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A NOTE ON SINGULAR MODULI SPACES OF

SHEAVES ON K3 SURFACES

ZIYU ZHANG

Abstract. This paper studies deformations and birational maps
between singular moduli spaces of semistable sheaves with 2-divisible
Mukai vectors on K3 surfaces. It is showed that under certain
conditions, two such moduli spaces of the same dimension can be
connected by deformations and birational maps.
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1. Introduction

Moduli spaces of semistable sheaves have been studied for a long time.
Let X be a K3 surface, and H ∈ Pic(X) be an ample line bundle.
Let v ∈ Heven(X,Z) be a fixed Mukai vector. Then there is a moduli
space MX,H(v) which parameterizes S-equivalence classes of semistable
sheaves with respect to the polorization H , whose Mukai vectors are
v. These moduli spaces were first constructed by Gieseker [Gie77] and
Maruyama [Mar77, Mar78], and then studied by many other people.

When the polarizationH is generic and the Mukai vector v is primitive,
namely, the greatest common divisor of all components of v is 1, every
semistable sheaf must be stable. In this case, Mukai [Muk84, Corollary
0.2] proved that the muduli space MX,H(v) is a smooth irreducible
holomorphic symplectic manifold.

It is an interesting problem to study the relation among these smooth
moduli spaces. There is a very nice theorem on irreducible holomorphic
symplectic manifolds due to Huybrechts [Huy03, Theorem 2.5], which
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2 ZIYU ZHANG

states that two birational irreducible holomorphic symplectic manifolds
are always deformation equivalent. Applying this theorem, Yoshioka
proved that [Yos01, Theorem 8.1], if two such smooth moduli spaces
have the same dimension, then they are deformation equivalent. This
is really a nice result. However, it’s not good news in the study of
irreducible holomorphic symplectic manifolds. The reason is, although
we have lots of choices for the underlying K3 surface, the generic po-
larization and the primitive Mukai vector, the resulting moduli spaces
provide only one deformation type of holomorphic symplectic manifolds
in every even dimension.

In this paper, we are trying to generalize Yoshioka’s result to the case
of 2-divisible Mukai vectors, which are Mukai vectors whose greatest
common divisor among all components is 2. More precisely, we will
prove the following theorem:

Theorem 1.1. For i = 1 or 2, assume Xi is a projective K3 sur-
face, vi = (ri, ci, ai) is a primitive Mukai vector with ri > 0. Hi is a
polarization on Xi which is generic with respect to the Mukai vector
2vi. Assume further that ri and ci are coprime. If dimMX1,H1

(2v1) =
dimMX2,H2

(2v2), then MX1,H1
(2v1) and MX2,H2

(2v2) can be connected
by a series of deformations and birational maps.

The proof contains two main steps. In the first step, we will show that,
for two such moduli spaces MX1,H1

(2v1) and MX2,H2
(2v2), if they have

the same dimension and r1 = r2, then they are deformation equivalent.
The idea of this part of proof is to use the deformations of polarized K3
surfaces to deform both of the given moduli spaces to a third moduli
space of sheaves on an elliptic K3 surface with a rank 2 Picard lattice.
So that we know all moduli spaces in the same dimension with the same
rank parameter are deformation equivalent. In the second step, we fix
a dimension of the moduli spaces and let rank vary. For every possible
value of the rank component of the Mukai vector which is at least 8, we
find one particular moduli space of sheaves on a K3 surface with rank
1 Picard lattice, and prove it is birational to a certain moduli space
of sheaves of rank 2. The birational map between these two moduli
spaces is established via extensions by exception bundles, which was
introduced in [Yos99b]. Combining the two steps, any two moduli
spaces of sheaves of rank not equal to 4 or 6, as stated in theorem 1.1,
can be connected in at most three steps, namely a deformation followed
by a birational map, then by another deformation. For a technical
reason, we have to deal with the case of rank 4 and 6 seperately. To
connect these remaining moduli spaces, we just need to realize that,
in every dimension we can find a moduli space of sheaves of rank 4
(respectively 6), which is birational to another moduli space of rank 14
(respectively 20). So now all moduli spaces of the same dimension are
connected by deformations and birational maps.
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However, due to the lack of a version of Huybrechts’s theorem [Huy03,
Theorem 2.5] in the singular case, here we cannot get rid of the bira-
tional maps and get a theorem as nice as Yoshioka’s [Yos01, Theorem
8.1]. However, we hope a similar result of deformation equivalence of
singular moduli spaces in the same dimension is still true for arbitrary
non-primitive Mukai vectors. So we can formulate the following con-
jecture:

Conjecture 1.2. Let m be a positive integer. For i = 1 or 2, assume
Xi is a projective K3 surface, vi = (ri, ci, ai) is a primitive positive
Mukai vector, and Hi is a polarization which is generic with respect to
the Mukai vector mvi. If dimMX1,H1

(mv1) = dimMX2,H2
(mv2), then

MX1,H1
(mv1) and MX2,H2

(mv2) are deformation equivalent.

This paper is organized as follows: the two steps in the proof of theorem
1.1 will be done in sections 2 and 3. In the proof of the deformation
equivalence we will need a result of local finiteness of walls in the ample
cone (lemma 2.3), whose proof will be given in the end of section 2.
In section 3, for every r > 4 we will find a moduli space of sheaves of
rank 2r, and prove it’s birational to a moduli space of sheaves of rank
2. The two remaining cases for r = 2 and r = 3 will be treated at
the end of the section (propositions 3.9 and 3.10). We will omit the
proofs because they will be identical with that of the proposition 3.1.
These two sections finish the proof of Theorem 1.1. Finally, in section
4, we will prove that certain moduli spaces of torsion sheaves with 2-
divisible Mukai vectors are birational to moduli spaces of sheaves of
positive ranks.

Acknowledgements: I would like to express my deep gratitude to my
PhD advisor Jun Li, for all his support and encouragement. I would
also like to thank Kōta Yoshioka for kindly answering my questions and
pointing out references, and thank Jason Lo for helpful discussions. I
also appreciate the help of Daniel Huybrechts and Manfred Lehn in the
final stage of this work.

2. Deformation Equivalence

In this section, we will show that any two moduli spaces of sheaves on
K3 surfaces with the same dimension, rank and divisibility are defor-
mation equivalent to each other. This will be obtained by deforming
the two moduli space to a third moduli space of sheaves of the same
rank over an elliptic K3 surface. More precisely, we will show:

Proposition 2.1. Let X be a K3 surface, v = (r, c, a) ∈ Heven(X) be
a Mukai vector with gcd(r, c) = 1, H be a generic polarization. Let
Xe be an elliptic K3 surface with Pic(Xe) = Z[σ] ⊕ Z[f ] where σ is
the class of a section of the elliptic fibration and f is the fiber class.



4 ZIYU ZHANG

The the moduli space MX,H(2v) is deformation equivalent to a certain
moduli space of sheaves MXe,σ+lf(2v

′) on Xe, where v′ = (r, σ + lf, a′)
for some l and a′.

Before proving this proposition, we have to consider moduli spaces of
polarized K3 surfaces. Much of this has been summarized in [HL97].

Let d be a positive number, we consider all K3 surfaces X with ample
primitive line bundles L satisfying c21(L) = 2d. Then there is a quasi-
projective scheme Kd, which is a coarse moduli space of all such pairs
(X,L).

This moduli space can be constructed by GIT. More precisely, it is a
PGL(N) quotient of Hd which is an open subset of a certain Hilbert
scheme. The universal family over the Hilbert scheme provides a uni-
versal family of polarized K3 surfaces over Hd. For every point t ∈ Hd,
the fiber of this universal family (Xt,Lt) is exactly the pair correspond-
ing to the image of t in Kd.

Furthermore, we know that both Kd and Hd are irreducible. Therefore,
any two primitively polarized K3 surfaces (X1, L1) and (X2, L2) with
L2
1 = L2

2 are deformation equivalent to each other.

Another fact which will be used later is: for a general polarized K3
surface (X,L) ∈ Kd, we have Pic(X) = Z[H ]. In other words, in
the moduli space Kd of primitively polarized K3 surfaces, away from a
countable union of Zariski closed subsets, the Picard number ρ(X) = 1.
However, the countable union of polarized K3 surfaces (X,H) ∈ Kd

with ρ(X) > 2 is also dense in Kd.

We will need the following proposition:

Proposition 2.2. Let r and k be positive integers and a be an arbi-
trary integer. Then there is a relative moduli space ϕ : M −→ Hd

of semistable sheaves, such that for every t ∈ H, ϕ−1(t) is isomor-
phic to the moduli space of semistable sheaves MXt,Lt

(2vt) where vt =
(r, kLt, a).

Proof. The proposition is a special case of the existence theorem of
relative moduli spaces of semistable sheaves ([HL97, Theorem 4.3.7]).

�

Now we are ready to prove proposition 2.1. The proof will be parallel
to the proof of Theorem 6.2.5 in [HL97].

Proof of Proposition 2.1. First of all, without loss of generality, we can
assume that c is an ample class.
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In fact, if c is not ample, we can always twist the sheaves by the ample
line bundle H sufficiently many times to get a new moduli space iso-
morphic to the original one. More precisely, for every semistable sheaf
F with Mukai vector 2v = 2(r, c, a), we consider a new sheaf F ⊗H⊗m.
We have that

v(F ⊗H⊗m) = v(F ) · ch(H)⊗m = 2(r, c+ rmH, a+ cmH +
rm2

2
H2).

We denote the new Mukai vector (r, c+ rmH, a+ cmH+ rm2

2
H2) by v′.

Note that the above tensoring procedure can also be done in families,
and is invertible by tensoring negative powers of the line bundle H .
Therefore we have an isomorphism between MX,H(2v) and MX,H(2v

′).
Since H is ample, we know that c+rmH is also an ample class when m
is sufficiently large. Therefore we can replace MX,H(2v) by MX,H(2v

′).

Secondly, without loss of generality, we can assume that ρ(X) > 2.

If not, then Pic(X) = Z[H ]. Let c = kH where k > 0. We can consider
the relative moduli space ϕ : M −→ Hd in proposition 2.2. Our moduli
space MX,H(2r, 2kH, 2a) is a fiber of this relative moduli space over the
point (X,H). Since polarized K3 surfaces with Picard number at least
two are dense in Hd, a priori, we can choose any polarized K3 surface
(X ′, H ′) near (X,H) inHd, with ρ(X ′) > 2, so that the original moduli
space MX,H(2r, 2kH, 2a) is deformation equivalent to the new moduli
space MX′,H′(2r, 2kH ′, 2a).

However, we still have to make sure that H ′ is a generic polarization
on X with respect to the Mukai vector (2r, 2kH ′, 2a). We need the
following lemma:

Lemma 2.3. In a sufficiently small open neighborhood of (X,H) in
Hd, there are at most finitely many hypersurfaces, such that for every
point (X ′, H ′) not on those hypersurfaces, the polarization H ′ is generic
with respect to the corresponding Mukai vector 2(r, kH ′, a).

We will postpone the proof of this lemma to the end of this section.

By virtual of the above lemma, we can always find a polarized K3
surface (X ′, H ′) with ρ(X ′) > 2, which is deformation equivalent to
the original polarized K3 surface (X,H).

Thirdly, we can even assume that c and H are linearly dependent, and
H2 ≫ 0.

In fact, since H is in an open chamber and ρ(X) > 2, we can always
pick another primitive ample line bundle H ′ in the same open chamber
as H , which is linearly independent with c. We can now twist the
sheaves in the moduli space MX,H(2r, 2c, 2a) by H ′ for a few times to
get an isomorphic moduli space. More precisely, if v(F ) = 2(r, c, a),
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then

v(F ⊗H ′⊗m) = v(F ) · ch(H ′)⊗m = 2(r, c+ rmH ′, a+ cmH ′+
rm2

2
H ′2).

We denote the Mukai vector (r, c+rmH ′, a+cmH ′+ rm2

2
H ′2) by v′. So

MX,H(2v) is isomorphic to MX,H(2v
′). Note that when m is sufficiently

large, c + rmH ′ is very close to H ′, therefore is also ample and in
the same chamber as H ′, or H . So the moduli space MX,H(2v

′) is
isomorphic to MX,c+rmH′(2v′). With the additional assumption that r
and c are coprime, we know that c+ rmH ′ is primitive. Increase m we
can make (c + rmH ′)2 ≫ 0.

Finally, we can finish the proof based on the above three steps of re-
ductions.

Note that there is an elliptic K3 surface Xe as stated in the proposition.
On Xe, the class σ + lf is always ample and suitable when l is suffi-
ciently large. We choose the value of l by the equation H2 = (σ+ lf)2.
Then the polarized K3 surface (Xe, σ + lf) is in Hd. By proposi-
tion 2.2, we know that MX,H(2(r, c, a)) is deformation equivalent to
MXe,σ+lf (2(r, σ + lf, a)). �

From proposition 2.1 we can prove the following corollary:

Corollary 2.4. For i = 1, 2, let Xi be a K3 surface, vi = (ri, ci, ai) ∈
Heven(Xi,Z) be a primitive Mukai vector with gcd(ri, ci) = 1 and Hi be
a generic ample line bundle on Xi with respect to vi. If r1 = r2 = r
and 〈v21〉 = 〈v22〉, then moduli spaces of semistable sheaves MX1,H1

(2v1)
is deformation equivalent to MX2,H2

(2v2).

Proof. By proposition 2.1, there exists an elliptic K3 surface Xe, such
that, for i = 1 and 2, there exists an positive integer li, such that
MXi,Hi

(2vi) is deformation equivalent to MXe,σ+lif(2(r, σ + lif, ai)).

Now we claim the two moduli spaces

MXe,σ+l1f(2(r, σ + l1f, a1)) and MXe,σ+l2f(2(r, σ + l2f, a2))

are isomorphic. In fact, from the given condition we know the two
moduli spaces have the same dimension, therefore 〈(r, σ + l1f, a1)

2〉 =
〈(r, σ + l2f, a2)

2〉, that is, (σ + l1f)
2 − 2ra1 = (σ + l2f)

2 − 2ra2. This
implies 2r(a2 − a1) = 2(l2 − l1)σ · f = 2(l2 − l1), so r divides l2 − l1.
Let l2 − l1 = r · h.

It’s now easy to see that, there is an isomorphism fromMXe,σ+l1f(2(r, σ+
l1f, a1)) toMXe,σ+l2f (2(r, σ+l2f, a2)). For every sheaf F ∈ MXe,σ+l1f (2(r, σ+
l1f, a1)), we have F ⊗O(f)⊗h ∈ MXe,σ+l2f (2(r, σ+ l2f, a2)). Although
σ+l1f and σ+l2f might be different polarizations, they are both in the
open chamber containing the fiber class f . Therefore, the two moduli
spaces are isomorphic.
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This proves the two original moduli spaces are deformation equivalent
to each other. �

To conclude this section we prove the Lemma 2.3. The idea is similar
to Lemma 4.C.2 in [HL97]. For the proof we need to state the following
lemma:

Lemma 2.5. [HL97][Theorem 4.C.3] Let H be an ample line bundle,
and F be a semistable coherent sheaf with Mukai vector v(F ) = (r, c, a).
Let F ′ be a subsheaf of F with Mukai vector v(F ′) = (r′, c′, a′), where
0 < r′ < r, such that the reduced Hilbert polynomials p(F,m) =
p(F ′, m). Let ∆ = 2r2 + c2 − 2ra be the discriminant of F . Then
we have

(1) ra′ − r′a = 0;
(2) let ξ = rc′ − r′c, then ξ ·H = 0;

(3) − r2

4
∆ 6 ξ2 6 0 and ξ2 = 0 if and only if ξ = 0. �

Now we can begin to prove lemma 2.3.

Proof of Lemma 2.3. We consider the walls in H2(X,R). Let σ be a
generator of H2,0(X), then σ is a generator of H0,2(X). Let

e1 =
σ + σ

√

(σ + σ)2

and

e2 =
σ − σ

√

−(σ − σ)2
.

Then both e1 and e2 are unit vectors in H2(X,R). Furthermore, since
the signature of Poincare pairing onH2(X,R) is (3, h1,1−3), we see that
{e1, e2, H} is an orthogonal basis of a three dimensional subspace V of
H2(X,R). Therefore, for every class u ∈ H2(X,R), we can decompose
it into u = a1e1 + a2e2 + a0H + u0 where a1, a2 ∈ R and u0 ∈ V ⊥.
Besides the Poincare pairing, we can define an Euclidean pairing on
H2(X,R), by ‖ u ‖2=

√

a21 + a22 + a20H
2 − u2

0.

For every pairing (X ′, H ′) ∈ Hd, we can produce e′1, e
′
2 in the same way

as e1, e2. In a sufficiently small open neighborhood of the pair (X,H)
in Hd, every base manifold X ′ is a small deformation of X , whose H2,0

and H0,2 are very closed to H2,0(X) and H0,2(X). More precisely, we
can require ‖ e′1 − e1 ‖< ε and ‖ e′2 − e2 ‖< ε.

Since e′1 and e′2 are both perpendicular to H , let e′1 = λ1e1 + δ1e2 + h1

where h1 ∈ V ⊥ and e′2 = δ2e1 + λ2e2 + h2 where h2 ∈ V ⊥. Then
‖ e′1 − e1 ‖< ε implies (1− λ1)

2 + δ21+ ‖ h1 ‖
2< ε2. So we can conclude

|1− λ1| < ε, |δ1| < ε, ‖ h1 ‖< ε. Similarly, from ‖ e′1 − e1 ‖< ε, we can
deduce |1− λ2| < ε, |δ2| < ε, ‖ h2 ‖< ε.
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By lemma 2.5, we know that there exist a positive constant ∆, such that
for every ξ ∈ H1,1(X ′) which produces a wall in H2(X ′,R) = H2(X,R)
for some pair (X ′, H ′) in the small neighborhood of (X,H), we have
−∆ < ξ2 6 0. Since ξ ⊥ H , we can decompose ξ as ξ = a1e1+a2e2+ξ0
where ξ0 ∈ V ⊥. We want to show the Euclidean norm ‖ ξ ‖2= a21 +
a22 − ξ20 is bounded.

Note that ξ ⊥ e′1 and ξ ⊥ e′2, that is,

λ1a1 + δ1a2 + h1 · ξ0 = 0

δ2a1 + λ2a2 + h2 · ξ0 = 0

Therefore we have

(λ1a1 + δ1a2)
2 = (h1 · ξ0)

2 6‖ h1 ‖
2‖ ξ0 ‖

2

(δ2a1 + λ2a2)
2 = (h2 · ξ0)

2 6‖ h2 ‖
2‖ ξ0 ‖

2

We add the two inequalities. The left hand side is

(λ2
1 + δ22)a

2
1 + (δ21 + λ2

2)a
2
2 + 2(λ1δ1 + δ2λ2)a1a2

> (1− ε)2(a21 + a22)− 4ε(1 + ε)a1a2

> (1− ε)2(a21 + a22)− 2ε(1 + ε)(a21 + a22)

= (1− 4ε− 2ε2)(a21 + a22).

So now we have

(1− 4ε− 2ε2)(a21 + a22) < 2ε2 ‖ ξ0 ‖
2 .

Therefore we have

−∆ < a21 + a22− ‖ ξ0 ‖
2< (

2ε

1− 4ε− 2ε2
− 1) ‖ ξ0 ‖

2 .

So

‖ ξ0 ‖
2<

∆

1− 2ε
1−4ε−2ε2

.

Therefore

‖ ξ ‖2= a21 + a22+ ‖ ξ0 ‖
26 2 ‖ ξ0 ‖

2<
2∆

1− 2ε
1−4ε−2ε2

which is bounded regardless of the underlying K3 surface X ′.

Therefore, in a small open neighborhood of (X,H) in Hd, there are
at most finitely many hypersurfaces, on which the polarization is not
generic. Since we have assumed that H is in generic on X , we can
always shrink the open neighborhood of (X,H) in Hd, so that it misses
all these hypersurfaces. In other words, for every point (X ′, H ′) in this
open neighborhood, H ′ is generic with respect to the Mukai vector
2(r, kH ′, a). �



A NOTE ON SINGULAR MODULI SPACES OF SHEAVES ON K3 SURFACES 9

3. Birational Equivalence

In this section, we will establish the birational equivalence between
some singular moduli spaces of semistable sheaves, so that together
with the deformation result we obtained in the previous section, for
any two moduli spaces of sheaves in the same dimension, both with
2-divisible Mukai vectors, we can connect them by a series of deforma-
tions and birational maps. For this purpose, in this section we always
fix the underlying K3 surface, which is a projective K3 surface with
Picard number 1. Roughly speaking, we will prove that for every value
of r, there’s a moduli space of rank 2r sheaves, which is birational to
a moduli space of rank 2 sheaves (in case r = 2 or 3, birational to a
moduli of sheaves of higher rank). The method we are using here in
proving the birationality is mainly the technique of exceptional bundles
introduced by Yoshioka in [Yos99b]. Similar to [Yos99b], the proof here
involves some delicate analysis of slopes of sheaves.

The main theorem of this section is:

Proposition 3.1. For any given r > 4 and s > 1, let X be a projective
K3 surface with Pic(X) = Z[H ] where H is an ample line bundle with
H2 = 2s(r − 1)2 − 2r. Consider Mukai vectors

v0 = (r − 1, (r − 2)H, (r3 − 5r2 + 8r − 4)s+ (−r2 + 3r − 1)),

v1 = (r, (r − 1)H, (r3 − 4r2 + 6r − 4)s+ (−r2 + 2r − 1)),

v2 = (1, H, (r2 − 2r)s− r).

Then the moduli spaces of semi-stable sheaves MX,H(2v1) is birational
equivalent to MX,H(2v2).

Simple calculation shows that 〈v21〉 = 〈v22〉 = 2s, therefore moduli spaces
MX,H(2v1) and MX,H(2v2) have the same dimension. We also have
〈v0, v1〉 = −1 and 〈v0, v2〉 = 1. Furthermore, we have 〈v20〉 = −2.
Due to the following lemma of Yoshioka, the technique of exceptional
bundles applies.

Lemma 3.2. [Yos99b, Theorem 3.6] The moduli space MX,H(v0) con-
sists of one point which corresponds to a µ-stable locally free sheaf E.
We call such a sheaf an exceptional sheaf. �

We should also note that, in proposition 3.1, we require r > 4. The
reason is that, one step in the proof of lemma 3.8 fails to go through
when r = 2 or 3. However, by carefully choosing the numerical data in
these two cases, the proof will work in exactly the same way. We will
state a theorem in the two exceptional cases in the end of this section
and omit its proof.
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Before we prove proposition 3.1, we want to show that a generic point in
the moduli spacesMX,H(2v1) orMX,H(2v2) is represented by a µ-stable
locally free sheaf. We recall the following lemma due to Yoshioka:

Lemma 3.3. [Yos99a, Remark 2.2][Yos99b, Lemma 4.4, Remark 4.3]
Let (X,H) be a generic polarized K3 surface. Let v = (lr, lξ, a) be a
Mukai vector, such that r and ξ are coprime. Then there’s at least one
µ-stable sheaf with Mukai vector v unless the following two conditions
simultaneously hold:

•
ξ2 + 2

2r
is an integer;

• 〈v2〉 < 2l2. �

We apply the above lemma in our situation. Note that when v = 2v1
or 2v2, we always have

〈v2〉 = 8s > 8 = 2l2.

The second condition in the above lemma fails, both of the moduli
spaces MX,H(2v1) and MX,H(2v2) contain at least one µ-stable sheaf.
Take into consideration that the µ-stability is an open condition, we
know that each of the two moduli spaces has an open subscheme, which
parametrizes µ-stable sheaves. Moreover, the following lemma due to
Yoshioka shows that a generic point in the µ-stable locus is represented
by a locally free sheaf:

Lemma 3.4. [Yos01, Remark 3.2] Let r be the rank component of the
Mukai vector v. Then the complement of the locus of locally free sheaves
in the moduli of µ-stable sheaves Mµ-st

X,H(v) has codimension r − 1. �

In our situation, the rank of the sheaf is at least 2. So we conclude
that

Corollary 3.5. There are open subschemes U1 and U2 in MX,H(2v1)
and MX,H(2v2) respectively, which parametrize all locally free µ-stable
sheaves with Mukai vector 2v1 and 2v2. �

First of all we need the following lemma, whose proof is very similar
to [Yos99b, Lemma 2.1].

Lemma 3.6. For any µ-stable locally free sheaf G in MH(2v2) and any
non-trivial extension

0 −→ E −→ V −→ G −→ 0,

V is also a µ-stable locally free sheaf.

Proof. Since both E and G are locally free, V is also locally free. As-
sume V is not µ-stable, then we can find a locally free subsheaf K such
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that
degK

rankK
>

deg V

rankV
=

r

r + 1
.

In fact the inequality is strict because otherwise rankK will be a mul-
tiple of r + 1 which is a contradiction. so we have

degK

rankK
>

r

r + 1
>

r − 2

r − 1
=

degE

rankE
.

Since E is stable, there’s no non-trivial map from K to E. So the
composition K −→ V −→ G is non-trivial. Since G is µ-stable, we
have

degK

rankK
6

degG

rankG
= 1.

So now we have
r

r + 1
<

degK

rankK
6 1.

If
r

r + 1
<

degK

rankK
< 1,

then

0 <
rankK − degK

rankK
<

1

r + 1
.

Therefore we must have rankK > r+1, which is absurd. Therefore, we
must have degK

rankK
= 1. Now we consider the non-trivial map ϕ : K −→

G. It can be factored as K ։ Imϕ →֒ G. Since both K and G are
µ-stable, we have

1 =
degK

rankK
6

deg Imϕ

rankImϕ
6

degG

rankG
= 1.

So deg Imϕ
rankImϕ

= 1, which implies that rankImϕ = rankG and deg Imϕ =
degG. We denote Q = cokerϕ, then the support of Q is 0 dimensional.
From the exact sequence K −→ G −→ Q −→ 0, we have the exact
sequence Ext1(Q,E) −→ Ext1(G,E) −→ Ext1(K,E). Since Q has 0
dimensional support and E is locally free, we have Ext1(Q,E) = 0.
Let e ∈ Ext1(G,E) be the extension class of V . Then the image of e
in Ext1(K,E) is given by the following pull back diagram:

0 // E // W //

��

K //

��

N
n

~~||
|
|
|
|
|
|

0

0 // E // V // G // 0.

Note that there’s an injection from K to V , therefore, there’s an em-
bedding from K to W which makes the first row split. This tells us
that the image of e in Ext1(K,E) is 0. From the above discussion we
know that e = 0, which is a contradiction.

So V is µ-stable. �
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By applying the same method, we can prove

Lemma 3.7. For any µ-stable locally free sheaf G in MX,H(2v2), and
any extension given by a 2-dimensional subspace of Ext1(G,E)

0 −→ E⊕2 −→ F −→ G −→ 0,

the sheaf F is a µ-semistable locally free sheaf in MX,H(2v1).

Proof. We consider the push-out diagram

0

��

0

��

E

��

E

��

0 // E⊕2 //

��

F //

��

G // 0

0 // E ⊕ 0 //

��

V //

��

G // 0

0 0

Due to the fact that F corresponds to a two dimensional subspace of
Ext1(G,E), the extension 0 −→ E −→ F −→ V −→ 0 is a non-trivial
extension. We want to show that F is µ-semistable. If not, let K be a
destabilizing sheaf of F . Then we have

degK

rankK
>

degF

rankF
=

r − 1

r
.

Since
degE

rankE
=

r − 2

r − 1
<

degK

rankK
,

we know there’s no non-trivial map from K to E. Therefore the com-
position ϕ : K −→ F −→ V is a non-trivial map. It factor through
K ։ Imϕ →֒ V . By the stability of K and V , we have

degK

rankK
6

deg Imϕ

rankImϕ
6

deg V

rankV
.

So
r − 1

r
<

deg Imϕ

rankImϕ
6

r

r + 1
.

If
r − 1

r
<

deg Imϕ

rankImϕ
<

r

r + 1
,

then we will have

r <
rankImϕ

rankImϕ− deg Imϕ
< r + 1,
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which implies rankImϕ > 2r. Contradiction!

If deg Imϕ
rankImϕ

= r
r+1

, since V is µ-stable, we must have that rankImϕ =

rankV and deg Imϕ = deg V . Let Q = cokerϕ, then Q is supported
on a dimension 0 locus. The exact sequence K −→ V −→ Q −→ 0
gives an exact sequence Ext1(Q,E) −→ Ext1(V,E) −→ Ext1(K,E).
Since the support of Q has codimension 2, we have Ext1(Q,E) = 0.
Let e ∈ Ext1(V,E) be the extension class corresponding to the non-
trivial extension 0 −→ E −→ F −→ V −→ 0, then the image of e in
Ext1(K,E) is given by the pull back diagram

0 // E // H //

��

K //

��

N
n

~~}}
}
}
}
}
}
}

0

0 // E // F // V // 0.

From the construction of pull-back and the fact that K is a subsheaf
of F , we can see that the first row splits, which implies the image of e
in Ext1(K,E) is 0. So e = 0. Contradiction!

This shows that F must be µ-semistable. �

Now we want to prove the extension in the above lemma is essentially
unique.

Lemma 3.8. For any µ-stable locally free sheaf G in MH(2v2), dimExt1(G,E) =
2. In other words, there’s only one such sheaf F up to isomorphisms
as in lemma 3.7.

Proof. We have χ(G,E) = −〈v(G), v(E)〉 = −〈2v2, v0〉 = −2. How-
ever Hom(G,E) = 0 since degG

rankG
> degE

rankE
. By Serre duality, we have

Ext2(G,E) = Hom(E,G).

Assume we have a nontrivial map ϕ : E −→ G. This map factor
through E ։ Imϕ →֒ G. Since both E and G are µ-stable, we have

degE

rankE
6

deg Imϕ

rankImϕ
6

degG

rankG
,

that is
r − 1

r − 2
6

deg Imϕ

rankImϕ
6 1.

If both inequalities are strict, then rankImϕ > r− 2 which is a contra-
diction. Therefore we must have deg Imϕ

rankImϕ
= 1 or deg Imϕ

rankImϕ
= r−1

r−2
.

If deg Imϕ
rankImϕ

= 1, since G is µ-stable, the only possibility is rankImϕ =

rankG = 2 and deg Imϕ = degG = 2. If we denote Q = cokerϕ,
then the support of Q is 0 dimensional. From the exact sequence
E −→ G −→ Q −→ 0, we have another exact sequence Ext1(Q,E) −→
Ext1(G,E) −→ Ext1(E,E). Since Q has 0 dimensional support and
E is locally free, we have Ext1(Q,E) = 0. Due to the fact that E
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is exceptional, we know that Ext1(E,E) = 0. So Ext1(G,E) = 0.
Contradiction!

If deg Imϕ
rankImϕ

= r−1
r−2

, then rankImϕ must be an integer multiple of r − 2.

Since Imϕ is a quotient sheaf of E we must have rankImϕ = r − 1
and deg Imϕ = r − 2. Therefore E = Imϕ. So we conclude that
ϕ : E −→ G must be an injection. However, when r > 4, we know
that rankE = r−1 > 2 = rankG. Contradiction! So for every µ-stable
locally free sheaf G, Hom(E,G) = 0. Hence dimExt1(G,E) = 2 and
we are done. �

Now we are ready to finish the proof of proposition 3.1.

Proof of proposition 3.1. For every locally free µ-stable sheaf G with
Mukai vector 2v2, by lemma 3.7 and 3.8, we have associated it a locally
free µ-semistable sheaf F with Mukai vector 2v1, which establishes a
morphism from the locally free µ-stable locus U2 in MX,H(2v2) to the
moduli space M

µ-ss
X,H(2v1) of µ-semistable sheaves with Mukai vector

2v1. In fact, the extension sequence in lemma 3.7 holds in flat families.
Let V be any affine open subscheme of U2. Let G be the universal sheaf
on V ×X , and let E be the pullback of the exceptional bundle E along
the projection from V ×X to X . Then we have the extension sequence

0 −→ E −→ F −→ G −→ 0

on V ×X , which induces a morphism from V to M
µ-ss
X,H(2v1). Further-

more, the restriction of the above extension sequence to every closed
point in F is exactly the extension sequence in lemma 3.7. Therefore,
the morphism from all the affine subschemes of U2 glue together to give
a morphism

η : U2 −→ M
µ-ss
X,H(2v1).

Now we show this map is injective on closed points. From the exact
sequence

0 −→ E⊕2 −→ F −→ G −→ 0,

we have

0 −→ Hom(E,E⊕2) −→ Hom(E, F ) −→ Hom(E,G).

In lemma 3.8 we have proved Hom(E,G) = 0, so dimHom(E, F ) =
dimHom(E,E⊕2) = 2, which implies that there is only one way to get
a quotient sheaf G.

It’s easy to see that the locus U1 of µ-stable locally free sheaves with
Mukai vector 2v1 is also an open subscheme of Mµ-ss

X,H(2v1). Therefore

η−1(U1)∪U2 is an open subscheme of U2, and hence an open subscheme
of MX,H(2v2). Since both U1 and U2 are smooth, the restriction of η
on η−1(U1)∩U2 is an isomorphism onto its image, which identifies two
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smooth open subschemes of MX,H(2v1) and MX,H(2v2). So we can
conclude that MX,H(2v1) and MX,H(2v2) are birational. �

Finally, we deal with two exceptional cases r = 2 and r = 3. We have
two similar birational results as in the above general case.

Proposition 3.9. For any given s > 1, let X be a projective K3 surface
with Pic(X) = Z[H ] where H is an ample line bundle with H2 =
50s− 28. Consider Mukai vectors

v0 = (5, 2H, 20s− 11),

v1 = (7, 3H, 32s− 18),

v2 = (2, H, 12s− 17).

Then the moduli spaces of semi-stable sheaves MX,H(2v1) is birational
equivalent to MX,H(2v2). �

Proposition 3.10. For any given s > 1, let X be a projective K3
surface with Pic(X) = Z[H ] where H is an ample line bundle with
H2 = 98s− 60. Consider Mukai vectors

v0 = (7, 2H, 28s− 17),

v1 = (10, 3H, 44s− 27),

v2 = (3, H, 16s− 10).

Then the moduli spaces of semi-stable sheaves MX,H(2v1) is birational
equivalent to MX,H(2v2). �

The proof of the above two propositions are completely parallel to the
proof of proposition 3.1. We will not repeat them here. Combining
corollary 2.4, proposition 3.1, 3.9, 3.10, we have proved theorem 1.1.

4. Rank 0 Case

In this section we will prove the following birational equivalence be-
tween a moduli space of rank 0 sheaves and a moduli space of rank 2
sheaves.

Theorem 4.1. Let X be a K3 surface and H be an ample line bundle.
Assume Pic(X) = Z[H ]. Let v1 = (0, 2H,−2) and v2 = (2, 0,−H2).
Then the moduli spaces of sheaves MX,H(v1) and MX,H(v2) are bira-
tional.

Proof. Let v3 = v2 · ch(H) = (2, 2H, 0). Note that by tensoring the line
bundle H , we get an isomorphism between MX,H(v2) and MX,H(v3).
Therefore we only need to prove MX,H(v1) is birational to MX,H(v3).

Let U = { i∗Q ∈ MX,H(v1) |Q is a line bundle supported on a smooth curve C ∈
|2H|}. Then U is an open subscheme of MX,H(v1). We know that
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g(C) = 1 + 1
2
C2 = 1 + 2H2. Furthermore, by Grothendieck-Riemann-

Roch formula, we know that

i∗(ch(Q) · td(C)) = ch(i∗Q) · td(X),

that is,

i∗((1, degQ) · (1,−2H2)) = (0, 2H,−2) · (1, 0, 2).

We can conclude that degQ = 2H2 − 2.

For every i∗Q ∈ U ⊂ MX,H(v1), we construct a sheaf F as a non-trivial
extension

0 −→ O⊕2 −→ F −→ i∗Q −→ 0.

First of all, we have to show that, for a generic i∗Q ∈ U , there’s only
one way to build up such an extension F . In order to prove this, we
need to show that a generic i∗Q ∈ U satisfies dimExt1(i∗Q,O) = 2.

By Serre duality, we know that

Ext1(i∗Q,O) = Ext1(O, i∗Q⊗KX)
∨ = H1(X, i∗Q⊗KX)

∨

= H1(C,Q⊗ i∗KX)
∨ = H0(C,Q∨ ⊗NC/X).

We can find that deg(Q∨ ⊗ NC/X) = deg(Q∨ ⊗ KC) = 2H2 + 2. By
Riemann-Roch formula, we know that

χ(Q∨ ⊗NC/X) = 1− (2H2 + 1) + (2H2 + 2) = 2.

We need to prove that for a generic i∗Q ∈ U , dimH0(C,Q∨⊗NC/X) =
2. By upper-semi-continuity theorem, we only need to show that there
exists at least one i∗Q ∈ U , which makes dimH0(C,Q∨ ⊗NC/X) = 2.

Since Q is an arbitrary line bundle on an arbitrary smooth curve C ∈
|2H|, we only need to prove the following lemma:

Lemma 4.2. Let C be a smooth curve and L be a line bundle on C with
χ(L) = 2. If L is general, then dimH0(L) = 2 and dimH1(L) = 0.

Proof. In contrary we assume the infimum of dimH0(L) of such L’s is
at least 3. Pick any p ∈ C which is not a base point of L. From the
exact sequence

0 −→ L(−p) −→ L −→ Op −→ 0

and its associated long exact sequence

0 −→ H0(L(−p)) −→ H0(L) −→ Cp

−→ H1(L(−p)) −→ H1(L) −→ 0

we know that dimH0(L(−p)) = dimH0(L)− 1, and dimH1(L(−p)) =
dimH1(L) > 1.
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By Serre duality, we have H1(L(−p)) = H0(KC ⊗ L∨(p))∨. We can
again pick a point q ∈ C which is not a base point of KC ⊗ L∨(p).
Then from the short exact sequence

0 −→ KC ⊗ L∨(p− q) −→ KC ⊗ L∨(p) −→ Oq −→ 0

and its associated long exact sequence

0 −→ H0(KC ⊗ L∨(p− q)) −→ H0(KC ⊗ L∨(p)) −→ Cq

−→ H1(KC ⊗ L∨(p− q)) −→ H1(KC ⊗ L∨(p)) −→ 0

we know that

dimH0(KC ⊗ L∨(p− q)) = dimH0(KC ⊗ L∨(p))− 1

and

dimH1(KC ⊗ L∨(p− q)) = dimH1(KC ⊗ L∨(p)).

Again by Serre duality, we know that

dimH1(L(−p + q)) = dimH1(L(−p))− 1 = dimH1(L)− 1

and

dimH0(L(−p+ q)) = dimH0(L(−p)) = dimH0(L)− 1.

So we see that the existence of the line bundle L(−p+ q) conflicts the
assumption. Therefore, there must be a line bundle L with χ(L) = 2,
such that dimH0(L) = 2. By the upper-semi-continuity theorem, we
know that this is true for a generic line bundle on any smooth curve
C. �

Back to the proof of theorem 4.1. We know for a generic i∗Q ∈ U , we
have dimExt1(i∗Q,O) = 2. Therefore, there’s only one way to produce
a sheaf F ∈ MX,H(v3) from i∗Q via the extension

0 −→ O⊕2 −→ F −→ i∗Q −→ 0.

Now we have to prove F is torsion free. In fact, we want to prove, if
i∗Q ∈ U is generic, then F is locally free. We need the following two
lemmas:

Lemma 4.3. Under the above conditions, the sheaf F is locally free if
and only if Q∨ ⊗NC/X is base point free.

Proof. Note that Hom(i∗Q,O⊕2) = 0. By local to global spectral
sequence, we have an isomorphism

Ext1(i∗Q,O⊕2) ∼= H0(Ext1(i∗Q,O⊕2)) = H0(Ext1(i∗Q,O)⊕Ext1(i∗Q,O)).

Therefore, to prove the sheaf F is locally free, we only need to show
the restriction of the two global sections of Ext1(i∗Q,O) to every local
ring, provide a free local extension of the two sheaves.
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Let p be a closed point of C. Over SpecOp, we can assume the curve
is cut by one equation g ∈ Op, and resolve the torsion sheaf i∗Q as

0 −→ Op
· g
−→ Op −→ Op/(g) −→ 0.

Apply the functor Hom(−,O⊕2
p ) we get the long exact sequence

0 −→ Hom(Op,O
⊕2
p ) −→ Hom(Op,O

⊕2
p ) −→ Ext1(Op/(g),O

⊕2
p ) −→ 0.

Therefore, let (ϕ1, ϕ2) be the restriction of two linearly independent sec-
tions of Ext1(i∗Q,O) to the local ringOp, then (ϕ1, ϕ2) ∈ Ext1(i∗Q,O⊕2)p =
Ext1(Op/(g),O

⊕2
p ). They are images of functions (f1, f2) ∈ Hom(Op,O

⊕2
p ).

Then the stalk of the sheaf F over SpecOp is given by the push out
diagram

0 // Op

g

��

(f1,f2)
// O⊕2

p
//

��

Op/(g) // 0

0 // Op
// Fp

// Op/(g) // 0

Therefore, the stalk Fp = O⊕3
p /(f1, f2, g). Since g is the defining equa-

tion of the curve C, g(p) = 0. So Fp is a free Op module if and only if
f1(p) and f2(p) are not simultaneously 0.

Note that (ϕ1, ϕ2) is the restriction of (f1, f2) on the curve C. So Fp

is free when ϕ1(p) and ϕ2(p) are not simultaneously 0. Therefore, as
long as ϕ1 and ϕ2 don’t have common zeroes along C, the sheaf F is
locally free. That is to say, we want the sheaf Ext1(i∗Q,O) to be base
point free for a generic i∗Q.

Furthermore, we can also observe from the above that the sheaf Ext1(i∗Q,O)
is canonically isomorphic to i∗Hom(Q ⊗ OC(−C),OC) = i∗(Q

∨ ⊗
NC/X). So we have H0(X, Ext1(i∗Q,O)) = H0(C,Q∨ ⊗NC/X). There-
fore, the extension F is locally free if and only if Q∨ ⊗ NC/X is base
point free. �

We have already proved that for a generic i∗Q ∈ U , Q∨ ⊗ NC/X has
two dimensional global sections. The next step is to prove that under
this condition, a generic Q∨ ⊗NC/X is base point free.

Lemma 4.4. Let C be a smooth curve and L be a line bundle on C
with χ(L) = 2. For a general L, it is base point free.

Proof. Without loss of generality, we only need to consider all line
bundles L with dimH0(L) = 2 and dimH1(L) = 0. Note that base
point freeness is an open condition in a flat family of line bundles with
constant dimensional cohomology groups. Therefore we only need to
show that there is at least one such line bundle L which is base point
free.
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First of all we can choose a line bundle M such that dimH0(M) = 1
and dimH1(M) = 0. In fact, for any line bundle L with dimH0(L) = 2
and dimH1(L) = 0, let p be a point not in the base locus of L, then
M = L(−p) does the job. We denote the generator of H0(M) by σ.

We claim that there must be a point q which makes M(q) base point
free. In fact, from the exact sequence of cohomology groups, we know
dimH0(M(q)) = 2 and dimH1(M(q)) = 0 for any q ∈ C. We assume
the contrary that for every q ∈ C, M(q) has a base point. Then the
base point must be in the zero locus of σ. Since the zero set of the
section σ is finite, we conclude that there must be a point r ∈ σ−1(0),
which is the common base point ofM(q)’s for all q ∈ C. In particular, r
is the base point of M(r) which is absurd. This proves the lemma. �

From the above two lemmas, we see that for a generic i∗Q ∈ U , the
extension sheaf F we constructed is a locally free sheaf.

Now let’s prove the sheaf F is stable.

Assume that F can be destabilized by a subsheaf L. Since F is locally
free of rank 2, without loss of generality we can further assume rankL =
1 and L is locally free. From degL

rankL
>

deg F
rankF

, we have c1(L) > H . We
assume that L = O(H), since otherwise O(H) also destabilizes F .

Obviously Hom(L,O⊕2) = 0 since degL
rankL

> 0. We also have

Hom(L, i∗Q) = H0(X,L∨ ⊗ i∗Q) = H0(C, i∗L∨ ⊗Q).

Since deg(i∗L∨ ⊗ Q) = degL∨ + degQ = −L · C + degQ = −2H2 +
(2H2 − 2) = −2, we know that Hom(L, i∗Q) = H0(C, i∗L∨ ⊗ Q) = 0.
Therefore Hom(L, F ) = 0. Contradiction!

Finally, let’s prove for every such sheaf F that we obtained by extension

0 −→ O⊕2 −→ F −→ i∗Q −→ 0,

there’s only one sheaf i∗Q ∈ U with dimH0(C,Q∨ ⊗NC/X) = 2 which
produces F . In fact, in the long exact sequence of cohomology groups

0 −→ H0(X,O⊕2) −→ H0(X,F ) −→ H0(X, i∗Q),

we already know that

H0(X, i∗Q) = H0(C,Q) = H1(C,Q∨⊗KC)
∨ = H1(C,Q∨⊗NC/X)

∨ = 0.

So dimH0(F ) = dimH0(O⊕2) = 2. Therefore i∗Q is also uniquely
determined by F .

In the same way as in the proof of proposition 3.1, we can see that
the above extension can also be done in flat falilies, therefore gives a
morphism

η : V −→ MX,H(v3)



20 ZIYU ZHANG

where V is the open subscheme ofMX,H(v1), which parametrizes all line
bundles supported on smooth curves in the linear system |2H| satisfy-
ing the conditions of lemmas 4.2 and 4.4. And the image of η lies in the
smooth open subscheme of MX,H(v3) which parametrizes locally free
stable sheaves with Mukai vector v3. The above discussion also shows
that η identifies V with its image. Since the moduli spaces MX,H(v1)
and MX,H(v3) are both irreducible and of the same dimension, η estab-
lishes a birational morphism fromMX,H(v1) toMX,H(v3). By tensoring
with the line bundle H∨ we see that MX,H(v1) and MX,H(v2) are bira-
tional.

�
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