sense that its terms satigfy a, > - -- > 0. Cauchy’s condensation
test (e.g.[[8, Theorem 2.3]) states that a monotone sgesga, converges if and only if

Z 2ka2k =a1+2ax+4a4+ 1616+ - -
k>0

converges, thereby allowing to determine the convergehaemnotone series by only look-
ing at its terms indexed by the powers of two. Schlémilch¥asion (e.g.[3, Theorem 2.4])
allows to replace the powers of two by a more general subsegsgl) < s(2) < s(3) < ---

of the positive integers, assuming that the forward difiess

As(k) = s(k+1) —s(k) (1)
do not grow too fast.

Theorem 1(Schlémilch) For any monotone seri€g,~1 an and subsequence of the integers

such that for some & 0,
As(k+1)

As(K)
the series} -1 a, converges if and only if .~ 1 a5 As(k) converges.

<c forallk>1, (2)

Cauchy’s condensation test can be recovered as a speaabt@teoreni Il by substi-
tuting s(k) = 2¢-1. We will next present a short proof of Schiémilch’s resulhighlight its
structural similarity to our new test given in Section 3.
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Proof of Theorerh]1Because the terms §f,; a, are nonincreasing, we see that

A+ )As(K) < agp) + - Fagrrn -1 < agrAs(k) 3)

for all k > 1. Inequalities[(B) combined with assumptidh (2) imply that

¢ tagupAs(k+1) < agu + - +askin -1 < agrAs(K).

By summing the above display oviewve now find that

chtY agldsk) < Y an < Y aghs(k),
k>2 n>s(1) k>1

so that all three series above either converge or divergsheg O

3. DILUTION TEST. Cauchy’s and Schlémilch’s condensation tests are desifpmetb-
termining the convergence of a monotone series by lookirgywaeighted subseries of the
original series. We will now reverse this line of thought gardve a converse to these re-
sults, which allows to determine the convergence of a sidssef a monotone series using
a weighted version of the original series. Suitable weiglats be defined in terms of the
forward differenced (1) and the counting function

S(n) = #{k: s(k) <n}
of a sequenceg(l) < s(2) < ---. It is interesting to note that the growth condition of the

forward differences in Theoreni 1 is not needed below. ThgkisAs(S(n)) in Theoreni 2
measure the distance between points of the subsequenesttear see Figuréll.

As(S(n))

Figure 1: The weighfs(S(n)).

Theorem 2. For any monotone seri€g,~1 a, and any infinite subsequence of the integers,
the subserie§ -1 as) converges if and only if

an
AS(S) )

n>s(1)



Proof. The monotonicity of the series implies the validity bf (3)ftéx dividing the terms
in (3) by As(k), we find that

As(k) As(k+1)-1
ag < L =S <Ay,
(k1) = As(k) Ask) — (k) ®)

BecauseS(n) indexes the last member of the sequesd < s(2) < --- not exceeding,
it follows that S(n) = k for all n such thats(k) < n < s(k+ 1) — 1. This is why [5) may be
rephrased as

s(k+1)-1 an

Hen = 2 Bssm) <

After summing the above display overwe find that

agk) < < ) agk
kZZ Y n>§ (S(n k>1

which shows that all series above either converge or divieigether. 0

4. THINNING OUT A DIVERGENT SERIES INTO A CONVERGENT ONE.  Given
a divergent monotone serig$,~, a,, one may ask whether it can be made convergent by
deleting some of its terms. If lim, a, > 0, this is obviously not possible, while if lim,., a, =
0 this can always be done by selecting terms of the serieg alsparse enough subsequence.
Indeed, in this case the series may even be thinned out tosam arbitrary positive real
number (Banerjee and Lahiril[1]).

For a divergent monotone serigs- 1 a, such that, — 0, a more specific question is to
guantify a sufficient degree or sparsity required for thanimg subsequence. The following
corollary of the dilution test presents a sufficient coruiti

Theorem 3. Consider a monotone divergent serigs.; a, such thatznzla,ﬁ’ converges for
some p> 1. A sufficient condition for the convergence of the subséfigs ag ) is that

S s(k)"YP < . (6)
k>1

Proof. Observe that the serids (4) in Theorieim 2 can be writtef\agAx, where

1 s(k+1)—1
A= o a
As(k) nzz(k
is the average of the ternag), . . ., ask+1)—1. Because all these terms are less than or equal

to the termsay, ..., a5 k), we see thaty is bounded from above by the average

=

1 s(k)
Bk—% dn.

||M
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Jensen’s inequality implies that

b 1 S( 0 1 co 0
B < — < — ;
PP
so that
a, . 1/p
=Y A< Y Be< aﬁ) s(k)~Y/P.
nz%(l) As(S(n) & &1 (n; i
The now claim follows as a consequence of Thedrem 2. O

5. SPARSE SUBSERIES OF THE HARMONIC SERIES. The harmonic serie§n21%

is probably the best-known example of a divergent series;[3g Section 3] for a lively
discussion. Kempner has shown [4] that, rather surprigjmgg obtain a convergent series by
deleting from the harmonic series all terms whose decin@kesentation contains the digit
‘9’. Kempner’s curious series has afterwards attractesl ébtinterest, with several articles
generalizing and sharpening the basic result; see for eleaBghmelzer and Baillie [6] and
references therein.

The following corollary of Theorerhl3 shows that the harmosgécies converges over
any polynomially sparse subsequence. A subsequence ofttdgers is callegolynomially
sparseif its density among the firsh positive integers decreases fast enougim gsows,
according to

S(n)/n<cn (7)

for somec > 0 anda € (0,1). A simple counting argument (e.g. Behforodz [2]) may be used
to verify that Kempner’s no-‘9’ fulfills[(¥) withc = 10 anda = 1 — &%.

Theorem 4. The harmonic series converges over any polynomially sparesequence.

Proof. Fix an integekk > 1, and letc anda be such that{7) holds for afl. The definition

of the counting function implies thatk) > n+ 1 for all integers such thaS(n) < k, and in
particular for all integers such thain < (k/c)?, where = 1/(1— a). By lettingn be the
largest integer strictly less thdk/c)?, we see thas(k) > (k/c). Therefore, conditior{6)
of Theoreni B is valid for any € (1,3). The claim now follows by Theorei 3, because
the series -1 n~P converges for alp > 1 (this well-known fact is usually proved by using
Cauchy’s condensation test). O

Theoren 4 may also be proved as a consequence of a strongkrspeialized to the
harmonic series (Powell and Salat [5]): The harmonic senes a subsequence converges if
and only if the counting function of the subsequence sasifig, S(n)/n? < o.
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6. CONCLUDING REMARK.  Many nonmonotone seri€g,~1 a, encountered in appli-
cations admit a monotone majorant sefigs; b,. In this case, the dilution test can be applied
to subseries of the majorant seriesyif-1 by, converges, then so does the corresponding
subserieg -1 a5 of the original nonmonotone series.
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