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ABSTRACT. We classify compact Kähler manifoldsM of dimensionn≥ 3
on which acts a lattice of an almost simple real Lie group of rank ≥ n−1.
This provides a new line in the so-called Zimmer program, andcharacterizes
certain type of complex tori by a property of their automorphisms groups.

RÉSUMÉ. Nous classons les variétés complexes compactes kählériennes
M de dimensionn ≥ 3 munies d’une action d’un réseauΓ dans un groupe
de Lie réel presque simple de rangn−1. Ceci complète le programme de
Zimmer dans ce cadre, et caractérise certains tores complexes compacts par
des propriétés de leur groupe d’automorphismes.
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1. INTRODUCTION

1.1. Zimmer Program. Let G be an almost simple real Lie group. Thereal
rank rkR(G) of G is the dimension of a maximal abelian subgroupA of G
that acts byR-diagonalizable endomorphisms in the adjoint representation of
G on its Lie algebrag. WhenrkR(G) is at least 2, we shall say thatG is a
higher rank almost simple Lie group. LetΓ be alattice in G; by definition,
Γ is a discrete subgroup ofG such thatG/Γ has finite Haar volume. Margulis
superrigidity theorem implies that all finite dimensional linear representations
of Γ are built from representations in unitary groups and representations of the
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Lie groupG itself. In particular, there is no faithful linear representation ofΓ
in dimension≤ rkR(G) (see [27]).

Zimmer’s program predicts that a similar picture should hold for actions
of Γ by diffeomorphims on compact manifolds, at least when the dimension
dim(V) of the manifoldV is close to the minimal dimension of non trivial lin-
ear representations ofG (see [17]). For instance, a central conjecture predicts
that lattices in simple Lie groups of rankn do not act faithfully on compact
manifolds of dimension less thann (see [42, 41, 43, 21]).

In this article, we pursue the study of Zimmer’s program in the holomorphic,
kählerian, setting, as initiated in [11] and [13].

1.2. Automorphisms. LetM be a compact complex manifold of dimensionn.
By definition, diffeomorphisms ofM which are holomorphic are calledauto-
morphisms. According to Bochner and Montgomery [6, 9], the groupAut(M)

of all automorphisms ofM is a complex Lie group, the Lie algebra of which is
the algebra of holomorphic vector fields onM. LetAut(M)0 be the connected
component of the identity inAut(M), and

Aut(M)♯ = Aut(M)/Aut(M)0

be the group of connected components. This group can be infinite, and is
hard to describe: For example, it is not known whether there exists a compact
complex manifoldM for whichAut(M)♯ is not finitely generated.

WhenM is a Kähler manifold, Lieberman and Fujiki proved thatAut(M)0

has finite index in the kernel of the action ofAut(M) on the cohomology of
M (see [18, 26]). Thus, if a subgroupΓ of Aut(M) embeds intoAut(M)♯, the
action ofΓ on the cohomology ofM has finite kernel; in particular, the group
Aut(M)♯ almost embeds in the group Mod(M) of isotopy classes of smooth
diffeomorphisms ofM. WhenM is simply connected, Mod(M) is naturally
described as the group of integer matrices in a linear algebraic group ([34]).
Thus,Aut(M)♯ sits naturally in an arithmetic lattice. Our main result goes
in the other direction: it describe the largest possible lattices contained in
Aut(M)♯.

1.3. Rigidity and Kummer examples. The main example which provides
large groupsΓ ⊂ Aut(M)♯ is given by linear actions on tori, and on quotient
of tori (see [13], §1.2). For instance, ifΛ0 is a lattice inC, the groupSLn(Z)
acts on the torusA= (C/Λ0)

n; since this action commutes with multiplication
by −1, SLn(Z) also acts on the quotientM0 = A/〈−1〉 and on the smooth
n-fold M obtained by blowing up the 4n singularities ofM0. The following
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definition, which is taken from [12, 13], provides a common denomination for
all these examples.

Definition 1.1. Let Γ be a group, andρ : Γ → Aut(M) a morphism into the
group of automorphisms of a compact complex manifoldM. This morphism
is aKummer example (or, equivalently, is ofKummer type) if there exists

• a birational morphismπ : M → M0 onto an orbifoldM0,
• a finite orbifold coverε : A→ M0 of M0 by a torusA, and
• a morphismη : Γ → Aut(A)

such thatε◦η(γ) = (π◦ρ(γ)◦π−1)◦ ε for all γ in Γ.

The notion oforbifold used in this text refers to compact complex analytic
spaces with a finite number of singularities of quotient type; in other words,
M0 is locally the quotient of(Cn,0) by a finite group of linear tranformations
(see Section 2.4).

Since automorphisms of a torusCn/Λ are covered by affine transformations
of Cn, all Kummer examples are covered by the action of affine transforma-
tions on the affine space.

The following statement is our main theorem. It confirms Zimmer’s pro-
gram, in its strongest versions, for holomorphic actions oncompact Kähler
manifolds: We get a precise description of all possible actions of latticesΓ⊂G
for rkR(G) = dimC(M) but also forrkR(G) = dimC(M)−1.

Main Theorem. Let G be an almost simple real Lie group andΓ be a lattice
in G. Let M be a compact Kähler manifold of dimension n≥ 3. Let ρ : Γ →
Aut(M) be an injective morphism. Then, the real rankrkR(G) is at most equal
to the complex dimension of M.

(1) If rkR(G) = dim(M), then G is locally isomorphic toSLn+1(R) or
SLn+1(C) and M is biholomorphic to the projective spacePn(C).

(2) If rkR(G) = dim(M)−1, there exists a finite index subgroupΓ0 in Γ
such that either

(2-a)ρ(Γ0) is contained inAut(M)0, or
(2-b) G is locally isomorphic toSLn(R) or SLn(C), and the mor-

phismρ : Γ0 → Aut(M) is a Kummer example.

Moreover, all examples corresponding to assertion (2-a) are described in
Section 3.4 and all Kummer examples of assertion (2-b) are described in Sec-
tion 6. In particular, for these Kummer examples, the complex torusA associ-
ated toM and the latticeΓ fall in one of the following three possible examples:
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• Γ⊂ SLn(R) is commensurable toSLn(Z) andA is isogeneous to the prod-
uct ofn copies of an elliptic curveC/Λ;

• Γ⊂ SLn(C) is commensurable toSLn(Od) whereOd is the ring of integers
in Q(

√
d) for some negative integerd, andA is isogeneous to the product ofn

copies of the elliptic curveC/Od;

• In the third example,n= 2k is even. There are integersa andb such that
A is isogeneous to the product ofk copies of the abelian surfaceC2/Ha,b(Z),
whereHa,b is the division algebra of quaternions over the rational numbersQ
defined by the basis(1, i, j,k), with

i2 = a, j2 = b, ij= k=−ji.

Moreover, the groupΓ is a lattice inSLn(R) commensurable to the group of
automorphisms of the abelian groupHa,b(Z)k that commute to the diagonal
action ofHa,b(Z) by left multiplications (see §6).

As a consequence,Γ is not cocompact,A is an abelian variety andM is
projective. This theorem extends the main result of [13] from dimension 3 to
all dimensionsn≥ 3 whenG is almost simple; the strategy is different, more
concise, but slightly less precise.

1.4. Strategy of the proof and complements.After a few preliminary facts
(§2), the proof of the Main Theorem starts in §3: Assertion (1) is proved, and
a complete list of all possible pairs(M,G) in assertion (2-a) is obtained. This
makes use of a previous result on Zimmer conjectures in the holomorphic
setting (see [11]), and classification of homogeneous or quasi-homogeneous
spaces (see [2, 22, 23]). On our way, we describeΓ-invariant analytic subsets
Y ⊂ M.

The core of the paper proves that assertion (2-b) is satisfiedwhen the image
ρ(Γ0) is not contained inAut(M)0 andrkR(G) = dim(M)−1.

In that case,Γ acts almost faithfully on the cohomology ofM, and this lin-
ear representation extends to a continuous representationof G on H∗(M,R).
Section 4 shows thatG preserves a non-trivial cone contained in the closure of
the Kähler coneK (M)⊂ H1,1(M,R); this general fact holds for all linear rep-
resentations of semi-simple Lie groupsG for which a latticeΓ ⊂ G preserves
a salient cone. Section 4 can be skipped in a first reading.

Then, in §5, we apply ideas of Dinh, Sibony and Zhang togetherwith rep-
resentation theory. We fix a Cartan subgroupA in G and study the eigen-
vectors ofA in theG-invariant cone: Hodge index theorem constrains the set
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of weights and eigenvectors. When there is noΓ-invariant analytic subset of
positive dimension, Yau’s Theorem can then be used to prove thatM is a torus.

To conclude the proof, we then show that invariant analytic subsets can be
blown down to quotient singularities, and we apply Hodge andYau’s theorems
in the orbifold setting. This makes use of Section 3.

Section 6 lists all tori of dimensionn with an action of a lattice in a simple
Lie group of rankn−1. Since Sections 3.4 and 6 provide complements to the
Main Theorem, we recommend to skip them in a first reading.

1.5. Aknowledgment. Thanks to Michel Brion, Jean-Pierre Demailly, Igor
Dolgachev, Stéphane Druel, Jean-François Quint for nice discussions, com-
ments, and ideas. Demailly provided the proof of Theorem 2.2while Brion
and Dolgachev helped us clarify Section 3.1.

2. COHOMOLOGY, HODGE THEORY, MARGULIS EXTENSION

Let M be a connected, compact, Kähler manifold of complex dimensionn.

2.1. Hodge Theory and cohomological automorphisms.

2.1.1. Hodge decomposition.Hodge theory implies that the cohomology groups
Hk(M,C) decompose into direct sums

Hk(M,C) =
⊕

p+q=k

H p,q(M,C),

where cohomology classes inH p,q(M,C) are represented by closed forms of
type(p,q). This bigraded structure is compatible with the cup product.Com-
plex conjugation permutesH p,q(M,C) with Hq,p(M,C). In particular, the co-
homology groupsH p,p(M,C) admit a real structure, the real part of which
is

H p,p(M,R) = H p,p(M,C)∩H2p(M,R).

If [κ] is a Kähler class (i.e. the cohomology class of a Kähler form), then
[κ]p ∈ H p,p(M,R) for all p.

2.1.2. Notation. In what follows, the vector spaceH1,1(M,R) is denotedW.
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2.1.3. Primitive classes and Hodge index theorem.Let [κ] ∈W be aKähler
class, i.e. the class of a Kähler form (alternatively, Kähler classes are also
calledample classes). The set of primitive classes with respect to[κ] is the
vector space of classes[u] in W such that∫

M
[κ]n−1∧ [u] = 0.

Hodge index theorem implies that the quadratic form

([u], [v]) 7→
∫

M
[κ]n−2∧ [u]∧ [v]

is negative definite on the space of primitive forms (see [37], §6.3.2). We
refer the reader to [16], [15] and [40] for stronger results and consequences on
groups of automorphisms ofM.

2.1.4. Cohomological automorphisms.

Definition 2.1. A cohomological automorphismof M is a linear isomor-
phism of the real vector spaceH∗(M,R) that preserves the Hodge decomposi-
tion, the cup product, and the Poincaré duality.

Note that cohomological automorphisms are not assumed to preserve the
set of Kähler classes or the latticeH∗(M,Z), as automorphismsf ∗ with f ∈
Aut(M) do.

2.2. Nef cone and big classes.Recall that a convex cone in a real vector
space issalient when it does not contain any line: In other words, a salient
cone is strictly contained in a half space.

TheKähler coneof M is the subsetK (M)⊂W of Kähler classes. This set
is an open convex cone; its closureK (M) is a strict and closed convex cone,
the interior of which coincides withK (M). We shall say thatK (M) is the
cone ofnef cohomology classes of type(1,1). All these cones are invariant
under the action ofAut(M).

A class[ω] in H1,1(M,R) is big and nef if it is nef and
∫

M ωn > 0. The cone
of big and nef classes plays an important role in this paper.

Theorem 2.2(Demailly and Paun). Let M be a compact Kähler manifold, and
[ω] ∈ H1,1(M,R) be a big and nef class which is not a Kähler class. Then

(1) there exists an irreducible analytic subset Y⊂M of positive dimension
such that ∫

Y
ωdim(Y) = 0;
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(2) the union of all these analytic subsets Y is a proper Zariski closed
subset Z⊂ M.

Proof. The existence ofY in property (1) follows from Theorem 0.1 in [14].
Let us now prove property (2). Theorem 0.5 in [14] shows that the class[ω]

is represented by a closed positive currentT which is smooth in the comple-
ment of a proper analytic subsetZ ⊂ M, has logarithmic poles alongZ, and
is bounded from below by a Kähler form, i.e.T ≥ κ for some Kähler formκ
on M. Our goal is to show that all irreducible analytic subsetsY ⊂ M of posi-
tive dimension that satisfy property (1) are contained inZ. We assume thatY
is not contained inZ and dim(Y)> 0, and we want to show that the integral of
[ω]dim(Y) onY is positive. In order to compute this integral, we representω by
T and regularizeT in order to take its dim(Y)-exterior power.

Let α be a smooth and closed form of type(1,1) which represents the class
[ω]. LetC> 0 be a constant such thatα ≥−Cκ. Write T as

T = α+
i
π

∂∂ψ ≥ κ,

and consider the sequence of truncated currentsTa, a> 0, defined by

Ta = α+
i
π

∂∂ max(ψ,−a).

On the setψ >−a, Ta coincides withT and thusTa ≥ κ; on the setψ <−a it
coincides withα. In particular,Ta ≥−Cκ onM. Sinceψ has logarithmic poles
alongZ, the setsψ < −a are contained in smaller and smaller neighborhoods
of Z whena goes to∞.

Sinceψ is locally the difference of a smooth function and a plurisubhar-
monic function,ψ is upper semi-continuous and, as such, is bounded from
above. Thus,Ta has bounded local potentials, and its Monge-Ampère prod-
ucts can be computed on any analytic subset ofM by Bedford-Taylor tech-
nique (see [3]).

Since the cohomology class ofTa is equal to the class ofT we have∫
Y
[ω]dim(Y) =

∫
Y

Tdim(Y)
a ≥

∫
Y∩{ψ>−a+1}

κdim(Y)−
∫

Y∩{ψ<−a+1}
(Cκ)dim(Y).

The first term of the right hand side of this inequality goes tozero whena goes
to −∞. The second term converges to the volume ofY with respect toκ. This
concludes the proof. �

2.3. Margulis rigidity and extension. Let H be a group. A property is said
to holdvirtually for H if a finite index subgroup ofH satisfies this property.
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Similarly, a morphismh : Γ → L from a subgroupΓ of H to a groupL virtually
extends toH if there is a finite index subgroupΓ0 in Γ and a morphism̂h :
H → L such that̂h coincides withh on the subgroupΓ0.

The following theorem is one version of the superrigidity phenomenum for
linear representations of lattices (see [27] or [36]).

Theorem 2.3(Margulis). Let G be a semi-simple connected Lie group with
finite center, with rank at least2, and without non trivial compact factor. Let
Γ ⊂ G be an irreducible lattice. Let h: Γ → GL k(R) be a linear representa-
tion of Γ. The Zariski closure of h(Γ) is a semi-simple Lie group; if this Lie
group does not have any infinite compact factor, then h virtually extends to a
(continuous) linear representation̂h : G→ GLk(R).

Another important statement due to Margulis asserts that irreducible lattices
Γ in higher rank semi-simple Lie groups are "almost simple": If Γ′ is a normal
subgroup ofΓ, eitherΓ′ is finite or Γ′ has finite index inΓ. Thus, if ρ is a
morphism fromΓ to a groupL with infinite image, thenρ is virtually faithful
(see [27] or [36]).

As explained in [13], Margulis theorems, Lieberman-Fujikitheorem, and
the fact that the action ofAut(M) onH∗(M,R) preserves the latticeH∗(M,Z)
imply the following proposition.

Proposition 2.4. Let G andΓ be as in theorem 2.3. Letρ : Γ → Aut(M) be a
representation into the group of automorphisms of a compactKähler manifold
M. Letρ∗ : Γ → GL(H∗(M,Z)) be the induced action on the cohomology ring
of M.

(a) If the image ofρ∗ is infinite, thenρ∗ virtually extends to a representa-
tion ρ̂∗ : G→ GL(H∗(M,R)) by cohomological automorphisms.

(b) If the image ofρ∗ is finite, the image ofρ is virtually contained in
Aut(M)0.

2.4. Orbifolds. In this paper, an orbifoldM0 of dimensionn is a compact
complex analytic space with a finite number of quotient singularities qi ; in
a neighborhood of eachqi, M0 is locally isomorphic to the quotient ofCn

near the origin by a finite group of linear transformations. All examples of
orbifolds considered in this paper are locally isomorphic to Cn/ηi whereηi

is a scalar multiplication of finite orderki . Thus, the singualrityqi can be
resolved by one blow-up: The pointqi is then replaced by a hypersurfaceZi

which is isomorphic toPn−1(C) with normal bundleO (−ki).
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All classical objects from complex differential geometry are defined onM0

as follows. Usual definitions are applied on the smooth partM0 \ {q1, ...,qk}
and, around each singularityqi , one requires that the objects come locally from
ηi-invariant objects onCn. Classical facts, like Hodge decomposition, Hodge
index theorem, Yau theorem, remain valid in the context of orbifolds. The
reader will find more details in [10, 39].

3. LIE GROUP ACTIONS AND INVARIANT ANALYTIC SUBSETS

3.1. Homogeneous manifolds.The following theorem is a direct consequence
of the classification of maximal subgroups in simple Lie groups (see [35],
chapter 6, or Section 3.4 below).

Theorem 3.1.Let H be a connected almost simple complex Lie group of rank
rkC(H) = n. If H acts faithfully and holomorphically on a connected compact
complex manifold M of dimension≤ n then, up to holomorphic conjugacy, M
is the projective spacePn(C), H is locally isomorphic toPGLn+1(C), and the
action of H on M is the standard action by linear projective transformations.

Following a suggestion by Brion and Dolgachev, we sketch a proof that
does not use the classification of maximal subgroups of Lie groups. LetA
be a Cartan subgroup inH. SinceH has rankn this group is isomorphic to
the multiplicative group(C∗)n. The action ofA on M is faithful; this easily
implies that dim(M) = n and thatA has an open orbit. ThusM is a toric
variety of dimensionn with respect to the action of the multiplicative groupA.
In particular, there is no faithful action ofH on compact complex manifolds
of dimension less thann. SinceH is almost simple and connected, all actions
of H in dimension< n are trivial.

As a corollary,H acts transitively onM, because otherwiseH has a proper
Zariski closed orbit: This orbit has dimension< n and, as such, must be a
point m∈ M; the action ofH at m can be linearized, and gives a non-trivial
morphism fromH toGL(TmM)≃ GLn(C), in contradiction withrkC(H) = n.
ThusM = H/L for some closed subgroupL.

SinceH/L is compact,L is contained in a parabolic subgroupP (see [2]).
Since the dimension ofM is the smallest positive dimension of aH-homoge-
neous space,P= L andP is a maximal parabolic subgroup. SinceP is maxi-
mal, the Picard number ofM is equal to 1 (see [2], §4.2).

As a consequence,M is a smooth toric variety with Picard number 1 and, as
such, is isomorphic toPn(C) (see [19]). Since the group of automorphisms of
Pn(C) is the rankn groupPGLn+1(C), the conclusion follows.
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3.2. First part of the Main Theorem. Let us apply Theorem 3.1. LetΓ be a
lattice in an almost simple real Lie groupG. Assume thatΓ acts faithfully on
a connected compact Kähler manifoldM, with dimC(M) ≤ rkR(G). By [11],
the dimension ofM is equal to the rank ofG and the image ofΓ in Aut(M)

is virtually contained inAut(M)0. Hence, we can assume that the action of
Γ on M is given by an injective morphismρ : Γ → Aut(M)0. As explained
in [11], the complex Lie groupAut(M)0 contains a copy of an almost simple
complex Lie groupH with rkC(H) ≥ rkR(G). More precisely, ifρ(Γ) is not
relatively compact inAut(M)0, one apply Theorem 2.3 to extend the morphism
ρ virtually to a morphismρ̂ : G → Aut(M)0; if the image ofρ is relatively
compact, then another representationρ′ : Γ → Aut(M)0 extends virtually to
G; in both cases, the Lie algebra ofH is the smallest complex Lie subalgebra
containing d̂ρId(g).

Theorem 3.1 shows thatM is the projective spacePn(C) andAut(M) co-
incides withPGLn+1(C) (and thus withH). As a consequence, the groupG
itself is locally isomorphic toSLn+1(R) or SLn+1(C).

Summing up, the inequality dimC(M) ≥ rkR(G) as well as property (1) in
the Main Theorem have been proved.

3.3. Invariant analytic subsets. Let us now studyΓ-invariant analytic sub-
setsZ ⊂ M under the assumption of assertion (2) in the Main Theorem; in
particular dimC(M) = rkR(G)+1. Let Z be aΓ-invariant complex analytic
subset. Assume, first, that (i)Z is irreducible and (ii)Z has positive dimen-
sion.

3.3.1. Singularities. If dim(Z)< n−1, part (1) of the Main Theorem implies
that a finite index subgroup ofΓ fixesZ pointwise. If the setZ is not smooth,
its singular locus isΓ-invariant and has dimension≤ n−2. Hence, changing
Γ into a finite index subgroup, we assume thatΓ fixes the singular locus ofZ
pointwise as well asZ itself if its codimension is larger than 1.

If Γ fixes a pointq ∈ Z, the image of the morphismδq : Γ → GL(TqM)

defined by the differential atq, i.e. by

δq(γ) = dγq,

preserves the tangent cone ofZ atq; in particular, the Zariski closure ofδq(Γ)
in PGL(TqM) is a proper algebraic subgroup ofPGL(TqM). Since proper
algebraic subgroups ofPGLn(C) have rank less thann−1= rkR(G), Margulis
rigidity theorem implies that the image ofδq is finite. These facts provide the
following alternative:
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• EitherZ is a smooth hypersurface,
• or Z contains a fixed pointq for which the morphismδq has finite

image.

From [8], the action ofΓ in a neighborhood of a fixed pointq can be linearized.
Thus, in the second alternative, a finite index subgroup ofΓ acts trivially in a
neighborhood ofq. Since the action ofΓ is holomorphic andM is connected,
this contradicts the faithfulness of the morphismΓ →Aut(M). We deduce that
all irreducibleΓ-invariant analytic subsets of positive dimension are smooth
hypersurfaces.

3.3.2. Geometry of Z.By the first part of the Main Theorem (see §3.2), a
smooth invariant hypersurface is a copy ofP

n−1(C) on which Γ acts as a
Zariski dense subgroup ofPGLn(C). Such a subgroup does not preserve any
non empty algebraic subset. Thus,Z does not intersect any other irreducible
Γ-invariant subset. ReplacingΓ by finite index subgroups, one can now apply
this discussion to allΓ-invariant analytic subsets:

Proposition 3.2. Let Γ be a lattice in an almost simple Lie group of rank
n−1 ≥ 2. If Γ acts faithfully by holomorphic transformations on a compact
complex manifold M of dimension n, anyΓ-invariant analytic subset Z⊂ M
is a disjoint union of isolated points and smooth hypersurfaces isomorphic to
Pn−1(C).

3.3.3. Contraction of Z.Section 3.2 in [13] can now be applied almost word
by word to show the following result.

Theorem 3.3.LetΓ be a lattice in an almost simple Lie group G. Assume that
Γ acts faithfully on a connected compact Kähler manifold M,

rkR(G) = dimC(M)−1,

and the image ofΓ in Aut(M) is not virtually contained inAut(M)0.
Let Z be the union of allΓ-invariant analytic subsets Y⊂ M with positive

dimension. Then Z is the union of a finite number of disjoint copies of the
projective space Zi = Pn−1(C). Moreover there exists a birational morphism
π : M → M0 onto a compact Kähler orbifold M0 such that

(1) π contracts all Zi to points qi ∈ M0;
(2) around each point qi , the orbifold M0 is either smooth, or locally iso-

morphic to a quotient of(Cn,0) by a finite order scalar multiplication;
(3) π is an isomorphism from the complement of Z to the complement of

the points qi ;
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(4) π is equivariant: The groupΓ acts on M0 in such a way thatπ◦γ= γ◦π
for all γ in Γ.

3.4. Lie group actions in caserkR(G) = dim(M)− 1. In case (2-b) of the
Main Theorem, the groupΓ is a lattice in a rankn−1 almost simple Lie group,
andΓ virtually embeds intoAut(M)0. This implies thatAut(M)0 contains an
almost simple complex Lie groupH, the rank of which is equal ton−1. The
goal in this section is to list all possible examples. Thus, our assumptions are

(i) H is an almost simple complex Lie group, and its rank is equal ton−1;
(ii) M is a connected, compact, complex manifold and dimC(M) = n≥ 3;

(iii) H is contained inAut(M)0.

We now list all such possible pairs(M,H).

Example 3.4. The groupSLn(C) acts onPn−1(C) by linear projective trans-
formations. In particular,SLn(C) acts on products of typePn−1(C)×B where
B is any Riemann surface.

The action ofSLn(C) on Pn−1(C) lifts to an action on the total space of
the line bundlesO (k) for everyk≥ 0; sections ofO (k) are in one-to-one cor-
respondence with homogeneous polynomials of degreek, and the action of
SLn(C) on H0(Pn−1(C),O (k)) is the usual action on homogeneous polyno-
mials in n variables. Letp be a positive integer andE the vector bundle of
rank 2 overPn−1(C) defined byE = O ⊕O (p). ThenSLn(C) acts onE, by
isomorphisms of vector bundles. From this we get an action onthe projec-
tivized bundleP(E), i.e. on a compact Kähler manifoldM which fibers over
Pn−1(C) with rational curves as fibers.

When k = 1, one can blow down the section ofP(E) given by the line
bundleO (1). This provides a new smooth manifold with an action ofSLn(C)

(for other values ofk, a singularity appears). In that case,SLn(C) has an
open orbitΩ, the complement of which is the union of a point and a smooth
hypersurfacePn−1(C).

A similar example is obtained from theC∗-bundle associated toO (k). Let
λ be a complex number with modulus different from 0 and 1. The quotient
of this C∗-bundle by multiplication byλ along the fibers is a compact Kähler
manifold, with the structure of a torus principal bundle over Pn−1(C). Since
multiplication byλ commutes with theSLn(C)-action onO (k), we obtain a
(transitive) action ofSLn(C) on this manifold. In this case,M is not Kähler; if
k= 1, M is the Hopf manifold, i.e. the quotient ofCn\{0} by the multiplica-
tion byλ.
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Example 3.5. Let H be the groupSO5(C) (resp.SO6(C)). The rank ofH is
equal to 2 (resp. 3). The projective quadricQ3 ⊂ P

4(C) (resp.Q4 ⊂ P
5(C))

given by the equation∑x2
i = 0 is H-invariant, and has dimension 3 (resp. 4).

The space of isotropic lines contained inQ3 is parametrized byP3(C), so
thatP3(C) is a SO5(C)-homogeneous space: This comes from the isogeny
betweenSO5(C) andSp4(C) (see [20], page 278), and provides another ho-
mogeneous space of dimensionrk(SO5(C))+1.

Similarly, SO6(C) is isogenous toSL4(C), andPSO6(C) acts transitively
onP3(C). However, in this case, the rank of the group is equal to the dimen-
sion of the space (as in Theorem 3.1).

Theorem 3.6. Let M be a connected compact complex manifold of dimen-
sion n≥ 3. Let H be an almost simple complex Lie group withrkC(H) =

n−1. If there exists an injective morphism H→ Aut(M)0, then M is one of
the following:

(1) a projective bundleP(E) for some rank2vector bundle E overPn−1(C),

and then H is isogenous toPGLn(C);
(2) a principal torus bundle overPn−1(C), and H is isogenous toPGLn(C);
(3) a product ofPn−1(C) with a curve B of genus g(B)≥ 2, and then H is

isogenous toPGLn(C);
(4) the projective spacePn(C), and H is isogenous toPGLn(C) or to

PSO5(C) when n= 3;
(5) a smooth quadric of dimension3 or 4 and H is isogenous toSO5(C)

or to SO6(C) respectively.

The proof splits into three cases, according to the size of the orbits ofH.

3.4.1. Transitive actions.Let us come back to the rank/dimension inequality
obtained in Theorem 3.1. LetM be a connected compact complex manifold on
which a complex semi-simple Lie groupSacts holomorphically and faithfully.
Let K ⊂ Sbe a maximal compact subgroup and letm be a point ofM. Then

(1) dimC(S) = dimR(K);
(2) dimR(K) = dimR(K(m))+ dimR(Km) whereK(m) is the orbit ofm

andKm is its stabilizer;
(3) Km embeds into a maximal compact subgroup ofGL(TmM); in other

words,Km is a closed subgroup of the unitary groupUn, n= dim(M).

The inequality

dimC(S)≤ dimR(M)+dimRUn = 2n+n2 (3.1)
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follows. Moreover, if the rank ofS is less thann, thenKm has positive codi-
mension inUn; this implies that codimR(Km) ≥ 2n− 2 by classification of
maximal subgroups ofUn or an argument similar to §3.1. The inequality (3.1)
can therefore be strengthen, and gives

dimC(S)≤ n2+2.

We now apply this inequality to the proof of Theorem 3.6 in case H acts
transtively. Thus, the semi-simple groupS is now replaced by the almost sim-
ple complex Lie groupH, with rankr = n−1.

If the Lie algebra ofH is of typeBr or Cr , i.e. H is locally isomorphic to
SO2r+1(C) or Sp2r(C), we have

dimC(H) = 2r2+ r ≤ (r +1)2+2

and thusr2 ≤ r + 3. This impliesr ≤ 3. Whenr = 2, the groupH is lo-
cally isomorphic toSO5(C) andSp4(C); there are two examples of compact
quotients of dimension 3: The quadricQ ⊂ P

4(C), and the projective space
P3(C) parametrizing the set of lines contained in this quadric (see example
3.5). Whenr = 3, the groupH is isogenous toSO7(C) (resp. toSp6(C)) and
there is no example ofH-homogeneous compact complex manifold of dimen-
sion 4 (see example 3.5 and [35], page 169, [2], page 65).

Let us now assume thatH is of typeDr , i.e. H is isogenous toSO2r(C),
with r ≥ 3. We getr2 ≤ 3r +3, so thatr = 3 andH is isogenous toSO6(C).
There is a unique homogeneous spaceM of dimension 4 for this group, namely
the quadricQ⊂ P5(C).

Similarly, the inequality excludes the five exceptional groupsE6(C), E7(C),

E8(C), F4(C), andG2(C): None of them acts transitively on a compact com-
plex manifold of dimensionrk(H)+1.

The remaining case concerns the groupH = SLn(C), acting transitively on
a compact complex manifoldM of dimensionn≥ 3. WriteM = H/L whereL
is a closed subgroup ofH. Two cases may occur: EitherL is parabolic, or not.

If L is parabolic, thenM is a flag manifold of dimensionn for SLn(C). Flag
manifolds forSLn(C) are well known, and only two examples satisfy our con-
straints. The first one is given by the incidence varietyF ⊂ P2(C)×P2(C)∨ of
pairs(x, l) wherex is a point contained in the linel , or equivalently the set of
complete flags ofC3: This is a homogeneous space under the natural action of
PGL3(C) and, at the same time, this is aP1(C)-bundle overP2(C). The sec-
ond example is given by the GrassmannianG(1,3) of lines inP3: This space
has dimension 4 and is homogeneous under the natural action of PGL4(C).
This example appears for the second time: By Plücker embedding,G(1,3) is
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a smooth quadric inP5(C) and, as such, is a homogeneous space forSO5(C)

(the groupsSO5(C) andSL4(C) are isogenous, see page 286 of [20]).
If the groupL is not parabolic, thenL is contained in a parabolic groupP

with dim(P)> dim(L). This gives rise to aH-equivariant fibration

M → H/P

with dim(H/P) < n. By Theorem 3.1,H/P is the projective spacePn−1(C)

and dim(P) = dim(L)+1. The fibers of the projectionM → H/P are quotient
of a one parameter group by a discrete subgroup and, as such, are elliptic
curves. This implies thatM is an elliptic fibre bundle overPn−1(C), as in
example 3.4.

3.4.2. Almost homogeneous examples.Let us now assume thatM is not ho-
mogeneous under the action ofH, but thatH has an open orbitΩ = H/L; let
Z = M \Ω be its complement; this set is analytic andH-invariant. A theorem
due to Borel ([7]) asserts that the number of connected components ofZ is at
most 2. By Proposition 3.2, each component ofZ is either a point or a copy of
Pn−1(C); if one component is isomorphic toPn−1(C) thenH is isogenous to
SLn(C) and acts transitively on this component. Assume now thatZ contains
an isolated pointm. This point is fixed by the action ofH, and this action can
be linearized locally aroundm. SinceH has rankn−1 andM has dimension
n, the groupH is isogenous toSLn(C). Blowing up the pointm, we replacem
by a copy ofPn−1(C). Thus,H is isogenous toSLn(C), and blowing up the
isolated points ofZ, we can assume thatZ is the union of one or two disjoint
copies ofPn−1(C) on whichH acts transitively. This situation has been stud-
ied in details in [23] and [22]; we now describe the conclusions of [23] and
[22] without proof.

Let P be a maximal parabolic subgroup withH/P= Pn−1(C) (P is unique
up to conjugacy).

Suppose, first, thatZ is connected. ThenL ⊂ P (up to conjugacy),M is
a projective rational manifold and it fibers equivariantly on Pn−1(C) = H/P;
the fibers are isomorphic toP1(C), each of them intersectingZ in one point
(see [23]). The intersection of each fiber withΩ is isomorphic toC and, at
the same time, is isomorphic toP/L; this is not possible forn > 2 because
all morphisms from the maximal parabolic groupP to the groupAff (C) of
holomorphic diffeomorphisms ofC factor through the natural projectionP→
C∗, and there is no transitive action ofC∗ on C.

Thus,Z has indeed two connected components, as in [22] (see also [23]).
This case corresponds toP1-bundles overPn−1(C), as in example 3.4:M
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fibers equivariantly onPn−1(C) with one dimensional fibersF ≃ P1(C), each
of them intersectingZ in two points; the two connected components ofZ are
two sections of the projection ontoPn−1(C), which correspond to the two line
bundlesO andO (k) from example 3.4.

If k= 1, one of the sections can be blown down to a fixed point (this process
inverses the blow up construction described at the beginning of Section 3.4.2).

3.4.3. No open orbit.Let us now assume thatH does not have any open orbit.
Then, blowing up all fixed points ofH, all orbits have dimensionn−1. By
Theorem 3.1,H is isogenous toSLn(C) and its orbits are copies ofPn−1(C).
In that case, the orbits define a locally trivial fibration ofM over a curveB. Let
A be the diagonal subgroup ofSLn(C). The set of fixed points ofA definesn
sections of the fibrationM → B. This shows that this fibration is trivial andM
is a productPn−1(C)×B. A posteriori,H had no fixed point onM.

4. INVARIANT CONES FOR LATTICES ANDL IE GROUPS

This paragraph contains preliminary results towards the proof of the Main
Theorem in case (2-b). Under the assumption of assertion (2-b), Proposition
2.4 applies, and one can extend the action ofΓ on W = H1,1(M,R) to an
action ofG; unfortunately, the nef coneK (M) is notG-invariant a priori. In
this section, we find aG-invariant subcone which is contained inK (M). This
is done in the general context of a linear representation of asemi-simple Lie
groupG, for which a latticeΓ ⊂ G preserves a salient cone.

4.1. Proximal elements, proximal groups, and representations.

4.1.1. Proximal elements and proximal groups.Let V be a real vector space
of finite dimensionk. Let g be an element ofGL(V). Let λ1(g) ≥ λ2(g) ≥
... ≥ λk(g) be the moduli of the eigenvalues ofg, repeated according to their
multiplicities. One says thatg is proximal if λ1(g)> λ2(g); in this case,g has
a unique attracting fixed pointx+g in P(V). A subgroup ofGL(V) is proximal
if it contains a proximal element, and a representationG→GL(V) is proximal
if its image is a proximal subgroup.

If Γ is a proximal subgroup ofGL(V), the limit set ΛP
Γ of the groupΓ in

P(V) is defined as the closure of the set{x+g |g∈ Γ, g is proximal}.

4.1.2. Proximal representations and highest weight vectors.Let G be a semi-
simple Lie group andA be a Cartan subgroup inG; let g anda be their respec-
tive Lie algebras, andΣ the system of restricted roots: By definitionΣ is the
set of non-zero weights for the adjoint action ofa ong. One chooses a system
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of positive rootsΣ+. A scalar product〈·|·〉 on a is also chosen, in such a way
that it is invariant by the Weyl group. One denotes byWt the set ofweightsof
Σ; by definition

Wt=

{

λ ∈ a | ∀α ∈ Σ, 2
〈λ|α〉
〈α|α〉 ∈ Z

}

.

The set ofdominant weightsisWt+ = {λ ∈Wt | ∀α ∈ Σ+, 〈λ|α〉 ≥ 0}. This
set corresponds to positive elements for the order defined onWt by λ ≥ λ′ if
and only if〈λ|α〉 ≥ 〈λ′|α〉 for all α in Σ+.

Let ρ : G → GL(V) be an irreducible representation ofG. This provides a
representation of the Lie algebrasg anda. By definition, the weights ofa in
V are the (restricted) weights ofρ. This finite set has a maximal elementλ
for the order defined onWt: This highest weightλ is contained inWt+, is
unique, and determines the representationρ up to isomorphism.

The image ofG in GL(V) is proximal if and only if the eigenspace ofA
corresponding to the highest weightλ has dimension 1 (see [1]).

If one starts with a representationρ which is not irreducible, one first splits
it as a direct sum of irreducible factors, and then apply the previous description
to each of them; this gives a list of highest weights, one for each irreducible
factor. The maximal element in this list is the highest weight of ρ (see § 4.2.2).

4.2. Invariant cones. In this paragraph we prove the following proposition.

Proposition 4.1. Let Γ be a lattice in a connected semi-simple Lie group G.
Let G→ GL(V) be a real, finite dimensional, linear representation of G. If
Γ preserves a salient coneΩ ⊂ V which is not reduced to{0}, the coneΩ
contains a G-invariant salient subcone which is not reducedto {0}.

Let G be a connected semi-simple Lie group andΓ be a Zariski dense sub-
group ofG. Let ρ : G → GL(V) be a real, finite dimensional, linear repre-
sentation ofG. Assume thatρ(Γ) preserves a salient coneΩ with Ω 6= {0}.
If the interior of Ω is empty, thenΩ spans a properΓ-invariant subspace of
V; sinceΓ is Zariski dense this proper invariant subspace isG-invariant. We
can therefore restrict the study to this invariant subspaceand assume that the
interior of Ω is non empty.

Remark 4.2. As the proof will show, if the action ofΓ on the linear span ofΩ
is not trivial, the action ofG on the linear span of its invariant subcone is also
not trivial. In particular, ifG is simple, this action is faithful.
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4.2.1. Irreducible representations.We first assume thatρ is irreducible. Propo-
sition 3.1, page 164, of [4], implies thatρ(Γ) is a proximal subgroup ofGL(V),
and the limit setΛP

ρ(Γ) of Γ is contained inP(Ω). As a consequence,ρ is a

proximal representation of the groupG and the limit setΛP

ρ(G) of ρ(G) coin-
cides with the orbit of the highest weight line of its Cartan subgroup: This orbit
is the unique closed orbit ofρ(G) in P(V). As such,ΛP

ρ(G) is a homogeneous
spaceG/P, whereP is a parabolic subgroup ofG.

Assume now thatΓ is a lattice inG. By [30], lemma 8.5, all orbitsΓ · x of
Γ in G/P are dense, so thatΛP

ρ(G) = G/P coincides withΛP

ρ(Γ). In particular,

ΛP

ρ(G) is aρ(G)-invariant subset ofP(Ω). The convex cone generated byΛP

ρ(G)

is a closed andG-invariant subcone ofΩ. This proves Proposition 4.1 for
irreducible representations.

4.2.2. General case.Let us now consider a linear representationρ : G →
GL(V) which is not assumed to be irreducible. Prasad and Raghunathan
proved in [31] thatΓ intersects a conjugate of the Cartan subgroupA′ ⊂ G
on a cocompact latticeA′

Γ ⊂ A′. ChangingA into A′, we assume thatΓ inter-
sectsA on such a latticeAΓ.

SinceG is semi-simple,V splits into a direct sum of irreducible factors;
let λ be the highest weight of(ρ,V), let V1, ... Vm be the irreducible factors
corresponding to this weight, and letV ′ be the direct sum of theVi :

V ′ :=
⊕

1≤i≤m

Vi .

By construction, all representationsVi , 1≤ i ≤ m, are isomorphic.

Lemma 4.3. SinceΓ is a lattice,Ω intersects the sum V′ of the highest weight
factors on a closed, salient coneΩ′ which is not reduced to zero.

Proof. If u is any element ofΩ, one can decomposeu as a sum∑χ uχ where
eachuχ is an eigenvector of the Cartan subgroupAcorresponding to the weight
χ. SinceΩ has non empty interior, we can choose such an elementu with a
non zero componentuλ for the highest weightλ. SinceAΓ is a lattice inA,
there is a sequence of elementsγn in AΓ such that

γn(u)
‖γn(u)‖

= ∑
χ

χ(γn)

‖γn(u)‖
uχ

converges to a non zero multiple ofuλ. SinceΩ is Γ-invariant and allγn are in
Γ, we deduce thatΩ intersectsV ′. �
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The subspace ofV ′ which is spanned byΩ′ is a direct sum of highest weight
factors; for simplicity, we can therefore assume thatV ′ is spanned byΩ′. In
particular, the interiorInt(Ω′) is a non-empty subset ofV ′.

Let πi be the projection ofV ′=
⊕

Vi onto the factorVi . The image ofInt(Ω′)
by π1 is an open subconeπ1(Ω′) in V1.

If this cone is salient, the previous paragraph shows that the representa-
tion (ρ1,V1) is proximal. Thus, allVi can be identified to a unique proximal
representationR, with a given highest weight lineL = Ru+. We obtainm
copiesLi of L, one in each copyVi of R. Apply Lemma 4.3 and its proof:
SinceΩ′ is Γ-invariant,Γ is a lattice, andΩ′ has non empty interior, there is
a pointv∈ L1⊕ ...⊕Lm which is contained inΩ′. Let (a1, ...,am) be the real
numbers such thatv = (a1u+, ...,amu+). The diagonal embeddingR→ V ′,
w 7→ (a1w, ...,amw) determines an irreducible sub-representation ofG into V
that intersectsΩ′, and the previous paragraph shows thatG preserves a salient
subcone ofΩ′.

If the coneπ1(Ω′) is not salient, the fiberπ−1
1 (0) intersectsΩ′ on a Γ-

invariant salient subcone; this reduce the number of irreducible factors fromm
to m−1, and enables us to prove Proposition 4.1 by induction on thenumber
m of factorsVi .

5. LINEAR REPRESENTATIONS, AMPLE CLASSES AND TORI

We now prove the Main Theorem. Recall thatG is a connected, almost
simple, real Lie group with real rankrkR(G)≥2, thatA is a Cartan subgroup of
G, and thatΓ is a lattice inG acting on a connected compact Kähler manifold
M of dimensionn.

From Section 3.2, we know that the rank ofG is at mostn and, in case
rkR(G) = n, the groupG is isogenous toSLn+1(R) or SLn+1(C) andM is iso-
morphic toPn(C). We now assume that the rank ofG satisfies the next critical
equalityrkR(G) = n−1. According to Proposition 2.4, two possibilities can
occur.

• The image ofΓ is virtually contained inAut(M)0; Theorem 3.6 in
Section 3.4 gives the list of possible pairs(M,G). This corresponds to
assertion (2-a) in the Main Theorem.

• The action ofΓ on the cohomology ofM is almost faithful and virtually
extends to a linear representation ofG on H∗(M,R).

Thus, in order to prove the Main Theorem, we replaceΓ by a finite index
subgroup and assume that the action ofΓ on the cohomology ofM is faithful
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and extends to a linear representation ofG. Our aim is to prove that all such
examples are Kummer examples (whenrkR(G) = dimC(M)−1).

We denote byW the spaceH1,1(M,R), by λW the highest weight of the
representationG→ GL(W) and byE the direct sum of the irreducible factors
Vi of W corresponding to the weightλW (all Vi are isomorphic representations).

5.1. Invariant cones inK (M). Since the Kähler coneK (M) is aΓ-invariant,
convex, and salient cone inW with non empty interior, Proposition 4.1 as-
serts thatK (M) contains a non-trivialG-invariant subcone. More precisely,
K (M)∩E contains aG-invariant salient subconeK E which is not reduced
to {0}, and the action ofG on the linear span ofK E is faithful (see §4.2).

From now on, we replaceE by the linear span of the coneK E. Doing this,
the coneK E has non empty interior inE, and is aG-invariant subcone of
K (M). SinceG is almost simple, the representationG→ GL(E) is unimodu-
lar. Thus, the action of the Cartan subgroupA onE is unimodular, faithful and
diagonalizable.

5.2. Actions of abelian groups. We now focus on a slightly more general sit-
uation, and use ideas from [16]. LetA be the additive abelian groupRm, with
m≥ 1; in the following paragraph,A will be a Cartan subgroup ofG, and thus
m= rkR(G) will be equal to dim(M)−1. LetE be a subspace ofW andK E be
a subcone ofK (M)∩E with non empty interior. Letρ be a continous repre-
sentation ofA intoGL(H∗(M,R)) by cohomological automorphisms. Assume
that

(i) ρ(A) preservesE andK E;
(ii) the restrictionρE : A→GL(E) is diagonalizable, unimodular, and faith-

ful.

From (ii), there is a basis ofE and morphismsλi : A→R, 1≤ i ≤ dim(E), such
that the matrix ofρE(a) in this basis is diagonal, with diagonal coefficients
exp(λi(a)). The morphismsλi are the weights ofρE; the set of weights

Λ = {λi ,1≤ i ≤ dim(E)}

is a finite subset ofA∨ whereA∨, the dual ofA, is identified with the space
of linear forms on the real vector spaceA = Rm. The convex hull ofΛ is a
polytopeC (Λ) ⊂ A∨ and the set of its extremal vertices is a subsetΛ+ of Λ;
equivalently, a weightλ is extremal if and only if there is an elementa ∈ A
such that

λ(a)> α(a), ∀α ∈ Λ\{λ}.
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Since any convex set is the convex hull of its extremal points, Λ+ is not empty
andC (Λ+) coincides withC (Λ).

For all weightsα ∈ Λ, we denote byEα the eigenspace ofA of weightα:

Eα =
{

u∈ E | ∀a∈ A, ρE(a)(u) = eα(a)u
}

.

We denote byE+ the vector subspace ofE which is spanned by theEλ where
λ describesΛ+.

Lemma 5.1. The following three properties are satisfied.

(1) The representationρE+ : A→ GL(E+) is injective.
(2) The convex hullC (Λ) of Λ+ contains the origin in its interior; in par-

ticular the cardinal ofΛ+ satisfies|Λ+| ≥ dim(A)+1.
(3) For all λ ∈ Λ+ we have Eλ ∩K E 6= {0}.

Proof. The three properties are well known.

Property (1).— The kernel ofρE+ is defined by the set of linear equations
λ(a) = 0 whereλ describesΛ+. Since all weightsα ∈ Λ are barycentric com-
binations of the extremal weights, the kernel ofρE+ is contained in the kernel
of ρE. Property (1) follows from the injectivity ofρE.

Property (2).— IfC (Λ) has empty interior, it is contained in a strict subspace
of A∨, contradicting Property (1). In particular, the cardinal of Λ+ satifies
|Λ+| ≥ dim(A)+1. Since the sum of all weightsλi(a), repeated with multi-
plicities, is the logarithm of the determinant ofρE(a) and the representation
is unimodular, this sum is 0; in other words, the origin ofA∨ is a barycentric
combination of all extremal weights with strictly positivemasses. This shows
that the origin is in the interior ofC (Λ).

Property (3).— The proof is similar to the proof of Lemma 4.3.Let λ be an
extremal weight and leta ∈ A satisfyλ(a) > α(a) for all α ∈ Λ \ {λ}. Let u
be any element ofK E; write u as a linear combinationu = ∑α∈Λ uα where
uα ∈ Eα for all α in Λ. SinceK E has non empty interior, we can chooseu in
such a way thatuλ 6= 0. Then the sequence

ρE(na)(u)
exp(nλ(a))

is a sequence of elements ofK E that converges towardsuλ whenn goes to
+∞. SinceK E is closed, property (3) is proved. �

Lemma 5.2. Let k be an integer satisfying

1≤ k≤ min(dim(M),dim(A)+1).
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Let λi ∈ Λ, 1 ≤ i ≤ dim(A)+ 1, be distinct weights, and wi be non zero el-
ements in Eλi

∩K E. For all multi-indices I= (i1, ...ik) of distinct integers
i j ∈ {1, . . . ,dim(A)+1} the wedge product

wI := wi1 ∧ . . .∧wik

is different from0.

The proof makes use of the following proposition which is dueto Dinh and
Sibony (see [16], Corollary 3.3 and Lemma 4.4). Lemma 4.4 of [16] is stated
for cohomological automorphisms that are induced by automorphisms ofM,
but the proof given in [16] extends to all cohomological automorphisms.

Proposition 5.3. Let M be a connected compact Kähler manifold. Let u and v
be elements ofK (M).

(1) If u and v are not colinear, then u∧v 6= 0.
(2) Let v1, . . . ,vl , l ≤ n−2, be elements ofK (M). If v1∧ . . . ∧vl ∧u and

v1∧ . . . ∧vl ∧v are non zero eigenvectors with distinct eigenvalues for
a cohomological automorphism, then(v1∧ . . . ∧vl )∧ (u∧v) 6= 0.

Proof of Lemma 5.2.The proof is an induction onk. Since allwi are assumed
to be different from 0, the property is established fork = 1. Assume that the
property holds for all multi-indicesI of length|I |= k with

k≤ min(dim(M),dim(A)+1)−1.

Let J = (i1, . . . , ik+1) be a multi-index of lengthk+1. Letv1, . . . ,vk−1 denote
the vectorswi1, . . . ,wik−1, let u be equal towik andv be equal towik+1. Since
the property is proved for lengthk, we know that

v1∧ . . . ∧vl ∧u and v1∧ . . . ∧vl ∧v

are two non zero eigenvectors ofA with respective weights

λik +
j=k−1

∑
j=1

λi j and λik+1 +
j=k−1

∑
j=1

λi j .

These two weights are different becauseλik 6= λik+1. Thus, property (2) of
proposition 5.3 can be applied, and it implies thatwJ is different from zero.
The Lemma follows by induction. �

Let us now assume that dimR(A) = dimC(M)−1, i.e.m= n−1. According
to property (2) in Lemma 5.1, we can findn= dim(A)+1 extremal weightsλi

such that all linear maps

a 7→ (λ1(a), . . . ,λi−1(a),λi+1(a), . . . ,λn(a)), 1≤ i ≤ n,
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are bijections fromA to Rn−1. B property (3) in Lemma 5.1, there exist ele-
mentswi in Eλi

∩K E \{0} for all 1≤ i ≤ dim(A)+1. Once such a choice of
vectorswi is made, we definewA as the sum

wA = w1+w2+ . . .+wn.

This class is nef and, by Lemma 5.2, itsn-th power is different from zero ; it
is a sum of productswi1 ∧ ...∧win which are positive because all classeswi are
nef. Thus,

w∧n
A = wA∧wA∧ . . .∧wA > 0.

According to Section 2.2, this proves the following corollary.

Corollary 5.4. If dimR(A) = dimC(M)−1, the class wA is nef and big.

5.3. A characterization of torus examples.Let us apply the previous para-
graph to the Cartan subgroupA of G; by assumption,G has rankn−1 and thus
dimR(A) = dimC(M)−1= n−1. The groupsG andA act onW and preserve
E, and we denote byρE(g) the endomorphism ofE obtained by the action
of g ∈ G on E (thus,ρE(g) is the restriction ofg∗ if g is in Γ). We keep the
notation of Section 5.2, as well as the choice of classeswi andwA. According
to Corollary 5.4, the classwA is nef and big.

Proposition 5.5. If the class wA is a Kähler class then, up to a finite cover, M
is a torus.

Remark 5.6. In Section 5.4, this result is applied in the slightly more general
context whereM is an orbifold with isolated singularities.

Proof. Let c1(M) ∈ H1,1(M,R) andc2(M) ∈ H2,2(M,R) be the first and sec-
ond Chern classes ofM. Both of them are invariant under the action ofΓ, and
therefore also under the action ofG.

Let u ∈ W be aG-invariant cohomology class. LetI = (i1, ..., in−1) be a
multi-index of lengthn−1, andwI be the productwi1 ∧ . . .∧win−1. Let v be
the class of type(n,n) defined byv= wI ∧u. Sinceu is A-invariant we have

ρE(a)(v) = exp

(

n−1

∑
j=1

λi j (a)

)

v.

Sincev is an element ofHn,n(M,R) and the action ofG is trivial onHn,n(M,R),
we get the alternative: Eitherv= 0 or ∑ j=n−1

j=1 λi j (a) = 0 for all a∈ A. Thus,
property (i) of the extremal weightsλi implies thatv is equal to 0 for all choices
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of multi-indicesI of lengthn−1. As a consequence,u is a primitive element
with respect to the Kähler classwA:∫

M
wn−1

A ∧u= 0.

In the same way, one proves thatwn−2
A ∧u= 0 for all G-invariant cohomology

classesu in H2,2(M,R).
Let us apply this remark to the first Chern classc1(M). Since this class is

invariant, it is primitive with respect towA. Sincec1(M)2 is alsoG-invariant,

wn−2
A ∧c1(M)2 = 0;

From Hodge index theorem we deduce thatc1(M) = 0. Yau’s theorem pro-
vides a Ricci flat Kähler metric onM with Kähler formwA, and Yau’s formula
reads ∫

M
wn−2

A ∧c2(M) = κ
∫

M
‖Rm‖2wn

A

whereRm is the Riemannian tensor andκ is a positive constant (see [5], page
80, and [25], §IV.4 page 112–118). From the invariance ofc2(M) we get
wn−2

A ∧c2(M) = 0 and thenRm = 0. This means thatM is flat and thusM is
finitely covered by a torusA. �

Using this proposition, we now need to change the big and nef classwA into
an ample class by a modification ofM. This is the main goal of the following
paragraph.

5.4. Obstruction to ampleness, invariant subsets, and Kummer examples.

5.4.1. Let us start with the following simple fact.

Proposition 5.7. Let B be an irreducible real analytic subset of the vector
space H1,1(M,R). Assume that

(i) all classes w in B are big and nef classes but
(ii) none of them is ample.

Then there exists an integer d with0 < d < n and a complex analytic subset
Y0 ⊂ M of dimension d such that

∫
Y0

wd = 0 for all classes w in B.

Proof. The set of classes[Y] of irreducible analytic subsetsY ⊂X is countable.
For all such classes[Y], let Z[Y] be the closed, analytic subset ofB which is
defined by

Z[Y] =

{

w∈ B|
∫

Y
wdim(Y) = 0

}

.
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Apply Section 2.2. Since all elements ofB are nef and big but none of them is
ample, the family of closed subsetsZ[Y] with dim(Y)≥ 1 coversB. By Baire’s
theorem, one of the subsetsZ[Y] has non empty interior. LetZ[Y0] be such a
subset, with dim(Y0)≥ 1. The map

w 7→
∫

Y0

wdim(Y0)

is algebraic and vanishes identically on an open subset ofB. SinceB is an
irreducible analytic subset ofH1,1(M,R), this map vanishes identically. �

5.4.2. Coming back to the proof of Theorem A, and assuming that wA is not
ample (for all Cartan subgroupsA of G), we consider the orbit of the classwA

under the action ofG. This orbitB= G.wA satisfies the following properties:

(1) B is made of big and nef classes, but none of them is ample;
(2) B is a connected Zariski open subset in an irreducible algebraic subset

of E.

We can thus apply Proposition 5.7 to the setB. Let Z be the union of analytic
subsetsY ⊂ M such that 0< dim(Y)< dim(M) and∫

Y
wdim(Y) = 0, ∀w∈ B.

Proposition 5.7 and Section 2.2 show thatZ is a non empty proper analytic
subset ofM. SinceB is the orbit ofwA under the action ofG, this set isΓ-
invariant.

5.4.3. Let us now apply Theorem 3.3 to the subsetZ ⊂ M that is constructed
in the previous paragraph. We get a birational morphismπ : M → M0 and con-
clude that the image ofwA in M0 is ample. From Section 5.3 and Proposition
5.5 applied in the orbifold context, we deduce thatM0 is covered by a torusA.

Let us be more precise. In our case,M0 is a connected orbifold with trivial
Chern classesc1(M0) andc2(M0). This implies that there is a flat Kähler met-
ric on M0 (see [25]). The universal cover ofM0 (in the orbifold sense) is then
isomorphic toCn and the (orbifold) fundamental groupπorb

1 (M0) acts by affine
isometries onCn for the standard euclidean metric. In other words,πorb

1 (M0)

is identified to a cristallographic group∆ of affine motions ofCn. Let ∆∗ be
the group of translations contained in∆. Bieberbach’s theorem shows that (see
[38], chapter 3, theorem 3.2.9).

a.- ∆∗ is a lattice inCn;
b.- ∆∗ is the unique maximal and normal free abelian subgroup of∆ of

rank 2n.
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The torusA is the quotient ofCn by this group of translations. By construction,
A coversM0. Let F be the quotient group∆/∆∗; we identify it to the group of
deck transformations of the coveringε : A→ M0. To conlude the proof of the
Main Theorem, all we need to do is to lift virtually the actionof Γ onM0 to an
action onA. This is done in the following lemma.

Lemma 5.8.

(1) A finite index subgroup ofΓ lifts to Aut(A).
(2) Either M0 is singular, or M0 is a torus.
(3) If M0 is singular, then M0 is a quotient of the torus A by a homothety

(x,y,z) 7→ (ηx,ηy,ηz), whereη is a root of1.

Proof. By property (b.) all automorphisms ofM0 lift to A. Let Γ ⊂ Aut(A) be
the group of automorphisms ofA made of all possible lifts of elements ofΓ.
So,Γ is an extension ofΓ by the groupF:

1→ F → Γ → Γ → 1.

Let L : Aut(A)→ GLn(C) be the morphism which applies each automorphism
f of A to its linear partL( f ). SinceA is obtained as the quotient ofCn by
all translations contained in∆, the restriction ofL to F is injective. Let
N ⊂ GLn(C) be the normalizer ofL(F). The groupL(Γ) normalizesL(F).
Hence we have a well defined morphismΓ → N, and an induced morphism
δ : Γ → N/L(F). ChangingΓ into a finite index subgroup,δ is injective. Since
Γ is a lattice in an almost simple Lie group of rankn−1, the Lie algebra of
N/L(F) contains a subalgebra of rankn−1. Sincesln(C) is the unique com-
plex subalgebra of rankn−1 in gln(C), we conclude thatN containsSLn(C).
It follows thatL(F) is contained in the centerC∗Id of GLn(C).

EitherF is trivial, and thenM0 coincides with the torusA, or F is a cyclic
subgroup ofC∗Id. In the first case, there is no need to liftΓ to Aut(A). In
the second case, we fix a generatorg of F, and denote byη the root of unity
such thatL(g) is the multiplication byη. The automorphismg has at least one
(isolated) fixed pointx0 in A. ChangingΓ into a finite index subgroupΓ1,

we can assume thatΓ1 fixes x0. The linear partL embedsΓ1 into GLn(C).
Selberg’s lemma assures that a finite index subgroup ofΓ1 has no torsion.
This subgroup does not intersectF, hence projects bijectively onto a finite
index subgroup ofΓ1. This proves that a finite index subgroupΓ1 of Γ lifts to
Aut(A). �
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6. CLASSIFICATION OF KUMMER EXAMPLES

In this section, we list all Kummer examples of dimensionn ≥ 3 with an
action of a latticeΓ in a rankn−1 simple Lie groupG, up to commensurabil-
ity and isogenies. The main step is to classify toriCn/Λ such thatAut(Cn/Λ)
contains a copy ofΓ. As seen in the proof of Lemma 5.8, a finite index sub-
group ofΓ lifts to a linear representation intoSLn(C) that preserves the lattice
Λ. Margulis theorem implies that this linear representationvirtually extends
to a representation ofG itself. Thus, we have to list triples(G,Γ,Λ) whereG
is a real almost simple Lie group represented inSLn(C), Γ is a lattice inG, Λ
is a lattice inCn, andΓ preservesΛ. This is done in paragraphs 6.1 to 6.3.1:
The list is up to commensurability forΓ, and up to isogeny forCn/Λ. Then
we discuss Kummer examples in paragraph 6.4.

6.1. Preliminaries. If a rank n− 1 connected simple real Lie groupG acts
on Cn linearly, thenG is locally isomorphic toSLn(R) or SLn(C). We can
therefore assume thatG is eitherSLn(C) or SLn(R) andΓ is a lattice inG.

For actions of latticesΓ ⊂ SLn(C) on tori, proposition 8.2 of [13] can be ap-
plied: There is a negative integerd, such thatΓ is commensurable toSLn(Od)

whereOd is the ring of integers of the quadratic number fieldQ(
√

d), and the
torusM is isogeneous to(C/Od)

n.
We can therefore restrict our study to the case ofSLn(R).

6.1.1. Setting. In what follows,Γ is a lattice inG= SLn(R), G acts linearly
onV = Cn, by a morphismρ : G→ SLn(C), andΓ preserves a latticeΛ ⊂V.

If we forget the complex structure, we can identify the vector spaceV =

Cn with R2n and the latticeΛ with Λ = Z2n; the complex structure onV is
then given by a linear operatorJ ∈ GL2n(R) with J2 = −Id2n. The linear
representationρ of G preserves the complex structure. As a consequence,ρ is
equivalent to the diagonal representation onP×P whereP=Rn is the standard
representation ofG. More precisely, the vector spaceV splits asP1⊕ J(P1)

whereP1 is aG-invariant totally realn dimensional subspace; restricted toP1

and toJ(P1), the representation ofG is conjugate to its standard representation
P. The complex structureJ acts as follows: If(u,v) is a point inP×P ≃ V,
thenJ(u,v) = (−v,u).

Up to finite index, the latticeΓ coincides with the lattice

{g∈ G|ρ(g)(Λ) = Λ},
that is with the (preimage of the) intersectionρ(G)∩SL2n(Z). In particular,
ρ(G)∩SL2n(Z) is Zariski dense inρ(G).
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6.1.2. Centralizer. Let CG ⊂ SL(V) be the centralizer ofρ(G):

CG = {h∈ SL(V) |hρ(g) = ρ(g)h ∀g∈ G} .

As a Lie group,CG is isomorphic toSL2(R) acting onV = P×P by

(u,v) ∈ P×P 7→ (au+bv,cu+dv).

In particular, it does not preserve the complex structureJ. Sinceρ(G)∩
SL2n(Z) is Zariski dense inρ(G), the centralizerCG is defined overZ in
SL2n(R); henceCG(Z) = CG ∩ SL2n(Z) is an arithmetic lattice inCG. As
such, eitherCG(Z) is not cocompact and is then commensurable toSL2(Z),
or CG(Z) is cocompact and is then commensurable to a lattice derived from a
quaternion algebra (see §6.3 below, [24], and [29], chapter6).

Lemma 6.1. The following properties are equivalent.

(1) ρ(G) preserves an n- dimensional plane P′ in V which is defined over
Q.

(2) ρ(G) is conjugate by an element ofSL2n(Q) to the standard diagonal
group{(A,A) |A∈ SLn(R)} in SL2n(R).

(3) up to finite indices,ρ(Γ) is conjugate to the diagonal copy ofSLn(Z)
in SL2n(R).

(4) up to finite indices,Γ is conjugate toSLn(Z) in G= SLn(R).
(5) CG(Z) is not cocompact, and is thus commensurable toSL2(Z).

Proof. If ρ(G) preserves ann-dimensional planeP′
1 defined overQ, we apply

an element ofCG(Z) to find anotherρ(G)-invariantn-planeP′
2 defined over

Q which is in direct sum withP′
1. Thus, there is an elementB of SL2n(Q)

which maps the standard decompositionR2n = Rn ⊕Rn to R2n = P′
1 ⊕P′

2,
and conjugatesρ(G) to the diagonal copy ofSLn(R) in SL2n(R). The group
ρ(Γ) is virtually conjugate, by the same matrixB, to the intersection of the
diagonal copy ofSLn(R) with SL2n(Z), so thatΓ is commensurable toSLn(Z)
in SLn(R). This shows the following implications

(1)⇒ (2)⇒ (3)⇒ (4).

Assume (4). LetT be an element ofSLn(R) such thatTΓT−1 intersects
SLn(Z) on a finite index subgroup. LetN+ be the group of upper trian-
gular matrices inSLn(R), let N+(Z) be its intersection withTΓT−1, and
N+

Γ = T−1N+(Z)D. The action ofρ(N+
Γ ) on V fixes a 2-planeU pointwise,

andU is define overZ becauseN+
Γ preserves the latticeΛ = Z2n. Since

N+
Γ fixes a unique directionD in P = Rn, the planeU is equal toD×D in



HOLOMORPHIC ACTIONS AND ZIMMER PROGRAM 29

V = P×P. Let u = (ax0,bx0) be an element ofU ∩Λ \ {0}. Then then-
dimensional planeP′ defined by

P′ = {(x,y) ∈ P×P|ay= bx}
is ρ(G)-invariant and contains a lattice pointu∈ Λ. The orbit ofu underρ(Γ)
is a lattice inP′, and thusP′ is defined overZ. This shows that

(4)⇒ (1).

Assume (2) and denote by(x1, . . . ,xn,y1, . . . ,yn) the coordinates inV =

Rn ⊕ Rn in which ρ(G) is a diagonal copy ofSLn(R). ThenCG acts as
(xi ,yi) 7→ (axi + byi ,cxi + byi). Since this coordinates are defined overQ,
CG(Z) is commensurable toSL2(Z), so that (2) implies (5). Assume (5), and
take a unipotent elementU in CG(Z)\{Id}. The set of fixed points ofU in V
is ann-dimensional plane defined overZ which is invariant byρ(G). Thus (5)
implies (1), and all five properties are equivalent. �

6.2. Stabilizers, cocompactness, and odd dimensions.

6.2.1. Let us now fix a non-zero element(x0,y0) 6= 0 in the intersectionΛ∩
(P×P).

Remark 6.2. If x0 is proportional toy0, with bx0 = ay0, then-planeP′ given
by the equationbx= ay is G-invariant and contains a lattice point. As seen in
the proof of Lemma 6.1, this implies thatP′ is defined overQ and thatΓ is
commensurable toSLn(Z).

We now assume thatx0 andy0 are not collinear. LetH be the stabilizer
of (x0,y0) in G. Takingx0 andy0 as the first elements of a basis forP, the
groupH can be identified with the semi-direct productSLn−2(R)⋉R2(n−2) of
matrices





1 0 u
0 1 v
0 0 A





whereA is in SLn−2(R) andu andv are row vectors inRn−2. TheG-orbit of
(x0,y0) in V is homeomorphic toG/H and itsΓ-orbit is a discrete subset of
G/H. From [28], Theorem 3.11 and Remark 3.12 (see also [33], Lemma 2.8),
we deduce that

ΓH = Γ∩H

is a lattice inH. SinceH is the semi-direct product of its radicalNH = R2(n−2)

with the semi-simple factorSH = SLn−2(R), Γ intersectsNH onto a latticeΛN
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(see [32], Corollary 8.28 page 150). In particular,ΛN andΓ contain unipo-
tent elements; this implies thatΓ is not cocompact, and proves the following
proposition.

Proposition 6.3. Let Γ be a lattice in G= SLn(R), with n≥ 3. If Γ preserves
a latticeΛ in the diagonal representation of G inRn×Rn thenΓ is not cocom-
pact.

6.2.2. Let us now denote byE0 the 2-plane contained inP which is generated
by x0 andy0. By construction, the 4 dimensional space

B0 = E0×E0 ⊂ P×P

coincides with the set of fixed points ofH. SinceΓ intersectsH on a lat-
tice, E0×E0 is defined overQ. Note thatB0 is J-invariant, i.e. is a complex
subspace of complex dimension 2 inV.

If we reproduce the same construction for another point(x1,y1) in P×P∩Λ
with x1 andy1 not collinear, we get another 2-planeE1 in Pand another 4-plane
B1 in P×P. Let k be the maximum number of such 4-planesBi = Ei ×Ei ,
0 ≤ i ≤ k− 1, such that the sum of theBi has dimension 4k. Let Bc be the
direct sum of theBi ; this plane of dimension 4k is defined overQ. Similarly,
the direct sumEc of theEi has dimension 2k.

Let (xk,yk) 6= (0,0) be an element ofΛ such thatxk and yk are not pro-
portional. The intersection of the corresponding 4-planeBk with Bc has pos-
itive dimension, andEk intersectsEc. If this intersection is a lineD, we see
that Bk∩Bc is equal toD×D; sinceBk∩Bc is rational, there exists a point
(u,v) 6= 0 in Λ∩ (D×D). The vectorsu andv are proportional, and Remark
6.2 implies thatΓ is commensurable toSLn(Z). Thus, we can assume that all
planesBk, for all starting points(xk,yk) in Λ are indeed contained inBc. This
shows the following.

Lemma 6.4. Let Γ be a lattice inSLn(R) if Γ preserves a lattice in the diago-
nal representation ofSLn(R) in R2n, then

• eitherΓ is commensurable toSLn(Z)
• or n= 2k and there exists k distinct points(x j ,y j) in Λ such that the

4-planes Bj constructed above are in direct sum.

Remark 6.5. In particular, if the dimensionn is odd, the latticeΓ is commen-
surable toSLn(Z) and the groupG is conjugate by an element ofSL2n(Q) to
the diagonal copy ofSLn(R) in SL2n(R).
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6.3. Quaternion algebras and even dimensions.We now explain, conserv-
ing the same notation, how all examples can be constructed ineven dimension.

6.3.1. Quaternion algebras and lattices inSL2(R) (see[24], [29]). Let a and
b be two integers. LetHa,b (or Ha,b(Q)) be the quaternion algebra over the
rational numbersQ defined by its basis(1, i, j,k), with

i2 = a, j2 = b, ij= k=−ji.

This algebra embeds into the space of 2×2 matrices overQ(
√

a) by mapping
i andj to the matrices

( √
a 0

0 −√
a

)

,

(

0 1
b 0

)

.

In what follows, we denote byHa,b(Z) the set of quaternions with coefficients
in Z, and byHa,b(R) the tensor productHa,b⊗Q R. The determinant of the
matrix which is associated to a quaternionq = x+ yi+ zj+ tk is equal to its
reduced norm

Nrd(q) = x2−ay2−bz2+abt2.

Assume thatHa,b is a division algebra, i.e. that Nrd(q) 6= 0 if q 6= 0 is an
element ofHa,b(Q). Then the image ofHa,b(Q)∗ is contained inGL2(Q(

√
a));

moreover

(1) The group of quaternionsq with reduced norm 1 and integer coeffi-
cients determines a cocompact latticeCa,b in SL2(R);

(2) This lattice acts by left multiplication onMat2(R) ≃ R4, preserving
the (image of the) latticeHa,b(Z).

Quaternions also act by right multiplication. The group of invertible linear
transformations of the vector spaceHa,b(R) = Mat2(R) that commute with
the left action ofCa,b coincides with the groupHa,b(R)∗ of quaternions with
real coefficients and non-zero reduced norms, that is with the groupGL2(R),
acting onMat2(R) by right multiplications. The third property we need is the
following.

(3) If L ⊂ Ha,b(R) is a lattice which is invariant by a finite index subgroup
of Ca,b, thenL is commensurable to a right translateHa,b(Z)B by an
elementB of the centralizerGL2(R) of Ca,b.

The last important fact characterizes the latticesCa,b.

(4) If C is an arithmetic lattice inSL2(R) with rational traces tr(c)∈ Q for
all c∈ C, thenC is commensurable toCa,b for some division algebra
Ha,b with a andb in Z.
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6.3.2. Let us come back to the study ofCG(Z) and its action onV and theB j .
SinceCG(Z) preservesΛ and the representationCG(R)→GL(V) is equivalent
to n diagonal copies of the standard action ofSL2(R) on R2, one concludes
thatCG(Z) is an arithmetic lattice with rational traces. Thus, property (4) in
Section 6.3.1 implies thatCG(Z) is commensurable toCa,b for some division
algebraHa,b. Moreover, property (3) shows thatΛ j is commensurable to a left
translate ofHa,b(Z) by an element of the centralizer ofCG(Z). This shows
that the latticeΛ itself is commensurable toHa,b(Z)k up to the action of an
element in the group of complex linear transformations ofV.

The groupρ(Γ) acts onV, preservesΛ, and commute toCG. Thus, up to
a linear isomorphism,ρ(Γ) is commensurable to the group of linear transfor-
mationLk(a,b;Z) of Ha,b(R)k which preserves the latticeHa,b(Z)k and com-
mutes to the diagonal action ofHa,b(R)∗ by right multiplications onHa,b(R)k.

Theorem 6.6. Let M be a complex torus of complex dimension n, together
with a faithful holomorphic action of a latticeΓ of SLn(R). Then

• either M is isogeneous to the product of n copies of an elliptic curve
C/Λ0 andΓ is commensurable toSLn(Z);

• or n= 2k is even and there exists a division algebraHa,b overQ such
that M is isogeneous to the product of k copies of the abelian surface
C2/Ha,b(Z) andΓ is commensurable to the group of automorphisms
of the abelian groupHa,b(Z)k that commute to the diagonal action of
Ha,b(Z) by left multiplications.

In particular, Γ is not cocompact and M is an abelian variety.

6.4. Kummer examples and singularities.Once we have the list of possible
tori and lattices, Kummer examples are obtained by a quotient with respect to
a finite group of automorphisms of the torus.

Let A = Cn/Λ be a torus andΓ be a lattice inSLn(R) or SLn(C) acting
faithfully on M. Let F be a finite group of automorphisms ofA which is
normalized by the action ofΓ. From Lemma 5.8, we can assume thatF is a
finite cyclic group of homotheties.

If A is isogeneous to(C/Λ0)
n, with Λ0 a lattice inC andΛ = Λn

0, the order
of F is 1, 2, 3, 4 or 6 (see [13]). Ifn = 2k is even andM is isogeneous to
(C2/Ha,b(Z))k, the same conclusion holds: The finite groupF is contained in
the centralizer ofΓ, that is in the groupCG, preservesΛ, and is finite cyclic.
Thus,F can be identified to a finite cyclic subgroup ofCa,b. Viewed as a sub-
group ofSL2(R), the traces are even integers, and thus finite order elements
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have trace in{−2,0,2}. Thus the order of the cyclic groupF is bounded by 2
in this case.

This proves the following fact.

Proposition 6.7. Let M0 be Kummer orbifold A/F where A= Cn/Λ is a torus
of dimension n and F is a finite group of automorphisms of A. Assume that
there is a faithful action of a lattice in an almost simple Liegroup G of a rank
n−1 on M0. Then M0 is the quotient A′/F ′ of a torus A′ isogenous to A by a
finite cyclic group F′ which is generated by a scalar multiplication

(x1, . . . ,xn) 7→ (ηx1, . . . ,ηxn)

whereη is a root of unity of order2, 3, 4 or 6.
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