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Abstract

We consider the graph together with the arbitrary partition of
its vertex set into n subsets (n-partitioned graph). On the set of
n-partitioned graphs distinguished up to isomorphism we define the
binary algebraic operation ◦H (H-product of graphs), determined by
the digraph H. We prove, that every operation ◦H defines the unique
factorization as a product of prime factors. We define the dimension
of graphs based on the considered operations. It is proved, that a
graph G has the dimension at most k if and only if its vertex set could
be partitioned into k cliques and stable sets, and one can associate
with this partition the graph and the digraph such, that the graph
is bipartite and the digraph is acyclic. The finite list of forbidden
induced subgraphs for the class of graphs with the dimension 2 is
obtained.

1 Introduction

The decomposition methods are widely and fruitfully used in different
areas of combinatorics and graph theory. One of the possible ap-
proaches to graph decomposition is to define the binary operation on
the set of graphs or related objects and to represent the considered
object as a product of prime elements with respect to this operation.

There are a number of such operations known in graph theory.
The most well-known are cartesian product, direct (or categorical, or
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tensor) product, lexicographic product. In all those examples the vertex
set of the product of two graphs G and H is defined as the cartesian
product V (G)× V (H).

There are several natural directions of research connected with
such decompositions. In this paper we consider two of them.

1) The uniqueness of decomposition. Is the operation under study
defines the unique factorization as a product of prime factors?

2) The dimension. One can define the dimension of the graph G
as the minimal k such that G can be naturally embedded into the
product of k ”elementary” graphs (or, in a different way, into the
product of ”elementary” graphs of size k). What are the properties
of this dimension? What is the structure of graphs with the fixed
dimension?

For the cartesian product of graphs it is known, that the decom-
position into prime factors is unique for connected graphs [17][22], but
could be not unique for disconnected graphs [11]. The direct product
does not define the unique decomposition, but at least the number of
prime factors for all factorizations of a fixed graph is the same [11].

The complete graphs could be considered as ”elementary” graphs
in 2). For the direct product the dimension of a graph G is defined
as the smallest integer k such that G is isomorphic to an induced
subgraph of a product of k complete graphs. This dimension is called
the Prague dimension or product dimension of graphs, and it was first
introduced and studied by L. Lovasz, J. Nesetril, A. Pultr and V. Rödl
[14][15][16]. For the properties of this dimension see [10].

The cartesian product of complete graphs is a Hamming graph.
The problem of graph embedding into Hamming graphs is well-studied,
and different characterizations and properties of induced subgraphs
[12] and isometric subgraphs [1][4][5][12][23][24] of Hamming graphs
were obtained. In contrast to the direct product, not every graph
is embeddable (as unduced or isometric subgraph) into the cartesian
product of complete graphs. Note, that R. Graham and P. Winkler
showed [9], that every graph has a canonical isometric embedding into
the cartesian product of so-called irreducible factors.

We develop a different approach to the graph products. We con-
sider the graph together with some arbitrary partition of its vertex
set into n subsets, and we call this object n-partitioned graph. On the
set of all n-partitioned graphs (distinguished up to an isomorphism)
we define the binary algebraic operation ◦H (H-product of graphs)
determined by the digraph H with V (H) = {1, ..., n}. For the two
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n-partitioned graphs T = (G,A1, ..., An) and S = (F,B1, ..., Bn) their
product S = T ◦HS is the n-partitioned graph (R,A1∪B1, ..., An∪Bn),
where Ai and Bj are completely adjacent in F , if (i, j) is an arc of H,
and completely nonadjacent, otherwise.

The idea of this approach is related to the well-studied idea of M -
partitions introduced by T. Feder, P. Hell, S. Klein and R. Motwani in
[6]. Suppose that M is the k× k symmetric matrix with the elements
from the set {0, 1, ∗}. An M -partition of the graph G is a partition
V (G) = A1∪...∪Ak such that each Ai is either a clique (ifMi,i = 1), or
stable set (ifMi,i = 0), or an arbitrary set (ifMi,i = ∗); and Ai and Aj

are either completely adjacent (ifMi,j = 1), or completely nonadjacent
(if Mi,j = 0), or can have arbitrary set of edges between them (if
Mi,j = ∗). The matrix M could be considered as an adjacency matrix
of a trigraph [7], which consists of the set of k vertices {v1, ..., vk}, any
two vertices vi, vj are connected either by a non-edge (if Mi,j = 0), or
weak edge (if Mi,j = ∗), or strong edge (if Mi,j = 1). In this terms our
H-decomposable graphs are M -partitionable graphs, where Mi,i =
∗ for all i and the graph formed by strong edges and non-edges of
trigraph defined byM is complete bipartite with the parts of equal size
(or, in other terms, H-decomposable graphs are the graphs admitting
homomorphism to trigraphs with the above-mentioned properties).

But we consider this idea from the different point of view - as
the study of binary algebraic operation, and the main questions con-
sidered in this paper are the questions 1) and 2). This paper is the
result of the continuation of the previous research of the author and
his colleagues. In the paper [18] they define the operator decompo-
sition of graphs and studied its properties. This decomposition is,
in fact, H0-decomposition for the digraph H0 shown in the figure 1.
Some special cases of operator decomposition based on the notions
of split graph and polar graph were introduced earlier by R. Tyshke-
vich and A. Chernyak [21]. Operator decomposition and its special
cases appear to be very useful for different graph theory problems. In
particular, the applications to the reconstruction conjecture [18] and
the characterization of the structure of unigraphs (graphs defined up
to isomorphism by their degree sequences)[20] could be mentioned.
Another examples could be found in [3] and [13].

This paper consists of 3 parts. In the first part we define the
H-product. We show, that for every digraph H the operation ◦H
defines the unique factorization as a product of prime factors. Namely,
for every digraph H every n-partitioned graph has the unique H-
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Figure 1: The digraph H0

decomposition up to the permutation of staying together commutative
factors.

In the second part we define the dimension of graphs based on the
binary algebraic operations defined in the first part. The idea of this
dimension came from the well-known notion of threshold graph. One
of the equivalent definitions of threshold graph states, that thresh-
old graphs are exactly the graphs, which could be represented via the
product ◦H0

of ”elementary” factors, where by ”elementary” factors
we mean the 2-partitioned graphs consisting of one vertex. We de-
fine H-threshold graphs as graphs, which could be represented via
the product ◦H of one-vertex factors. We show, that every graph is
H-threshold for some digraph H. So, it is natural to look for such
representation defined by the operation ◦H , which is as simple as pos-
sible. We define H-threshold dimension of the graph G as a minimum
size of a digraph H such, that G is H-threshold. We give the struc-
tural characterization of graphs with the fixed H-threshold dimension.
We show, that a graph G has H-threshold dimension at most k if and
only if its vertex set V (G) could be partitioned into k cliques and
stable sets V1,...,Vk and we can associate with this partition the graph
R(V1, ..., Vk) and the digraph F (V1, ..., Vk) such, that R(V1, ..., Vk) is
bipartite and F (V1, ..., Vk) is acyclic.

In the third part of the paper we give the structural characteri-
zation and the characterization by the finite list of forbidden induced
subgraphs of graphs with H-threshold dimension 1 and 2.

All graphs considered are finite, undirected, without loops and
multiple edges. At the same time further in this paper the loops (but
not multiple arcs) are allowed in digraphs. The vertex and the edge
sets of a graph G are denoted by V (G) and E(G), respectively. The
arc set of a digraph H is denoted by A(H). Further, denote by G[A]
the subgraph induced by the set A ⊆ V (G). For the convenience of
reading the edges of graphs will be denoted as uv, and the arcs of
digraphs - as (u, v). Write u ∼ v (resp. u 6∼ v) if uv ∈ E(G) (resp.
uv 6∈ E(G)).
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If X,Y ⊆ V (G), we will write X ∼ Y (X 6∼ Y ) if for every x ∈ X

and y ∈ Y x ∼ y (x 6∼ y). Let NY (x) = {y ∈ Y : y ∼ x}.
For a digraph H and v ∈ V (H) let Nin(v) = {u ∈ V (H) \ {v} :

(u, v) ∈ A(H)} and Nout(v) = {w ∈ V (H) \ {v} : (v,w) ∈ A(H)} be
the in-neighborhood and the out-neighborhood of v, respectively.

A graph G is called split [8], if its vertex set could be partitioned
into a clique A and a stable set B. The graph G is bipartite, if if its
vertex set could be partitioned into two stable sets A and B. The
vertex set of the complement of bipartite graph could be partitioned
into two cliques A and B. The partition (A,B) in all those cases is
called a bipartition.

The important and well-known subclass of split graphs is the class
of threshold graphs. There is a number of known equivalent definitions
of threshold graphs. Let us quote some of them.

Theorem 1. [13]
The following definitions of threshold graphs are equivalent:
1) A graph G is threshold, if there exist nonnegative weights (αv :

v ∈ V (G)) and a threshold β such, that the set A ⊆ V (G) is stable if
and only if the sum of weights of its members does not exceed β.

2) A graph G is threshold, if it is split with a bipartition (A,B),
and the sets {NA(b) : b ∈ B} and {NB(a) : a ∈ A} are ordered by
inclusion.

3) A graph G is threshold, if it is (2K2, C4, P4)-free.
4) A graph G is threshold, if it could be iteratively constructed

from one-vertex graph K1 by adding at every iteration dominating or
isolated vertex.

A graph is called bipartite chain [25], if it is bipartite with a bipar-
tition (A,B), and the sets {NA(b) : b ∈ B} and {NB(a) : a ∈ A} are
ordered by inclusion.

LetH be a digraph and let (v1, ..., vn) be the ordering of its vertices.
This ordering is called acyclic ordering or topological sort, if all arcs of
H have the form (vi, vj), where i < j. A digraph is acyclic, if it does
not contain directed cycles. The following property of acyclic graphs
is well-known.

Proposition 1. [2]
A digraph is acyclic if and only if there exists an acyclic ordering

of its vertices.

For a sequence π = (a1, ..., an) denote by inv(π) the sequence
(an, ..., a1).
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2 H-product of graphs

Let H be a digraph with the vertex set V (H) = {1, ..., n} and arc set
A(H). The n-partitioned graph is a (n+ 1)-tuple T = (G,A1, ..., An),
where G is a graph and (A1, ..., An) is a partition of its vertex set into
disjoint subsets: V (G) = A1 ∪ ... ∪ An, Ai ∩ Aj = ∅ for all i 6= j.
Some of sets Ai could be empty. G is called the basic graph of T .
Denote the set of vertices and the set of edges of T by V (T ) and
E(T ), respectively.

The isomorphism f of n-partitioned graphs T and S = (F,B1, ..., Bn)
is an isomorphism of G and F such that f(Ai) = Bi, i = 1, ..., n. Let
Σn be the set of all n-partitioned graphs distinguished up to isomor-
phism.

On the set Σn define a binary algebraic operation ◦H : Σn×Σn →
Σn (H-product of n-partitioned graphs) as follows:

(G,A1, ..., An) ◦H (F,B1, ..., Bn) = (R,A1 ∪B1, ..., An ∪Bn), (1)

where V (R) = V (G)∪V (F ) (we assume without lost of generality
that V (G) ∩ V (F ) = ∅), E(R) = E(G) ∪ E(H) ∪ {xy : x ∈ Ai, y ∈
Bj, (i, j) ∈ A(H)}.

For the convenience we will further sometimes denote the operation
◦H simply by ◦, if it is clear, what digraphH we mean. The operation,
which was introduced and studied in [18], is the particular case of ◦H
for a digraph H = H0 shown in the figure 1.

It is easy to check, that for every digraph H the operation ◦H is
associative. So, the set Σn with the operation ◦H is a semigroup.

The digraph H is symmetric, if (i, j) ∈ A(H) whenever (j, i) ∈
A(H). It is clear that the operation ◦H is commutative if and only if
H is symmetric.

The n-partitioned graph T ∈ Σn is called H-decomposable, if T =
T1 ◦H T2, T1, T2 ∈ Σn, and H-prime, otherwise. It is clear, that
every n-partitioned graph T ∈ Σn could be represented as a product
T = T1 ◦H ... ◦H Tk, k ≥ 1, of prime elements. Such a representation
is called an H-decomposition of T .

Theorem 2. For every digraph H every n-partitioned graph T ∈ Σn

has the unique H-decomposition up to the permutation of staying to-
gether commutative multipliers.
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Proof. Let further the digraph H is fixed. It is evident, that if two
n-partitioned graphs have the H-decompositions, which differ only by
some permutations of staying together commutative multipliers, then
they are isomorphic. So let us prove the inverse proposition. It is
evident for prime n-partitioned graphs. Further apply the induction
by the number of vertices.

Let

U = T1 ◦ ... ◦ Tk, W = R1 ◦ ... ◦Rl, (2)

U ∼= V , k, l ≥ 2. Let

U = (G,X1, ...,Xn), W = (F, Y1, ..., Yn).

We may assume that Xi ∪ Yi 6= ∅ for all i = 1, ..., n.
Let f : V (U) → V (W ) is the isomorphism of U and W . We will

use the following notation. For the set X ⊆ V (U) let f(X) = {f(x) :
x ∈ X}, for the subgraph G′ of G let f(G′) = W [f(V (G′))] and for
the n-partitioned graph T = (G′, A1, ..., An), where G

′ is a subgraph
of G, let f(T ) = (f(G′), f(A1), ..., f(An)).

Setting T1 = (G′, A1, ..., An), S = T2 ◦ ... ◦ Tk = (G′′, S1, ..., Sn),
R1 = (F ′, B1, ..., Bn), Q = R2 ◦ ... ◦Rl = (F ′′, Q1, ..., Qn), we have

U = T1 ◦ S, W = R1 ◦Q. (3)

By the definition of the isomorphism f(Ai ∪ Si) = Bi ∪Qi.
Suppose that there exists i ∈ {1, ..., n} such that f(Ai) ∩ Bi 6= ∅,

f(Ai) ∩Qi 6= ∅. Then
f(T1) = T ′ ◦ T ′′,

where

T ′ = (F [f(V (T1)) ∩ V (R1)], f(A1) ∩B1, ..., f(An) ∩Bn),

T ′′ = (F [f(V (T1)) ∩ V (Q)], f(A1) ∩Q1, ..., f(An) ∩Qn).

Here V (T ′), V (T ′′) 6= ∅ by the assumption. It contradicts the fact that
T1 is prime.

Analogously, the existence of i ∈ {1, ..., n} such that f−1(Bi)∩Ai 6=
∅, f−1(Bi) ∩ Si 6= ∅ contradicts the fact, that R1 is prime.

So, further we can assume that for every i = 1, ..., n f(Ai) ⊆ Bi or
f(Ai) ⊆ Qi.
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Suppose that there exist i, j ∈ {1, ..., n}, i 6= j such that f(Ai) ⊆
Bi and f(Aj) ⊆ Qj. Then f(T1) = T ′ ◦ T ′′, where T ′, T ′′ are de-
fined as above and by the assumption V (T ′), V (T ′′) 6= ∅. Again the
contradiction with the indecomposibility of T1 is obtained.

So, there are two possibilities:
1) For every i = 1, ..., n f(Ai) ⊆ Bi. Then the facts proved above

imply, that f(Ai) = Bi, f(Si) = Qi for every i = 1, ..., n. Thus
T1 ∼= R1, S ∼= Q. After applying induction assumption for S and Q
we get the theorem proved.

2) For every i = 1, ..., n f(Ai) ⊆ Qi. Then Bi ⊆ f(Si).
Let f(Si)∩Qi = ∅ for all i = 1, ..., n. Then f(Si) = Bi, f(Ai) = Qi

for every i = 1, ..., n. So

U ∼= T1 ◦R1
∼=W ∼= R1 ◦ T1,

and the statement of the theorem is true.
Consider the case, when there exist i ∈ {1, ..., n} such that f(Si)∩

Qi 6= ∅. Let

Z = (F [f(V (S)) ∩ V (Q)], f(S1) ∩Q1, ..., f(Sn) ∩Qn).

By the assumption V (Z) 6= ∅. Then f(S) = R1 ◦ Z, Q = f(T1) ◦ Z
and thus

S ∼= R1 ◦ Z, Q ∼= T1 ◦ Z.

So, T1 is the first factor in some H-decomposition of Q. Applying the
induction assumption to Q, we may assume without lost of generality,
that T1 = R2 and Z = R3 ◦ ... ◦Rl. So,

T2 ◦ ... ◦ Tk ∼= S ∼= R1 ◦R3 ◦ ... ◦Rl.

By the induction assumption applied to S, we have k = l and
under the respective ordering R1

∼= T2, T3 ∼= R3,...,Tk ∼= Rk.
To complete the proof, it remains to show, that T1 and R1 com-

mutate. To do it, it is sufficient to prove, that for every pair i, j ∈
{1, ..., n}, i 6= j, such that (i, j) ∈ A(H) and (j, i) 6∈ A(H) one of the
following four conditions hold: either Ai ∪Aj = ∅, or Aj ∪Bj = ∅, or
Ai ∪Bi = ∅, or Bi ∪Bj = ∅.

We have f(Ai) ∼ f(Sj), f(Aj) 6∼ f(Si) (because Ai ∼ Sj, Aj 6∼ Si
and f is an isomorphism).

But then, since f(Ai) ⊆ Qi, f(Aj) ⊆ Qj, Bi ⊆ f(Si), Bj ⊆ f(Sj),
we have f(Ai) 6∼ f(Sj), f(Aj) ∼ f(Si).
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This two facts imply, that one of the following is true:
1) Ai ∪Aj = ∅;
2) Ai ∪ Si = ∅, which implies, that Bi = ∅;
3) Aj ∪ Sj = ∅, which implies, that Bj = ∅;
4) Si ∪ Sj = ∅, which implies, that Bi = ∅, Bj = ∅.
The theorem is proved.

3 H-threshold graphs and H-threshold

dimension of graphs

Denote by Kk
i the k-partitioned graph (K1, ∅, ..., ∅, {v}, ∅, ..., ∅) (the

only nonempty set of the partition is the ith set).
Let H be a digraph on k vertices. Let us call a graph G H-

threshold graph, if it is basic for the n-partitioned graph of the form
Kk

i1
◦H ... ◦H Kk

in
. In this case for the simplicity of the notation we

will write G = Kk
i1
◦H ...◦HK

k
in

(though strictly speaking the left part
of this equality is the graph and the right part is k-partitioned graph,
and so we should understand this notation as follows: there exists a k-
partitioned graph T = (G,A1, ..., Ak) such that T = Kk

i1
◦H ...◦HK

k
in
).

To illustrate the notion of H-threshold graph, note that the graphs
P4 and C4 are H-threshold for different H (see the figure 3)

It is easy to see, that by Theorem 1, 4) threshold graphs are exactly
H0-threshold graphs for the digraph H0 shown in the figure 1

Proposition 2. Every graph G is H-threshold for some digraph H.

Proof. Let V (G) = {1, ..., n}. Define H as follows: V (H) = {1, ..., n},
(i, j) ∈ A(H) if and only if ij ∈ E(G), i < j (i.e. H is obtained from
G by assigning an arbitrary orientation on every edge of G). It is easy
to see, that G = Kn

1 ◦H Kn
2 ◦H ... ◦H Kn

n .

The digraphH constructed in the proof of Proposition 2 has |V (G)|
vertices. But, for example, threshold graphs are H-threshold for the
digraph H with only 2 vertices. So, it is natural to consider the
minimum order of a digraph, for which a graph G is H-threshold.
Here we introduce the corresponding graph parameter.

TheH-threshold dimension of a graphG is the parameterHThrDim(G) =
min{k : G is H−threshold, |V (H)| = k}. By the Proposition 2 every
graph has the H-threshold dimension. It is clear, that for every graph
G on n vertices HThrDim(G) ≤ n.
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Figure 2: C4 and P4 as H-threshold graphs

Here are some simplest properties of H-threshold dimension.

Proposition 3. For every graph G HThrDim(G) = HThrDim(G).

Proof. Suppose, that G isH-threshold for a digraphH with the vertex
set V (H) = {1, ..., k}, i.e. G = Kk

i1
◦H ... ◦H Kk

in
. Let {vj} = V (Kk

ij
),

j = 1, ..., n. Consider the vertices vp and vq. Suppose, that p < q.
Then vp ∼ vq if and only if one of the following conditions hold:

1) ip = iq and (ip, ip) ∈ A(H);
2) ip 6= iq and (ip, iq) ∈ A(H).
Define H be the complement of H, i.e. the digraph with the same

vertex set and with the arc set A(H) = {(i, j) : (i, j) 6∈ A(H)}. Then
G = Kk

i1
◦H ... ◦H Kk

in
, where {vj} = V (Kk

ij
), j = 1, ..., n.

Now we are going to give the characterization of graphs with
HThrDim(G) ≤ k. But firstly we need some auxiliary definitions
and lemmas.

Let S be the family of sets S = ({X1
1 ,X

1
2}, ..., {X

n
1 ,X

k
2 }), where

Xi
j ⊆ {1, ..., k} \ {i}, i = 1, ..., k, j = 1, 2 (some of sets Xi

j could be
empty). Let us call S a digraphical family, if there exists a digraph D
on the vertex set V (D) = {1, ..., k} such, that S = ({Nin(1), Nout(1)}, ..., {Nin(k), Nout(k)}).
D is called a realization of S.
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The evident necessary condition for the digraphicity of S is i ∈
X

j
1
∪ Xj

2
whenever j ∈ Xi

1 ∪ X
i
2. Let us call the family S with this

property proper.
Suppose that S is the proper family. Define the graph R(S) as

follows: V (R(S)) = S, Xi
q ∼ X

j
p if and only if either i = j, q 6= p or

i ∈ X
j
p , j ∈ Xi

q, i, j = 1, ..., k, q, p = 1, 2.

Lemma 1. The proper family S is digraphical if and only if the graph
R(S) is bipartite.

Proof. Suppose that D is a realization of S. Let

l(Xi
q) =

{

1, if Xi
q = Nout(i)

2, if Xi
q = Nin(i).

By the definition l(Xi
1) 6= l(Xi

2), i = 1, ..., k. If j ∈ Xi
q = Nin(i),

then i ∈ X
j
p = Nout(j), and so l(Xi

q) 6= l(Xj
p). This l is a proper

2-coloring of R(S).
Inversely, let l be a proper 2-coloring of R(S). Define the digraph

D on the vertex set {1, ..., k} as follows: (i, j) ∈ A(G) if and only if
i ∈ X

j
p , j ∈ Xi

q, l(X
i
q) = 1, l(Xj

p) = 2.
Since l is a proper 2-coloring, this definition correctly defines a

digraph, and for every i = 1, ..., k if, for example, l(Xi
1) = 1, l(Xi

2) = 2,
then Xi

1 = Nout(i), X
i
2 = Nin(i).

Corollary 1. If D1 and D2 are two different realizations of S, then
D1 could be obtained from D2 by the reversal of all arcs of some of its
connected components.

Let

V (G) = V1 ∪ ... ∪ Vk (4)

is a partition of the vertex set of the graph G, where each Vi is a
clique or a stable set.

We will say, that the partition (4) satisfies the neighborhood or-
dering property, if for every i, j = 1, ...k the set {NVj

(u) : u ∈ Vi}
is ordered by inclusion. In other words, for every i, j = {1, ..., k}
there exists a permutation πij = (u1, ..., uri) of the set Vi such, that
NVj

(u1) ⊇ NVj
(u2) ⊇ ... ⊇ NVj

(uri).
Let the partition (4) satisfies the neighborhood ordering property.

We will say that 4 satisfies codirectional property, if for every i ∈

11



{1, ..., k} and for every j, l ∈ {1, ..., k} \ {i} either πij = πil or πij =

inv(πil).
Suppose, that (4) satisfies the codirectional property. Then by the

definition for every i = 1, ..., k there exist two permutations ψ1(i),
ψ2(i) = inv(ψ1(i)) such that for every j ∈ {1, ..., k} \ {i} πij = ψ1(i)

or πij = ψ2(i). Let

Y i
r = {j : πij = ψr(i)}, r = 1, 2.

Put
Xi

r = Y i
r \ {j : Vi ∼ Vj or Vi 6∼ Vj}, r = 1, 2.

Let S = S(V1, ..., Vk) = ({X1
1 ,X

1
2}, ..., {X

n
1 ,X

k
2 }).

Suppose that S is a digraphical family (i.e. by the Lemma 1
R(S) = R(V1, ..., Vk) is a bipartite graph) and D is its realization.
Define the digraph F = F (V1, ..., Vk) = FD(V1, ..., Vk) as follows:
V (F ) = V (G), A(F ) = A1 ∪A2 ∪A3, where

A1 = {(u, v) : u ∈ Vi, v ∈ Vj , uv ∈ E(G), (i, j) ∈ A(D)};

A2 = {(v, u) : u ∈ Vi, v ∈ Vj , uv 6∈ E(G), (i, j) ∈ A(D)};

A3 = {(ui1, u
i
2), ..., (u

i
ri−1, u

i
ri
) : i = 1, ..., k}.

Here (ui1, ..., u
i
ri
) = ψl(i), such that Xi

l = Nout(i).
In other words, the graph F is constructed in the following way.

Firstly consider every pair Vi, Vj such, that neither Vi ∼ Vj nor Vi 6∼
Vj. Suppose that (i, j) ∈ A(D). Consider the set Ei,j of edges of
the complete bipartite graph with the parts Vi and Vj. If the edge
uv ∈ Ei,j belongs to E(G), then orientate it in the direction from Vi
to Vj; otherwise orientate it in the direction from Vj to Vi. Next turn
every set Vi into the oriented path, whose orientation is agreed with
the permutations πij by the above formula.

Now we are ready to formulate the characterization of graphs with
the H-threshold dimension HThrDim(G) ≤ k.

Theorem 3. Let G be a graph. HThrDim(G) ≤ k if and only if
there exists a partition (4) such that

12



1) it satisfies the codirectional property;

2) the family S = S(V1, ..., Vk) is digraphical (i.e. the graph R(S) =
R(V1, ..., Vk) is bipartite);

3) the digraph F = F (V1, ..., Vk) is acyclic.

Proof. Let us prove sufficiency first. Suppose, that D is a realization
of S, which defines F . Let us expand D by adding the set of arcs
{(i, i) : Vi is a clique} ∪ {(i, j), (j, i) : Vi ∼ Vj}. Denote the obtained
graph by H.

Let (v1, ..., vn) be a acyclic ordering of the digraph F . We will
show, that G = Kk

i1
◦H ... ◦H Kk

in
, where V (Kk

ij
) = {vj}, vj ∈ Vij .

Let Kk
i1
◦H ... ◦H Kk

in
= Z. Consider the edge ab ∈ E(G). Let

us show, that ab ∈ E(Z). If Vi is a clique in G, then (i, i) ∈ A(H),
which implies, that Vi is a clique in Z. Analogously, if Vi ∼G Vj ,
then (i, j), (j, i) ∈ A(H), and so by the definition of the operation ◦H
Vi ∼Z Vj.

So, it remains to consider the case, when a ∈ Vi, b ∈ Vj , i 6= j and
neither Vi ∼ Vj nor Vi 6∼ Vj . In this case without lost of generality
(i, j) ∈ A(D). Then (i, j) ∈ A(F ) by the definition of F . Then in the
acyclic ordering a goes before b, i.e. a = V (Kk

ir
), b = V (Kk

is
), r < s.

It together with the fact, that (i, j) ∈ A(H), implies that ab ∈ E(Z).
Conversely, let ab ∈ E(Z). Let a = vr, b = vs, r < s (i.e. a

precedes b in the acyclic ordering), a ∈ Vi, b ∈ Vj . So we know,
that Vi 6∼ Vj does not hold. By the definition of the operation ◦H
(i, j) ∈ A(H). If i = j, then Vi is a clique, and so ab ∈ V (G). So let
further i 6= j and it is not true, that Vi ∼ Vj. Then (i, j) ∈ A(Q) and
by the definition a and b are adjacent in F . Since a precedes b in the
acyclic ordering, (a, b) ∈ A(F ). So the arc (a, b) is directed from Vi to
Vj, which implies, that ab ∈ E(G).

Now we will prove necessity. Assume, that G = Kk
i1
◦H ... ◦H Kk

in
,

where {vj} = V (Kk
ij
). Then

V (G) = V1 ∪ ... ∪ Vk. (5)

where Vi = {v : {v} = V (Kk
i )}, i = 1, ..., k. If (i, i) ∈ A(H), then

Vi is a clique, otherwise it is a stable set.
Suppose, that Vi = {vl1 , ..., vli}, l1 < l2 < ... < li. If (i, j) ∈ A(H),

then NVj
(vl1) ⊇ NVj

(vl2) ⊇ ... ⊇ NVj
(vli), otherwise NVj

(vli) ⊇ ... ⊇
NVj

(vl1). In the first case let πij = (vl1 , ..., vli), in the second case

13



πij = (vli , ..., vl1). So, the partition (5) satisfies the neighborhood
ordering property and the codirectional property.

Let D be a digraph obtained from H by deleting loops and arcs of
the set {(i, j) : Vi ∼ Vj}. Then in the digraph D

Nout(i) = {j : πij = (vl1 , ..., vli) and neither Vi ∼ Vj nor Vi 6∼ Vj};

Nin(i) = {j : πij = (vli , ..., vl1) and neither Vi ∼ Vj nor Vi 6∼ Vj}.

So, D is a realization of S(V1, ..., Vk).
It remains to show, that (v1, ..., vn) is a acyclic ordering of F =

F (V1, ..., Vk). All arcs with both ends in Vl, l = 1, ..., k, have the form
(vi, vi+1). So, let us consider vi ∈ Vl, vj ∈ Vs, l 6= s such, that vi and vj
are adjacent in F . By the definition of F neither Vl ∼ Vs nor Vl 6∼ Vs.
Then l and s are adjacent in H. Let (l, s) ∈ A(H). If (vi, vj) ∈ A(F ),
then vivj ∈ E(G), which could be only if i < j. If (vj , vi) ∈ A(F ),
then vivj 6∈ E(G), which could be only if j < i.

Remark 1. If the partition (4) is given, it could be tested in a poly-
nomial time, if it satisfies the conditions of the Theorem 3. In case of
the positive answer, the proofs of the Lemma 1 and Theorem 3 con-
tain the algorithm for reconstruction of the graph H such that G is
H-threshold graph.

The definition of the digraph F (V1, ..., Vk) depends on the realiza-
tion D of the family S(V1, ..., Vk). But the family S(V1, ..., Vk) can
have different realizations. The next proposition shows, that from the
point of view of the Theorem 3 it does not matter, which realization
to choose.

Proposition 4. Let D1, D2 be two realizations of S(V1, ..., Vk) for a
partition (4). If FD1

(V1, ..., Vk) is acyclic, then FD2
(V1, ..., Vk) is also

acyclic.

Proof. Suppose, that FD1
(V1, ..., Vk) is acyclic. By the corollary from

the Lemma 1 D1 and D2 have the same sets of connected components.
It is easy to see that {i1, ..., ij} is a connected component of Dl if and
only if Vi1∪...∪Vij is a connected component of FDl

(V1, ..., Vk), l = 1, 2.
So, it follows from the definition of F and the Corollary 1 (???), that
FD2

(V1, ..., Vk) could be obtained from FDl
(V1, ..., Vk) by the reversal

of all arcs of some of its connected components. So, FD2
(V1, ..., Vk) is

acyclic.
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4 Graphs with HThrDim(G) ≤ 2

It is clear, that graphs with HThrDim(G) = 1 are exactly complete
and empty graphs. For every threshold graph G HThrDim(G) ≤ 2.
But the set of graphs with HThrDim(G) ≤ 2 is not reduced to the
threshold graphs. For example, on the figure 3 we can see, that C4

and P4 have the threshold dimension 2. Formally this fact follows
from the next proposition.

Proposition 5. HThrDim(G) ≤ 2 if and only if G or G is either
threshold, or bipartite chain.

Proof. By the Theorem 3 the necessity is straightforward, so let us
prove the sufficiency. By the definition there exists the partition
V (G) = V1 ∪ V2 such that V1(V2) is either clique or stable set.

It is evident, that this partition satisfies the codirectional property.
It is also clear, that the realization of the family S(V1, V2) is either
empty digraph (if V1 ∼ V2 or V1 6∼ V2) or the digraph D with A(D) =
{(1, 2)}.

Let us prove that F = F (V1, V2) is acyclic. If V1 ∼ V2 or V1 6∼ V2,
then F is empty. Otherwise let A(D) = {(1, 2)}.

Let V1 = {u1, ..., ur}, V2 = {v1, ..., vs}, whereNV2
(u1) ⊇ NV2

(u2) ⊇
... ⊇ NV2

(ur), NV1
(vs) ⊇ NV2

(vs−1) ⊇ ... ⊇ NV2
(v1). Then all arcs of

F with both ends in V1 (V2) have the form (ui, ui+1), i = 1, ..., r − 1
((vi, vi+1), i = 1, ..., s − 1). Therefore if there exists a directed cycle
in F , it should contain arcs (uj , vl), (vp, ui), i ≤ j, l ≤ p (since F con-
tains no loops we may assume without lost of generality, that i 6= j).
By the definition of F , it means that ujvl ∈ E(G), uivp 6∈ E(G). Since
NV2

(ui) ⊇ NV2
(uj) we have uivl ∈ E(G). If l = p, then we have the

contradiction. If l 6= p then, as NV1
(vp) ⊇ NV1

(vl), we again have
uivp ∈ E(G). This contradiction finishes the proof.

Theorem 4. Let G be a graph. HThrDim(G) ≤ 2 if and only
if neither G nor G contains one of the graphs from the set L =
{C5, P5,House, P3 ∪ P2,W4, Bull,X, Y, Z} as an induced subgraph.

Proof. It is straightforward to check, that every graph from the set L
do not satisfy the Proposition 5. So we will prove the sufficiency.

Let us prove firstly, that G is either split, or bipartite, or a com-
plement of bipartite. After that we will prove, that for each its part
the neighborhoods of its vertices in the another part are ordered by
inclusion.
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Figure 3: The set L

Suppose, that neither G nor G is bipartite. We will show, that G
is split.

Let A be a maximum clique ofG and such, that a subgraph induced
by the set B = V (G) \ A have the smallest possible number of edges.
We will prove, that B is a stable set.

Suppose the contrary, i.e. there exist x, y ∈ B such, that x ∼ y.
Since A is maximum, there exist vertices of A, which are not adjacent
to x and y. If all vertices of A, except, possibly, one vertex u, adjacent
to both x and y, then A \ {u} ∪ {x, y} is a clique, which contradicts
the maximality of A. So, there exist u, v ∈ A such, that u 6∼ x, v 6∼ y.

It is easy to see, that |A| ≥ 3. Indeed, if |A| = 2, then G is triangle-
free. It, together with the fact, that G is {C5, P5}-free, imply that G
doesn’t contain odd cycles. Let w ∈ A \ {u, v}.

Because G is not bipartite, there exists z ∈ B \ {x, y} such, that
z 6∼ y or z 6∼ x. We may assume, that w 6∼ z, since A is a maximum
clique.

Let us call the induced cycle C = C4 bad, if there exists a vertex
a ∈ V (G) \ C such, that |N(a) ∩ C| ≥ 2. By the assumption of the
theorem G does not contain bad P4’s.

If u ∼ y and v ∼ x, then G contains bad C4. Therefore the
following cases are possible: 1) u 6∼ y, v 6∼ x and 2) u ∼ y, v 6∼ x.
Consider this cases.

1) u 6∼ y, v 6∼ x.
Let without lost of generality z 6∼ y. If z ∼ x, then without lost of

generality z ∼ v (since G[u, v, y, x, z] 6= P3 ∪ P2). As G[y, x, z, v, w] 6=
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P5, C5, w ∼ x. But then {w, v, z, x} form bad C4.
So it is proved, that z 6∼ x. Moreover, it is shown, that for every

t ∈ B \ {x, y} t ∼ {x, y} or t 6∼ {x, y}.
Let T1 = {t ∈ B \ {x, y} : t ∼ {x, y}}, T2 = {t ∈ B \ {x, y} : t 6∼

{x, y}}. We know from the considerations above, that T2 6= ∅.
Let t ∈ T2. As G[u, v, y, x, t] 6= P3 ∪ P2, without lost of generality

t ∼ v. Then, since G[t, v, u, y, x] 6= P3 ∪ P2, t ∼ u. So, we have
T2 ∼ {u, v}.

Lemma 2. For every q ∈ A \ {u, v} q ∼ T2 or q ∼ {x, y}. Moreover,
T2 is a clique.

Proof. Suppose, that there exists t ∈ T2 such, that q 6∼ t. The state-
ment, that q ∼ {x, y} follows from the fact, that G[t, v, q, y, x] 6= P3 ∪
P2, P5. If there exist t1, t2 ∈ T2 such, that t1 6∼ t2, thenG[t1, v, t2, y, x] =
P3 ∪ P2.

Let Q1 = {q ∈ A \ {u, v} : q ∼ T2}, Q2 = (A \ {u, v}) \Q1. By the
Lemma 2 Q2 ∼ {x, y}. Moreover, as A is maximal clique, Q2 6= ∅.

Lemma 3. Q2 ∼ T1. Moreover, T1 is a clique.

Proof. Suppose, that there exist t1t2 ∈ T1 such, that t1 6∼ t2. Since
G[u, v, y, t1, t2] 6= P3 ∪ P2, without lost of generality t2 ∼ v. Then
either t2 ∼ u or t1 ∼ v, because G[u, v, t2, y, t1] 6= P5, C5. But t1 6∼
v, because otherwise v, t2, x, t1 form bad C4. So t1 6∼ v, t2 ∼ u.
Analogously, it is easy to see, that t1 6∼ {u}.

By the maximality of the clique A, there exists q ∈ A\{u, v} such,
that q 6∼ t2. As G[q, v, t2, y, t1] 6= P5, C5, q ∼ x. But then G[q, v, t2, x]
is a bad C4. So it is proved, that T1 is a clique.

Let us show now, that T1 ∼ Q2. Suppose the contrary, i.e. let
there exist t ∈ T1, q ∈ Q2 such, that t 6∼ q. By the definition of Q2

there exist z ∈ T2 such, that q 6∼ z. Since G[z, u, q, x, t] 6= P5, C5,
t ∼ u. But then G[u, q, x, t] is a bad C4.

By Lemma 2 and Lemma 3 V1 = Q2 ∪ T1 ∪ {x, y} and V2 = Q1 ∪
T2 ∪ {u, v} are cliques, V1 ∪ V2 = V (G). The contradiction with the
fact, that G is not bipartite, is obtained. So, the case 1) is considered.

2) u ∼ y, v 6∼ x.

Lemma 4. For every z ∈ B \ {x, y} z ∼ {x, y} or z 6∼ {x, y}.
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Proof. Assume, in contrary, that there are exist z ∈ B \ {x, y} such,
that the lemma is not satisfied for it.

Let z ∼ x, z 6∼ y. Since G[v, u, y, x, z] 6= P5, C5, then z ∼ u.
Consider w ∈ A \ {u, v}. As G[y, x, z, v, w] 6= P3 ∪ P2, there are edges
between {v,w} and {x, y, z}. But it means, that G[u, y, x, z] is a bad
C4.

So, z ∼ y, z 6∼ x. Suppose, that z ∼ v. Then z ∼ u (because
G[z, y, u, v] is not a bad C4). Therefore by the maximality of A there
exists w ∈ A such that w 6∼ z. For this vertex we have w ∼ y (as
G[x, y, z, v, w] 6= P5, C5), and it implies, that G[w, v, z, y] is a bad C4.

So, z 6∼ v. But then z 6∼ u (otherwise G[z, y, u, v, x] = Bull). Since
G[x, y, z, w, v] 6= P3 ∪ P2, there exist some of the edges from the set
{wx,wy,wz}.

Suppose, that w ∼ x. Then w ∼ y (because otherwise G[w, x, y, u]
is a bad C4). It implies, that w ∼ z (as G[w, y, x, z, v] 6= Bull). But
then G[x, y, z, u, v, w] = Y .

Thus w 6∼ x. If w ∼ z, then w ∼ y (since G[w, u, y, z] is not bad
C4). It implies, that G[w, z, y, v, x] = Bull.

So, w 6∼ z. Then w ∼ y and G[w, u, v, y, z, x] = X.

Let B \ {x, y} = S1 ∪ S2, S1 = {z ∈ B : z ∼ {x, y}}, S2 = {z ∈ B :
z 6∼ {x, y}}. Since G is not bipartite, S2 6= ∅.

Lemma 5. For every r ∈ A \ {u, v} r ∼ {x, y} or r ∼ S2.

Proof. Assume, that there exists z ∈ S2 such, that r 6∼ z.
Let z ∼ v. As G[z, v, r, y, x] 6= P3 ∪ P2, r ∼ y or r ∼ x. The

situation, when r ∼ x and r 6∼ y, is impossible, because otherwise
G[r, u, y, x] is a bad C4. If r ∼ y, then r ∼ x (because G[x, y, r, v, z] 6=
P5).

It remains to consider the case, when z 6∼ v. Then r ∼ y or
r ∼ x, since G[r, v, y, x, z] 6= W4. As above, the case, when r ∼ x,

r 6∼ y, is impossible. So r ∼ y. As G[v, u, r, y, x, z] 6= Y , z ∼ u or
r ∼ x. The situation, when z ∼ u, r 6∼ x contradicts the fact, that
G[r, u, y, x, r] 6= Bull. So r ∼ x.

Let A \ {u, v} = R1 ∪ R2, R1 = {r ∈ A \ {u, v} : r ∼ S2}, R2 =
(A \ {u, v}) \R1. By the Lemma 5 R2 ∼ {x, y}.

Lemma 6. S2 ∼ {u, v}. Moreover, S2 is a clique.
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Proof. Let us first the first statement of the lemma. Let z ∈ S2.
Assume, that z 6∼ v. We will show, that it is impossible.

Suppose, that there exists r ∈ A \ {u, v} such that r 6∼ y. By the
Lemma 5 r ∼ z. Then r ∼ x, since G[z, r, v, y, x] 6= P3 ∪P2. But then
G[r, u, y, x] is a bad C4.

So, it is proved that y ∼ A \ {v}. Therefore there exists s ∈
B \ {x, y, z} such that s ∼ v and s 6∼ y. Indeed, if, on the contrary,
NB(v) ⊆ NB(y), then A′ = (A \ {v}) ∪ {y} is a maximum clique
and for the subgraph, induced by the set B′ = V (G) \ A′, we have
|E(G[B′])| < |E(G[B])|. It contradicts the definition of the clique A.

As G[x, y, u, v, s] 6= P5, C5, s ∼ u. Moreover, s 6∼ x, (because
otherwise G[x, y, u, s] is a bad C4) and s ∼ z (because otherwise
G[v, s, y, x, z] =W4). But then G[z, s, v, y, x] = P3 ∪ P2.

So, z ∼ v. Then z ∼ u (see the proof of the Lemma 5).
Now it is easy to see, that S2 is a clique. Indeed, if there exist

s1, s2 ∈ S2 such that s1 6∼ s2, then G[s1, v, s2, y, x] = P3 ∪ P2.

In particular, Lemma 6 and the maximality of A imply, that R2 6=
∅.

Lemma 7. R2 ∼ S1. Moreover, S1 is a clique.

Proof. Let there exist r ∈ R2 and s ∈ S1 such that r 6∼ s. By Lemma
5 r ∼ {x, y}. By the definition there exists z ∈ S2 such, that z 6∼ r.
Lemma 6 implies, that z ∼ {u, v}. Since G[z, v, r, x, s] 6= P5, C5, either
z ∼ x or s ∼ v. But in the first case G[z, v, r, x] is a bad C4, and in
the second case G[v, r, x, s] is a bad C4. So, it is proved, that R2 ∼ S1.

Let us show now, that S1 is a clique. Suppose that there exist
z1, z2 ∈ S1 such, that z1 6∼ z2. As G[z1, x, z2, u, v] 6= P3 ∪ P2, there
exists at least one edge between {z1, z2} and {u, v}. At the same time,
if z1 ∼ v and z1 6∼ u, then G[z1, v, u, y] is a bad C4.

So, without lost of generality z1 ∼ u. Then z2 6∼ u (because
otherwise G[z1, x, z2, u] is a bad C4). Since G[v, u, z1, x, z2] 6= P5, C5,
z1 ∼ v. It implies, that z2 6∼ v (otherwise G[v, z1, x, z2] is a bad C4).

The maximality of A implies the existence of w ∈ A such, that w 6∼
z1. w 6∼ x, asG[w, v, z1, x] is not a bad C4. But thenG[w, v, z1, x, z2] =
P5 or C5.

By Lemma 6 and Lemma 7 V1 = R2 ∪ S1 ∪ {x, y} and V2 = R1 ∪
S2 ∪ {u, v} are cliques, V1 ∪ V2 = V (G). The contradiction with the
fact, that G is not bipartite, is obtained. The case 2) is considered.
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So, it is proved, that G or G is either split or bipartite. Let (A,B)
be the bipartition of G. Let us show, that the neighborhoods of ver-
tices from A(B) are ordered by inclusion.

Let us suppose the contrary, i.e. there exist u, v ∈ A, x, y ∈ B

such, that u ∼ x, v 6∼ x, u ∼ y, v 6∼ y.
Suppose, that G is bipartite. If |V (G)| = 4, then G the statement

of the theorem obviously holds. Let there exists z ∈ B \ {x, y}. Since
G[u, v, x, y, z] 6= W4, P3 ∪ P2, z ∼ u, v. But then G[u, v, x, y, z] = P5.
This contradiction proves the theorem for bipartite graphs.

Taking into account Observation 3, it remains to consider the case,
when G is split and neither bipartite nor a complement of bipartite.

The following statements hold:
a) N(x) ∪N(y) = A (since G does not contain Bull);
b) for every z ∈ B \ {x, y} |N(z)∩{u, v}| ≤ 1 (by the same reason

as in a));
c) |A| ≥ 3, |B| ≥ 3 (otherwise either G or G is bipartite).
Let z ∈ B \ {x, y}, w ∈ A \ {u, v}, w ∼ x. As G[u, v, x, y, w, z] 6=

Y,Z, at least one of the edges zu, zv, zw belongs to E(G). If there ex-
ists exactly one of this edges, thenG[u, v, w, z, y] = Bull, G[u, v, w, x, y, z] =
X, G[u, v, w, z, y] = Bull, respectively. Therefore, taking into account
b), either zw, zv ∈ E(G), zu 6∈ E(G) or zw, zu ∈ E(G), zv 6∈ E(G).

In the first case w ∼ y (since G[w, v, z, y, x] 6= Bull), which implies,
that F = G[u, v, x, y, w, z] = Y . In the second case w ∼ y (since
F 6= X), which implies, that F = Y .

The theorem is proved
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[11] W. Imrich and S. Klavžar, Product Graphs: Structure and
Recognition, Wiley, 2000.
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