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Abstract—In the classic multi-armed bandits problem, the goal
is to have a policy for dynamically operating arms that each
yield stochastic rewards with unknown means. The key metric
of interest is regret, defined as the gap between the expected
total reward accumulated by an omniscient player that knows
the reward means for each arm, and the expected total reward
accumulated by the given policy. The policies presented inrfor
work have storage, computation and regret all growing linealy
with the number of arms, which is not scalable when the number
of arms is large. We consider in this work a broad class of mult
armed bandits with dependent arms that yield rewards as a liear
combination of a set of unknown parameters. For this general
framework, we present efficient policies that are shown to dteve
regret that grows logarithmically with time, and polynomially in
the number of unknown parameters (even though the number
of dependent arms may grow exponentially). Furthermore, tlese
policies only require storage that grows linearly in the nunber of
unknown parameters. We show that this generalization is bradly
applicable and useful for many interesting tasks in networls
that can be formulated as tractable combinatorial optimizaion
problems with linear objective functions, such as maximum
weight matching, shortest path, and minimum spanning tree
computations.

. INTRODUCTION
The problem of multi-armed bandits (MAB) is a classic on

of practical interest in which there are large (exponeptial
numbers of arms. In such settings, it is important to comside
and exploit any structure in terms of dependencies between t
arms. We show in this work that when the dependencies take
a linear form, they can be handled tractably with policiest th
have provably good performance in terms of regret as well as
storage and computation.

In this work, we formulate and consider the following
general multi-armed bandit problem. There is a veck¥r
of N random variables with unknown mean that are each
instantiated in an i.i.d. fashion over time. There is a finite
(possibly exponentially large) set of vector actioase F
from which any action can be selected at each time. When
action a is performed, all elements &X that correspond to
non-zero elements ef are observed, and a linear rewartiX
is obtained. This generalization captures a very broadsclas
of combinatorial optimization problems with linear objeet
and unknown random coefficients.

A naive application of existing approaches for multi-armed
bandits, such as the well-known UCB1 index policy of Auer
et al. [5], for this problem would yield poor performance
gcaling in terms of regret, storage, and computation. This

in learning theory. In its simplest form, there a¥earms, each is because these approaches are focused on maintaining and
providing stochastic rewards that are independent andiidertomputing quantities based on arm-specific observatiods an
cally distributed over time, with unknown means. A policy islo not exploit potential dependencies between them. In this
desired to pick one arm at each time sequentially, to maxmiwork, we instead propose smarter policies that explicilet
the reward. MAB problems capture a fundamental tradedffto account the linear form of the dependencies and base all
between exploration and exploitation; on the one handouari storage and computations on the unknown variables directly
arms should be explored in order to learn their parametads, aather than the arms. As we shall show, this saves not only
on the other hand, the prior observations should be exploiten storage and computation, but also substantially redihees
to gain the best possible immediate rewards. MABs havegret.
been applied in a wide range of domains including Internet Specifically, we first present a novel single-arm selection
advertising [[1], [2] and cognitive radio networks [3]] [4].  policy for Learning with Linear Rewards (LLR) requires only

As they are fundamentally about combinatorial optimizatioO(N) storage, and yields a regret that grows essenthlly
in unknown environments, one would indeed expect to firas O(N*Inn), wheren is the time index. We also discuss
even broader use of multi-armed bandits. However, we argoew this policy can be modified in a straightforward manner
that a barrier to their wider application in practice hasrbi®  while maintaining the same performance guarantees when
limitation of the basic formulation and corresponding pi&s, T o ) . o

This is a simplification of our key result in sectibd V whiclves a tighter

WhIC!’l genera”y treat each Z.il’m as an mdep.ender-]t entity Thf(pression for the bound on regret that applies uniformigr dime, not just
are inadequate to deal with many combinatorial problerasymptotically.
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the problem is one of cost minimization rather than rewasdith an unknown real-valued parameter, they presented a gen
maximization. A key step in these policies we propose is thegal policy that provides expected regret thaD{ds logn), i.e.
solving of a deterministic combinatorial optimization i linear in the number of arms and asymptotically logarithmic
linear objective. While this is NP-hard in general (as ifintes in n. They also show that this policy is order optimal in
0-1 integer linear programming), there are still many spleci that no policy can do better thafd( K logn). Anantharam
case combinatorial problems of practical interest which cat al. [9] extend this work to the case wheW simultaneous

be solved in polynomial time. For such problems, the poligylays are allowed. The work by Agrawal |10] presents easier
we propose would thus inherit the property of polynomiab compute policies based on the sample mean that also
computation at each step. has asymptotically logarithmic regret. However, theirigies

We also present in this paper a more general K-arm fareed not be directly applied to our problem formulation in
mulation, in which the policy is allowed to pick’ > 1 this paper, which involves combinatorial arms that canret b
different actions at each time. We show how the single-araharacterized by a single parameter.
policy can be readily extended to handle this and present theéDur work is influenced by the paper of Auet al. [5]
regret analysis for this case as well. that considers arms with non-negative rewards that ark i.i.

Through several concrete examples, we show the applicer time with an arbitrary un-parameterized distributibat
bility of our general formulation of multi-armed banditstivi has the only restriction that it have a finite support. Furthe
linear rewards to combinatorial network optimization. $&e they provide a simple policy (referred to as UCB1), which
include maximum weight matching in bipartite graphs (whichchieves logarithmic regret uniformly over time, rathearth
is useful for user-channel allocations in cognitive rad&i-n only asymptotically. However, their work does not exploit
works), as well as shortest path, and minimum spanning tneetential dependencies between the arms. As we show in this
computation. The examples we present are far from exhaustpaper, a direct application of their UCB1 policy therefore
the possible applications of the formulation and the pesicve performs poorly for our problem formulation.
present in this work — there are many other linear-objective There are also some recent works to propose decentralized
network optimization problems [6][[7]. Our framework, forpolicies for the multi-armed bandit problem. Liu and Zhah [4
the first time, allows these problems to be solved in stoahasand Anandkumaet al. [3] have both developed policies for
settings with unknown random coefficients, with provablthe problem ofd/ distributed players operatiny independent
efficient performance. arms.

We expect that our work will also find practical application While these above key papers and many others have focused
in other fields where such linear combinatorial optimizatioon independent arms, there have been some works treating
problems arise naturally, such as algorithmic economiata ddependencies between arms. The paper by Paatey. [1]
mining, finance, operations research and industrial eeginedivides arms into clusters of dependent arms (in our case
ing. there would be only one such cluster consisting of all the

This paper is organized as follows. We first provide arms). Their model assumes that each arm provide only binary
survery of related work in sectidn] Il. We then give a formalewards, and in any case, they do not present any theoretical
description of the multi-armed bandits with linear rewardgnalysis on the expected regret. Ortner [11] proposes tamse
problem we solve in sectidn]ll. In sectionllV, we present ouadditional arm color, to utilize the given similarity infoation
LLR policy and show that it requires only polynomial storagef different arms to improve the upper bound of the regret.
and polynomial computation per time period. We present tHdiey assume that the difference of the mean rewards of
novel analysis of the regret of this policy in sectioh V anihpo any two arms with the same color is less than a predefined
out how this analysis generalizes known results on MAB. Iparameten, which is known to the user. This is different from
sectior V], we discuss examples and applications of maximuhe linear reward model in our paper.
weight matching, shortest path, and minimum spanning treeMersereatet al. [12] consider a bandit problem where the
computations to show that our policy is widely useful foexpected reward is defined as a linear function of an random
various interesting applications in networks with the talte variable, and the prior distribution is known. They show the
combinatorial optimization formulation with linear obja@ upper bound of the regret i©(,/n) and the lower bound
functions. Sectiofi V]I shows the numerical simulation tessu of the regret is2(y/n). Rusmevichientong and Tsitsiklis [13]
We show an extension of our policy for choosiig largest extend [12] to the setting where the reward from each arm
values in section_VIII. Finally, we conclude with a summarys modeled as the sum of a linear combination of a set of
of our contribution and point out avenues for future work ininknown static random numbers and a zero-mean random
section IX. variable that is i.i.d. over time and independent acrosssarm

The upper bound of the regret is shown to ®éN+/n) on
Il. RELATED WORK the unit sphere an@(N/nlog®? n) for a compact set, and

Lai and Robbins[[8] wrote one of the earliest papers on thiee lower bound of regret i§}(N,/n) for both cases. The
classic non-Bayesian infinite horizon multi-armed bandityp linear models in these works are different from our paper in
lem. Assuming K independent arms, each generating rewawdsich the reward is expressed as a linear combination as a
that are i.i.d. over time from a given family of distribut®n set of random processes. Also, [12] ahd|[13] assume that only



the reward is observed at each time. In our work, we assumeéNhen a particular action/arm(n) is selected, the random
that the random variables corresponding to non-zero actieariables corresponding to non-zero components of a(n) are
components are observed at each time (from which the rewaesteale8, i.e., the value ofX;(n) is observed for all i such
can be inferred). thata(n) # 0.

Both [14] and [15] consider linear reward models that are We evaluate policies with respectregret which is defined
more general than ours, but also under the assumption thatthe difference between the expected reward that could be
only the reward is observed at each time. Aler [14] presentshtained by a genie that can pick an optimal arm at each time,
randomized policy which requires storage and computationand that obtained by the given policy. Note that minimizing
grow linearly in the number of arms. This algorithm is showthe regret is equivalent to maximizing the rewards. Regaat ¢
to achieve a regret upper bound 6(v/Ny/nlog? (n|F|)). be expressed as:

Dani et al. [15] develop another randomized policy for the

case of a compact set of arms, and show the regret is upper RT(O) =nd* —E™ [Z Ry (t)], )
bounded byO(N/nlog®?n) for sufficiently largen with =1

high probability, and lower bounded Ky(N\/n). They also N

show that when the difference in costs (denotedhpbetween wheref* = max > a;0;, the expected reward of an optimal

the optimal and next to optimal decision among the extremgly, For the rest of the paper, we usas the index indicating

poi]r\1]t23 issgreater than zero, the regret is upper bounded Py 5 narameter is for an optimal arm. If there is more than
O(%-log” n) for sufficiently largen with high probability. To 4 optimal arm exists refers to any one of them.

our best knowledge, ours is the first paper to consider ”nearlntuitively we would like the regrefi7 () to be as small
. . . 1 n
rewards with observation of the random variables corredporhs possible. If it is sub-linear with respect to timethe time-

ing to non-zero action components. We present a determeinisiyeraged regret will tend to zero and the maximum possible
policy with a deterministic combinatorial linear optimiZ®  ime_averaged reward can be achieved. Note that the number

problem finite time bound of regret which gro@¢ N logn), o arms | F| can be exponential in the number of unknown
i.e., polynomially in the number of unknown random variable,5nqom variablesy.

and strictly logarithmically in time.
Our work in this paper is an extension of our recent work IV. PoLicy DESIGN
which introduced combinatorial multi-armed bandits|[THje A, A Naive Approach

formulation in [18] has_the_ restri.ctior} that the reward is straightforward, relatively naive approach to solving th
generated from a matching in a bipartite graph of users a Iti-armed bandits with linear regret problem that we dedin

channels. Our work in this paper generalizes this to a bnoac#gto use the UCBL policy given by Auet al. [5]. For UCBL,

formulation with linear reward, where the action vectorr L I
a finite set. the arm that maximize¥, + ,/m—k will be selected at each

time slot, whereY;, is the mean observed reward on akm
Ill. PROBLEM FORMULATION andmy, is the number of times that ari has been played.

Now we define the problem of multi-armed bandits wit[ his approach essentially ignores the dependencies atr@ss
linear rewards that we solve in this paper. We considerdifferent arms, storing observed information about each ar
discrete time system withV unknown random processesndependently, and making decisions based on this infoomat
X;(n),1 < i < N, where time is indexed by.. We assume alone.
that X;(n) evolves as an i.i.d. random process over time, with Auer et al. [5] showed the following policy performance for
the only restriction that its distribution have a finite sogp regret upper bound as:
Without loss of generality, we normaliZé;(n) € [0,1]. Wedo  Theorem 1: The expected regret under UCB1 policy is at
not require thatX;(n) be independent acrogs This random most
process is assumed to have a méaa F[X;] thatis unknown

to the users. We denote the set of all these meafs-as(6;}. Inn 7w’
A0:3 [8 YF| Y A @

At each decision periodi (also referred to interchange- Kby 20" Ay Kby <6
ably as time slot), anN-dimensional action vectoa(n),
representing an arm, is selected under a pofi¢y) from WhereAy =6 — 6y, 0p = 5. aib:.
a finite set7. We assumez;(n) > 0 forall 1 < i < N. Proof: See [5, Theoremzelf.k
When a particulara(n) is selected, only for those with ) m

ai(n) # 0, the value ofX;(n) is observed . We denote Note that UCB1 requires storage that is linear in the number

Aay = {i : ai(n) # 0,1 < i < N}, the index set of all of arms and yields regret growing linearly with the number of
a;(n) # 0 for an arma. We treat eacla(n) € F as an arm.
The reward is defined as: 2As noted in the related work, this is a key assumption in ourkvthat
differentiates it from other prior work on linear dependann bandits[[14],
[15]. This is a very reasonable assumption in many casesn$tance, in the
Ragmy(n) = Z a;(n)X;(n). (1) combinatorial network optimization applications we disgun sectiof VI, it
i1 corresponds to revealing weights on the set of edges sélatteach time.



arms. In a case where the number of arms grow exponentially

with the number of unknown variables, both of these are kighl | V number of random variables.

unsatisfactory. a: vectors of coefficients, defined on s&t
Intuitively, UCB1 algorithm performs poorly on this prob- we map eacha as an arm.

lem because it ignores the underlying dependencies. Thig Aa’ {izai #0,1<i< N} _

motivates us to propose a sophisticated policy which more ef| * index indicating that a parameter is for ar

ficiently stores observations from correlated arms andaétepl optimal arm.

the correlations to make better decisions. mi: number of times thak’; has been observed

) up to the current time slot.

B. A new policy 0;: average (sample mean) of all the observed
Our proposed policy, which we refer to as “learning with values ofX; up to the current time slot.

linear rewards” (LLR), is shown in Algorithii] 1. Note thatE[éi(n)] — 0,

0:m,: average (sample mean) of all the observed

Algorithm 1 Learning with Linear Rewards (LLR) 16 :
values of X; when it is observedn; times.

: // INITIALIZATION

=

2: If max|Aa| is known, letL = max|A,|; else,L = N; Nal R = Ra .

Y a Apin:  min A,.
3. for p=1to N do aFa*
4: n=mns Amax: max Aa.

b, ) aFa*

5  Play any arma such thapp € Aa; Ta(n): number of times armna has been played
6:  Update(f;)1xn, (m;)1xn accordingly; in the firstn time slots.
7: end for Gmax:  Maxmaxa;.
8: // MAIN LOOP acF i TABTET
9: while 1 do NOTATION
10: n=mn++1;
11: Play an arma which solves the maximization problem

A (L+1)lnn Note that while we indicate the time index in the above
a = argmax a; | 0; +———— | ; (4) updates for notational clarity, it is not necessary to sthee
acF m; . . . . . .
i€Aa matrices from previous time steps while running the algonit
LLR policy requires storage linear itv. In section VY, we
will present the analysis of the upper bound of regret, amavsh
that it is polynomial inN and logarithmic in time. Note that
the maximization problenfi{4) needs to be solved as the part of
PR policy. It is a deterministic linear optimal problem Wit
a feasible sefF and the computation time for an arbitrafy
ay not be polynomial inV. As we show in Sectioh VI, that
re exists many practically useful examples with polyram
8mputation time.

12:  Update(0;)1xn, (ms)1xn accordingly;
13: end while

Table[l summarizes some notation we use in the descripti
and analysis of our algorithm.

The key idea behind this algorithm is to store and u
observations for each random variable, rather than for eg
arm as a whole. Since the same random variable can be
served while operating different arms, this allows exjaltiitn
of information gained from the operation of one arm to make
decisions about a dependent arm.

We use twol by N vectors to store the information after Traditionally, the regret of a policy for a multi-armed bénd
we play an arm at each time slot. One(&)1x~ in which problem is upper-bounded by analyzing the expected number
6, is the average (sample mean) of all the observed valuesodtimes that each non-optimal arm is played, and the summing
X; up to the current time slot (obtained through potentiallthis expectation over all non-optimal arms. While such an
different sets of arms over time). The other onéris )1 xn in  approach will work to analyze the LLR policy too, it turns
which m, is the number of times thaX; has been observedout that the upper-bound for regret consequently obtaised i
up to the current time slot. quite loose, being linear in the number of arms, which may

At each time slotn, after an arma(n) is played, we get grow faster than polynomials. Instead, we give here a tighte
the observation ofX;(n) for all i € A,q,). Then (0;)1xn analysis of the LLR policy that provides an upper bound which
and (m;)1xn (both initialized to O at time O) are updated asgs instead polynomial inV and logarithmic in time. Like the

V. ANALYSIS OF REGRET

follows: regret analysis in_|5], this upper-bound is valid for finite
. i(n—1)m;(n—1)+X,(n) ificA Theorem 2: The expected regret under the LLR policy is
Oi(n) =q .~ mu=bH ’ am(5)  at most
O;(n—1) , else

2 2 2
oy miln=1+1 , ifie Ay Ao (L DN o 72y Apmax. (7
mi(n) = { mi(n —1) , else ©) (Amin)? 3 "




To proof Theorerl]2, we use the inequalities as stated in thach time thaﬁ-(t) =1, we could get different arms. Then,
Chernoff-Hoeffding bound [17].

Lemma 1 (Chernoff-Hoeffding bound [17]): ) <1+ Z 1{ Z ? (t—1) T Ct—1.m, (1~ 1))
Xi1,...,X, are random variables with rang@,1], and t=N+1  jEAqx
E[X¢X1,...,X¢—1] = u, V1 <t < n. DenoteS,, = >_ X;. < 5 C T(t—1)>1
Then for alle > 0 Z @i (8)(0jm; (1-1) + Cro1.m; 1)) Ti ) =1}
JEAa(e)
PT{SnZnM+a}§672a2/n <Z+Zﬂ{ Z ]mj t)+Oth t))
—2a2/ (8) JEALx
Pr{S, <np—a} <e ?*/" @
< Z a;(t 7mj(t)+ctmj(t)) ()>l}
JEAa(e)
Proof of Theoreni]2: DenoteC, ,,,, as M We (12)

introducef( ) as a counter after the |n|t|aI|zat|0n period. Ityoie thatl < T(t)
is updated in the following way:

At each time slot after the initialization period, one of the < T(t) < my(t), V) € Aaqr)- (13)
two cases must happen: (1) an optimal arm is played; (2)
a non-optimal arm is played. In the first cas&;(n))1xn

implies,

. N [Aax|
won't be updated. When an non-optimal aefn) is picked ~ - ) . =
at time n, there must be at least oniec A, such thati = HOEEDY ]l{o<mh1,,?},l,?m < z_: @h; Onymn, + Crom,)
arg mi‘n m;. If there is only one such arrl; (n) is increased N =1
a(t)
by 1. If there are multiple such arms, we arbitrarily pick one, < 5
ma; (t)(0 +C
sayi’, and incremenfl;, by 1. - lSmPl""’m:Aa(t)\S ; (0)( Pjsmp; tmm)}
Each time when a non-optimal arm is picked, exactly one ot ¢ t t
element in(T;(n))1xn is incremented by. This implies that <+ Z Z Z Z Z
the total number that we have played the non-optimal arms =Ly =1 =lmp, =l my =l
is equal to the summation of all counters {f;(n))1x . M a®
Therefore, we have: e s
11{ Z ahj (ohjymh,j + Ct,mh,j)
N =1
~ Aa
> Elfa(n)] = Y_E[Ti(n)]. ©) o
a:aza* i=1 < Z apg Op;, My + G My )}

(14)

whereh,; (1 < j < |Aa.|) represents thg-th element inA,.
andp; (1 < j < |Aa|) represents thg-th element ind, ).

Also note forﬁ-(n), the following inequality holds:

T;(n) < m;(n),v1 <i < N. (10) | A | - [ Aagl -
le a;(ehwmh- + G mh-) < 3221 apj(t)(epjampj +
Denote byfl-( ) the indicator function which is equal to Ct, My, ) means that at least one of the following must be true:
1if T;(n) is added by one at time. Let [ be an arbitrary Aus | Au|
positive integer. Then: Z fl?ij-?hj,mhj < R — Z a5, Cromy, (15)
" [Aacs)l N [Aacel
i(”) = Z ﬂ{i(t) =1} Z p; (t)epj7mpj 2 Ra) + Z Op; (t)ct,mpja (16)
— —
t=N+1 (11) J j
[Aacsl
<l+ 1{L(t t—1)>1 .
PORCEEEL R <R+ S a0, D)
j=1

[Aas| -

where 1(z) is the indicator function defined to be 1 Wher}\lowwe find the upper bound fa?r{ Z ot b < R*
h;Yhgmp; = v
=1

the predicater is true, and 0 when it is false. Whelp(t )
1, a non-optimal arma(t) has been picked for whichy; = [ Aa.]

min{m; : Vj € Aa) }. We denote this arm as(t) since at 21 @, Ct,mh,j}-
J J=



We have:
Note that forl > % ,
)
\.Aa*| ~ ‘-Aa*‘ ‘-Aa(t)|
Pr{Y " ai,0n,m,, <R =Y af Com, } R* — Ray — 2 Z ap; ()Cim,,
Jj=1 j=1 .
[Aasl [Aax| | Aax| |Aa<t>\
=Pr{> aj Onm,, < Y @i 00, — Y ah Cim, } = R~ Ry — 2 Z o T 1)lnt
i=1 i=1 i=1 ’ Ps
< Pr{At least one of the following must hold: LT Dn (20)
x5 * * > R* — Ra(y) — Lamax\| —————
ah19h1,mh1 < ahlehl - ahlct,mhlu - a(t) “ l
* = * * 2
a’h20h2-,mhg < ah29h2 - ah2ct,mh,25 >R'—R — La... 4(L + 1) Inn Aa(t)
. - at) (max 4(L+1)Inn \ Lamax

> R* — Rat) — Dapy) = 0.

* n *
<
ah\Aa*\ohhmh\Aa*\ - ah\Aa*\eh\Aa*\

Equation [(2D) implies that condition ({15) is false whea
- GZ\AM\ Ctvmhma*\ } 4(L+1)1 4(L+1)1
. MLV | 1 we let ] = T‘”‘ then [I5) is false
5 o £ (7o)
< Z Priaj, On;mn, < aj,0n; = ah, Crm,, } for all a(?)
j=1 :
|§ Therefore_,
Pr{b‘h o, < = Ctomy, }
~ 4(L+1)lnn
ETi(n)] < | —— =
( Amin )
Lamax

V1 < j < |Aa.|, applying the Chernoff-Hoeffding bound

stated in Lemm&l1, we could find the upper bound of each ¢ ¢ ¢ ¢ B
item in the above equation as, + Z Z Z Z 2Lt~
t=1 \ mp, =1 mh,‘A*‘:1 mp, =l mp‘Aa(t)‘:l
0. o a2, L*(L+1)1 >
Pr{oh]-,mhj AS oh] Ot.,mhj} < Amax A( +2 ) nn +1+ LZZt—Q
= Pr{my,0n,, i, < M Ohy —mp, Cim,. } ( zmin) ;:1
’ 4a%  L*(L+1)Inn v
_ mh 2 (L+D)iInt max -
B L s T < T +1+ L.
— o 2(L+1)Int (22)
= ¢ 2L+ So under LLR policy, we have:
Thus, RT(O) = R*n — E7| Z R (t)
[Aacl | Aax] = > AJE[T
P’I’{ Z a;;johj-,mhj <R - Z a;;jct-,mhj} a:Ra<R*
=t =t (18) < Apax E[Ta(n)]
S |Aa*|t72(L+l) aiRaZ<R* i
< Lt_2(L+1). N N
= Apax ZE[Tl (n)]
Similarly, we can get the upper bound of the probability for , ,
i i : 4 LA(L+ 1)1
inequality [16): < Z a2 L2 ( ! )Inn LN+ %LN Ao
i=1 (Amin)
IAa(t)I IAa(t)I 2 2
ES 4a%  L*(L+1)N1Inn s
Pr{ Z Qp; (t)epjvmpj 2 Raq) + Z Gp; (t)ot=mpj} [ (i )2) + N+ ?LN Amax-
=1 j=1 min
< L2+ (22)

(19) ]



Remark 1: Note that when the set of action vectors consists single channel for operation that does not conflict with
of binary vectors with a single “1”, the problem formulatiorthe channels assigned to the other users. Due to geographic
reduces to an multi-armed bandit problem wiNhindependent dispersion, each secondary user can potentially see dfiffer
arms. In this special case, the LLR algorithm is equivalent primary user occupancy behavior on each channel. Time is di-
UCBL in [5]. Thus, our results generalize that prior work. vided into discrete decision rounds. The throughput oltzlim

Remark 2: We have presentedd as a finite set in our from spectrum opportunities on each user-channel conmbmat
problem formation. We note that the LLR policy we havever a decision period is denoted 8s; and modeled as an
described and its analysis actually also work with a more gearbitrarily-distributed random variable with bounded gog
eral formulation whenF is an infinite set with the following but unknown mean, i.i.d. over time. This random process is
additional constraints: the maximization problem[ih (4y@s assumed to have a medp; that is unknown to the users.
has at least one solution,,;,, exists;a; is bounded. With the The objective is to search for an allocation of channels for a
above constraints, Algorithil 1 will work the same and thesers that maximizes the expected sum throughput.
conclusion and all the details of the proof of Theorldm 2 can Assuming an interference model whereby at most one
remain the same. secondary user can derive benefit from any channel, if the

Remark 3: Theorem[2 also holds for random variablesumber of channels is greater than the number of users, an
X;,1 < ¢ < N that are not i.i.d. over time, but with theoptimal channel allocation employs a one-to-one matching o

only weaker assumption that[ X (¢)|X;(1),..., X;(t—1)] = users to channels, such that the expected sum-throughput is
0;,V1 < i < N. This is because the Chernoff-Hoeffding boun¢ghaximized.

only needs a weak assumptida[X;(t)|X;(1),..., X;(t — Figure[1 illustrates a simple scenario. There are two sec-
)] =0;,V1<i<N. ondary users (i.e., links) S1 and S2, that are each assunbed to

in interference range of each other. S1 is proximate to pgima
user P1 who is operating on channel 1. S2 is proximate
We now describe some applications and extensions of e primary user P2 who is operating on channel 2. The
LLR policy for combinatorial network optimization in graph matrix shows the correspondir®, i.e., the throughput each
where the edge weights are unknown random variables. secondary user could derive from being on the corresponding
channel. In this simple example, the optimal matching is for
secondary user 1 to be allocated channel 2 and user 2 to be
Maximum Weighted Matching (MWM) problems areallocated channel 1. Note, however, that, in our formufgtio
widely used in the many optimization problems in wirelesghe users are nat priori aware of the matrix of mean values,

networks such as the prior work in [18], [19]. Given any graphind therefore must follow a sequential learning policy.
G = (V, E), there is a weight associated with each edge and

the objective is to maximize the sum weights of a matching cl1 2
among all the matchings in a given constraint set, i.e., the
general formulation for MWM problem is

VI. APPLICATIONS

A. Maximum Weighted Matching

0.3 0.8

P2 ()
0.9 0.2 £

2 szqO ‘;

Fig. 1. An illustrative scenario

|2

max RMWM — Z a;W;
@)

s.t. ais a matching

whereW; is the weight associated with each edge

In many practical applications, the weights are unknown i )
random variables and we need to learn by selecting different\Ot€ that this problem can be formulated as a multi-armed
matchings over time. This kind of problem fits the gener@@ndits with linear regret, in which each arm corresponds
framework of our proposed policy regarding the reward 48 @ matching of the users to channels, and the reward

the sum weight and a matching as an arm. Our proposgyresponds to .the sum-throughput. In this channel allocat
LLR policy is a solution with linear storage, and the regrétroPlem, there is\/ x @ unknown random variables, and the

polynomial in the number of edges, and logarithmic in timefumber of arms aré”(Q, M), which can grow exponentially

Since there are various algorithms to solve the differelt e number of unknown random variables. Following the
variations in the maximum weighted matching problems, sugqnvention, instead of denoting the variables as a vecter, w
as the Hungarian algorithm for the maximum weighted bipai€fer it @ al/ by @ matrix. So the reward as each time slot
tite matching [[20], Edmonds’s matching algorithin[21] for &Y choosing a permutatioa is expressed as:
general maximum matching. In these cases, the computation
time is also polynomial. _ Ra = ai;S;; (24)

Here we present a general problem of multiuser channel e
allocations in cognitive radio network. There avesecondary
users andy orthogonal channels. Each secondary user requingkerea € F, F is a set with all permutations, which is defined



as: by changing the maximization problem in to a minimization
Q Q problem. For clarity, this straightforward modificationldfR

F={a:a;; €{0,1},¥i,j A Zaiﬂ' =1A Zam =1}.  is shown below in Algorithni2, which we refer to as Learning
i1 =1 with Linear Costs (LLC).

(25)
We use twoM by @@ matrices to store the information afterAlgomhrn 2 Learning with Linear Cost (LLC)
1: // INITIALIZATION PART IS SAME AS IN ALGORITHM[I

we play an arm at each time slot. One(#5 )« in which M
6, ; is the average (sample mean) of all the observed values //h'l Al'Nd'-OOP
of channelj by useri up to the current time slot (obtained * W€ 1 A0

through potentially different sets of arms over time). Titigeo 4f g|: n+ L hich sol the minimizati bl

one is(m; ;j)mx¢q in which m, ; is the number of times that > dy an arm which solves the minimization problem

channelj has been observed by useup to the current time . A (L+Dln

slot. a = arg min a; | 0;—y/——|; (30)
Applying Algorithm[1, we get a linear storage policy for AET A i

which (0; ;)mxg and (m; ;)mxq are stored and updated at

each time slot. The regret is polynomial in the number ofsiser

and channels, and logarithmic in time. Also, the computatio
time for the policy is also polynomial sindgl (4) in Algoritiih
now becomes the following deterministic maximum weighted LLC (Algorithm [2) is a policy for a general multi-armed

bipartite matching problem bandit problem with linear cost defined on any constraint set
It is directly derived from the LLR policy (Algorithrh]1), so

argma Z (ém n (L+ 1‘)‘1nn> (26) Theoreni 2 also holds for LLC, where the regret is defined as:

6:  Update(f;)1xn, (mi)1xn accordingly;
7: end while

m n
(i-d)€Aa " w 4 *

o ' _ _ R71(0) = E™[_ Criy(t)] — nC (31)
on the bipartite graph of users and channels with edge wsight =1

(ei,j T/ W) It could be solved with polynomial whereC* represents the minimum cost, which is cost of the

computation time (e.g., using the Hungarian algorithm Y20Joptimal arm.

Note thatL = max|Aa| = min{M,Q} for this problem,  Using the LLC policy, we map each path betweeandt as

which is less thadl/ x @ so that the bound of regret is tighteran arm. The number of unknown variables &t#, while the

The regretig)(min{M, Q}>*MQ logn) following Theoreni2. number of arms could grow exponentially in the worst case.

Since there exist polynomial computation time algorithonshs

B. Shortest Path as Dijkstra’s algorithm[22] and Bellman-Ford algorithn8[2
Shortest Path (SP) problem is another example wheg&] for the shortest path problem, we could apply these

the underlying deterministic optimization can be done WitQIgorithms to solve[(30) with edge coét — (L+nl1) Inn

polynomial computation time. If the given directed graph ig| ¢ js thus an efficient policy to solve the multi-armed bandi

denoted as = (V, E) with the source node and the tomnyation of the shortest path problem with linear sterag
destination nodel, and the cost (e.g., the transmission dela blynomial computation time. Note that= max [Aa| = |E].
associated with edgéi,j) is denoted asD,,; > 0, the . 4 a N

' Regret isO(|E|* logn).

objective is find the path from to d with the minimum sum
) P Another related problem is the Shortest Path Tree (SPT),

cost, i.e., N LT
where problem formulation is similar, and the objectiveads t
min C5F = Z a; ;D ; (27) find a subgraph of the given graph with the minimum total
(i,5)€E cost between a selected roohode and all other nodes. It is
st aij€{0,1),¥(i,j) € E (28) expressed a$ [25], [26]:
1 : i=s min CFT = Z a; ;D j (32)
Vi, Zai’j - Z aj; =4 —1 : 1=1 _ (29) (i.)EE
j j 0 . otherwise sit. ai; €{0,1},Y(i,5) € E (33)
where equatiori (28) and (29) defines a feasible/seduch that Z i — Z a -
F is the set of all possible pathes fronto d. When(D;;) are y S o
. - (4,4)€BS(i) (i,5)€FS(4)
random variables with bounded support but unknown mean, 1. i
i.i.d. over time, an dynamic learning policy is needed fds th = { l_n * ) ! _‘8/ (34)
multi-armed bandit formulation. ieV/ist

Note that corresponding to the LLR policy with the objecwhere BS(:) = {(u,v) € E: v =1}, FS(i) = {(u,v) € E:
tive to maximize the rewards, a direct variation of it is tadfinu = i}. (34) and [(3B) defines the constraint st We can
the minimum linear cost defined on finite constraint 36t also use the polynomial computation time algorithms such as



Dijkstra’s algorithm and Bellman-Ford algorithm to soll8Jf secondary users. The throughpi; ;(t)}.>1 for the user-

for the LLC policy. channel combination is an i.i.d. Bernoulli process with mea
0;.; ((0;,;) is unknown to the players) shown as below:

C. Minimum Spanning Tree

- . : o 0.3 05-07 08 09 06
Minimum Spanning Tree (MST) is another combinatorial
: i - , 0.2 0.2 04-0405
optimization with polynomial computation time algorithms (¢, ;) =
such as Prim’s algorithm [27] and Kruskal’s algorithm [28]. 06 05 04 07 0.8
The objective for the MST problem can be simply presented 09 02 02 08 03 - 0.6 36)
as
. ~MST _ 5 where the components in the box are in the optimal arm.
gggc N Z @i Di; (35) Note that P(7,4) = 840 while 7 x 4 = 28, so the storage
used for the naive approach 3¢ times more than the LLR
where F is the set of all spanning trees in the graph. policy. Fig[2 shows the regret (normalized with respect ® th
With the LLC policy, each spanning tree is treated as degarithm of time) over time for the naive policy and the LLR
arm, andL = |E|. Regret bound also grows &5|E|*logn). policy. We can see that under both policies the regret grows
logarithmically in time. But the regret for the naive polity
VII. NUMERICAL SIMULATION RESULTS a lot higher than that of the LLR policy.
Fig[3 is another example of the case whgnr= 9 and M =
5. The throughput is also assumed to be an i.i.d. Bernoulli
process, with the following mean:

Naive Plolicy (GZJ) =
LLR Policy
. 0.3 0.5 - 0.7 08 09 06 08 0.7

02 0.2 04 05 04 05 06
] 08 06 05 04 0.7 02 0.2 0.8
02 02 08 03 09 06 05 04

1 06 0.7 05 0.7 06 02 0.6 038

(i,5)€EE

2500

2000

Regret/Log(t)

(37)

0 0.2 0.4 0.6 0.8 1 12 14 16 18 2

Time x10° For this exampleP(9,5) = 15120, which is much higher
than 9 x 5 = 45 (about336 times higher), so the storage
used by the naive policy grows much faster than the LLR
policy. Comparing with the regrets shown in Table Il for both
examples whert = 2 x 10, we can see that the regret also
grows much faster for the naive policy.

Fig. 2. Simulation Results of a system withorthogonal channels antl
users.

x 10"

w

TABLE I
REGRET WHENt = 2 x 106

S Naive Policy LLR
LLR Policy 7 channels, 4 users 2443.6 163.6
1 9 channels, 5 users 24892.6 345.2

[
)
T

~
T

Regret/Log(t)
P~
o

N
T

o
@
T

VIIl. K SIMULTANEOUS ACTIONS

0

o o0z 04 o5 o8 T; 12 1 16 1 2 The reward-maximizing LLR policy presented in Algorithm
e @ and the corresponding cost-minimizing LLC policy pre-
Fig. 3. Simulation Results of a system withorthogonal channels an@l sented i 2 can also_ be extended to th_e setting _w!_ffeaafms
users. are played at each time slot. The goal is to maximize the total
rewards (or minimize the total costs) obtained by théSe
We present in the section the numerical simulation resuRéms. For brevity, we only present the policy for the reward-
with the example of multiuser channel allocations in cagait Maximization problem; the extension to cost-minimizatisn
radio network. straightforward. The modified LLR-K policy for picking the
Fig [2 shows the simulation results of using LLR policy’X best arms are shown in Algorithinh 3.
compared with the naive policy L IVAA. We assume that the Theorem[B states the upper bound of the regret for the
system consists of) = 7 orthogonal channels in ant = 4 extended LLR-K policy.
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Algorithm 3 Learning with Linear Rewards while selecting Equation [I5) to[{20) are similar by substitutimg with

K arms (LLR-K) a®™. So, we have:
1: // INITIALIZATION PART IS SAME AS IN ALGORITHM[T]
2: // MAIN LOOP ~ 4(L+1)Inn
3: while 1 do BT < | ———+
4: n=n+1; (La:.‘:x)
5: Play arms{a}x € F with K largest values in(38)

Kt

oo Kt Kt Kt
f + ... ... o [t—2(L+1)
Z a; éz + W : (38) ; mg_l mh,g =1 mg—l mpg) =l

i€ Aa
) o S4aﬁlaxL2(L+1)lnn+1+7r_2LK2L.
6: Update(d;)1xn, (m;)1xn for all arms accordingly; (Amin)? 3
7: end while (42)
Hence, we get the upper bound for the regret as:
Theorem 3: The expected regret under the LLR-K policy, . 4a2  L*(L+1)Nlnn w2 or
with K arms selection is at most NL(O) < . + N+ 5 LETN Amax-
43)
462 L*(L +1)N1 2 (
Amax ( + 2) nn + N+ W_LKQLN Amax- (39) -
(Amin) 3
IX. CONCLUSION
Proof:

The proof is similar to the proof of Theorefh 2, but now we We have considered multi-armed bandit problems that pro-

have a set of arms with K largest expected rewards as th&ide for arms with rewards that are a linear function of a
optimal arms. We denote this sets = {a**,1 < k < K smaller set of random variables with unknown means. For

wherea** is the arm withk-th largest expected reward. A _such problems, if the number of arms is exponentially large

in the proof of Theorerfl2, we defirﬁ(n) as a counter when N the r_lumber o_f _underlying random variables, existing arm-
a non-optimal arm is played in the same way. Equatian ((ﬁgsed index policies such as the well-known UCB1 [5] have

(10), [I1) and[{IB) still hold. poor performance in terms of storage, computation, andtegr
N(')te that each time wheﬁ(t) — 1. there exists some The LLR and LLR policies we have presented are smarter
arm such that a non-optimal 1arm is p,icked for which is in that they store and make decisions at each time based

the minimum in this arm. We denote this arm @). Note on the stochastic observations of the underlying unknown-

that a(f) means there exists:, 1 < m < K, such that the mean random variables alone; they require only linear giora
following holds: oo T and result in a regret that is bounded by a polynomial

function of the number of unknown-mean random variables. If

~ n IS the deterministic version of the corresponding combinator
Titn) <1+ > 4 > a7 (0m;0) + Cramy ) optimization problem can be solved in polynomial time, our
t=N jEAaxm (40) policy will also require only polynomial computation peept
< Z aj ()1 + Cromy ), Ti(t) > 1} We have shown a number of problems in the context of

networks where this formulation would be useful, including

maximum-weight matching, shortest path and spanning tree
Since at each timeé< arms are played, so at timg an computations.

random variable could be observed upi® times. Then[(I4)  While this work has provided useful insights into real-vaor!

should be modified as: linear combinatorial optimization with unknown-mean ranmd

coefficients, there are many interesting open problems to be

explored in the future. One open question is to derive a lower

JEAa(e)

o) Kt Kt Kt Kt

~ bound on the regret achievable by any policy for this problem
Ti(n) <1+ ; 21 Z . 21 Z L, We conjecture on intuitive grounds that it is not possible to
T M T e, 0170 have regret lower thaf)(N logn), but this remains to be
| Aaxm | R proved rigorously. It is unclear whether the lower bound can
{ Z a;‘l;m@hj,mhj + Croma,) be any higher than this, and hence, it is unclear whether it_ is
j=1 possible to prove an upper bound on regret for some policy
[Aaco] R that is better than th&(N*logn) upper bound shown in our
S Z apj (t) (epjampj + Ctampj )} Work . . .
=1 In the context of channel access in cognitive radio networks

(41) other researchers have recently developed distributadigml
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in which different users each select an arm independenlly [®2] E. W. Dijkstra, “A note on two problems in connexion witiraphs”,

[4]. A closely related problem in this setting would be tg__Numerische Mathemafikol., pp. 269-271, 1959. .
h distributed users selecting different elements of tzg] R. Bellman, “On a routing problemQuarterly of Applied Mathemati¢cs
ave distributed u Ing di vol. 16, pp. 87-90, 1958.

action vector independently. The design and analysis dfi sye4] L. R. Ford, Jr, “Network Flow Theory”Paper P-923 The RAND
distributed policies is an open problem. Corporation, August, 1956.

Finallv. it would be of areat interest to see if it is possitde [25] J. Krarup and M. N. Rrbech, “LP Formulations of the Shortest Path
Y, g p Tree Problem”40R: A Quarterly Journal of Operations Resear&tol.

also tackle non-linear reward functions, at least in struext 2, No. 4, pp. 259-274, 2004.
cases that have proved to be tractable in deterministingsft [26] M. S. Bazaraa, J. J. Jarvis and H. D. Sherali, "Lineagpaoiming and
. network flows,4th Edition”, Wiley, December, 2009.
such as convex functions. [27] R. C. Prim, “Shortest connection networks and some igdizations”,
Bell System Technical Journalol. 36 pp. 1389-1401, 1957.
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