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HOLOMORPHIC ACTIONS, KUMMER EXAMPLES, AND
ZIMMER PROGRAM

SERGE CANTAT AND ABDELGHANI ZEGHIB

ABSTRACT. We classify compact Kahler manifoldi4 of dimensiomn > 3
on which acts a lattice of an almost simple real Lie group okra n— 1.
This provides a new line in the so-called Zimmer program,@ratacterizes
certain type of complex tori by a property of their automaspfis groups.

RESUME. Nous classons les variétés complexes compactes kahésen
M de dimensiom > 3 munies d’une action d’'un résefiudans un groupe
de Lie réel presque simple de rang- 1. Ceci compléte le programme de
Zimmer dans ce cadre, et caractérise certains tores coegaexnpacts par
des propriétés de leur groupe d’automorphismes.
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1. INTRODUCTION

1.1. Zimmer Program. Let G be an almost simple real Lie group. Tteal
rank rkr(G) of G is the dimension of a maximal abelian subgroupf G
that acts byR-diagonalizable endomorphisms in the adjoint represiemalf
G on its Lie algebrgg. Whenrkg(G) is at least 2, we shall say thétis a
higher rank almost simple Lie group. Ldt be alattice in G; by definition,
I is a discrete subgroup & such thatG/I" has finite Haar volume. Margulis
superrigidity theorem implies that all finite dimensionakElar representations
of I are built from representations in unitary groups and regregions of the
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Lie groupG itself. In particular, there is no faithful linear repretation of I
in dimension< rkr(G) (see[27]).

Zimmer’s program predicts that a similar picture shoulddhfa@r actions
of I' by diffeomorphims on compact manifolds, at least when timeedision
dim(V) of the manifoldV is close to the minimal dimension of non trivial lin-
ear representations & (see[17]). For instance, a central conjecture predicts
that lattices in simple Lie groups of ramkdo not act faithfully on compact
manifolds of dimension less than(see[42] 41/, 43, 21]).

In this article, we pursue the study of Zimmer’s program mftlelomorphic,
kahlerian, setting, as initiated in [11] and [13].

1.2. Automorphisms. LetM be a compact complex manifold of dimension
By definition, diffeomorphisms df1 which are holomorphic are callexlito-
morphisms. According to Bochner and Montgomety [6, 9], the grédup(M)

of all automorphisms df1 is a complex Lie group, the Lie algebra of which is
the algebra of holomorphic vector fields bh Let Aut(M)° be the connected
component of the identity iAut(M), and

Aut(M)? = Aut(M) /Aut(M)°

be the group of connected components. This group can bet@&fiand is
hard to describe: For example, it is not known whether theistsea compact
complex manifoldVl for which Aut(M)* is not finitely generated.

WhenM is a Kahler manifold, Lieberman and Fujiki proved tiatt(M)°
has finite index in the kernel of the action Afit(M) on the cohomology of
M (see [18] 26]). Thus, if a subgrodipof Aut(M) embeds intcAut(M)?, the
action ofl" on the cohomology oM has finite kernel; in particular, the group
Aut(M)* almost embeds in the group M@d) of isotopy classes of smooth
diffeomorphisms oM. WhenM is simply connected, Mgd/) is naturally
described as the group of integer matrices in a linear adgeligroup ([34]).
Thus, Aut(M)! sits naturally in an arithmetic lattice. Our main result goe
in the other direction: it describe the largest possiblédes contained in
Aut(M)%,

1.3. Rigidity and Kummer examples. The main example which provides
large groups™ C Aut(M)? is given by linear actions on tori, and on quotient
of tori (see[13], 81.2). For instance, /N is a lattice inC, the groupSL,(Z)
acts on the torud = (C//Ao)"; since this action commutes with multiplication
by —1, SLn(Z) also acts on the quotielp = A/(—1) and on the smooth
n-fold M obtained by blowing up the"4singularities ofMg. The following
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definition, which is taken from [12, 13], provides a commonai®ination for
all these examples.

Definition 1.1. LetT" be a group, an@ : I — Aut(M) a morphism into the
group of automorphisms of a compact complex manifdldThis morphism
is aKummer example (or, equivalently, is oKummer type) if there exists

e a birational morphisrm: M — Mg onto an orbifoldM,
e a finite orbifold covek : A — Mg of Mg by a torusA, and
e a morphisrm : T — Aut(A)

such thaton(y) = (mop(y) ot Yoe forallyinT.

The notion oforbifold used in this text refers to compact complex analytic
spaces with a finite number of singularities of quotient tyipeother words,
Mp is locally the quotient ofC", 0) by a finite group of linear tranformations
(see Sectioh 214).

Since automorphisms of a tor@8 /A are covered by affine transformations
of C", all Kummer examples are covered by the action of affine feans-
tions on the affine space.

The following statement is our main theorem. It confirms Ziemis pro-
gram, in its strongest versions, for holomorphic actionscompact Kahler
manifolds: We get a precise description of all possibleoastiof lattices” € G
for rkr(G) = dimc (M) but also forrkg(G) = dimg (M) — 1.

Main Theorem. Let G be an almost simple real Lie group ahde a lattice
in G. Let M be a compact Kahler manifold of dimensior 8. Letp: I —
Aut(M) be an injective morphism. Then, the real rakk(G) is at most equal
to the complex dimension of M.

(1) If rkr(G) = dim(M), then G is locally isomorphic tSLn1(R) or
SLn+1(C) and M is biholomorphic to the projective spak®&(C).
(2) If rkr(G) = dim(M) — 1, there exists a finite index subgrolp in I
such that either
(2-a)p(Io) is contained inAut(M)°, or
(2-b) G is locally isomorphic tbLy(R) or SLy(C), and the mor-
phismp : o — Aut(M) is a Kummer example.

Moreover, all examples corresponding to assertion (2-@)dascribed in
Sectior 3.4 and all Kummer examples of assertion (2-b) aserded in Sec-
tion[@. In particular, for these Kummer examples, the compdeusA associ-
ated toM and the latticé fall in one of the following three possible examples:
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e[ C SLn(R)iscommensurable t8L ,(Z) andA is isogeneous to the prod-
uct of n copies of an elliptic curv€ /A;

o[ CSLy(C)iscommensurable t8l ,(0g4) Whereoy is the ring of integers
in Q(+/d) for some negative integer, andA is isogeneous to the product of
copies of the elliptic curv€/0g;

e In the third examplen = 2k is even. There are integessandb such that
Ais isogeneous to the productbtopies of the abelian surfa@?/H,n(2),
whereH, p is the division algebra of quaternions over the rational bersQ
defined by the basidl, i, j, k), with

i=a,j?=b,ij=k=—ji.

Moreover, the grouf is a lattice inSL,(R) commensurable to the group of
automorphisms of the abelian grol:r|@7b(2)k that commute to the diagonal
action ofH, p(Z) by left multiplications (see(86).

As a consequencé, is not cocompactA is an abelian variety ant¥l is
projective. This theorem extends the main resuli of [13ifrdimension 3 to
all dimensionsr > 3 whenG is almost simple; the strategy is different, more
concise, but slightly less precise.

1.4. Strategy of the proof and complements.After a few preliminary facts
(82), the proof of the Main Theorem starts [d §3: Assertioniglroved, and
a complete list of all possible paitd,G) in assertion (2-a) is obtained. This
makes use of a previous result on Zimmer conjectures in tharaphic
setting (seel[11]), and classification of homogeneous osiguamogeneous
spaces (see2, 22,123]). On our way, we desdridevariant analytic subsets
Y CM.

The core of the paper proves that assertion (2-b) is satistieh the image
p(o) is not contained iMut(M)? andrkg (G) = dim(M) — 1.

In that casel” acts almost faithfully on the cohomology bf, and this lin-
ear representation extends to a continuous representdtiéron H*(M,R).
Sectiori 4 shows th&® preserves a non-trivial cone contained in the closure of
the Kahler conex (M) c HY1(M, R); this general fact holds for all linear rep-
resentations of semi-simple Lie grou@dor which a latticel’ C G preserves
a salient cone. Sectidn 4 can be skipped in a first reading.

Then, in &5, we apply ideas of Dinh, Sibony and Zhang togetlitr rep-
resentation theory. We fix a Cartan subgrddin G and study the eigen-
vectors ofA in the G-invariant cone: Hodge index theorem constrains the set
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of weights and eigenvectors. When there isrTamvariant analytic subset of
positive dimension, Yau's Theorem can then be used to pfatdi is a torus.

To conclude the proof, we then show that invariant analyilzsets can be
blown down to quotient singularities, and we apply Hodge éadis theorems
in the orbifold setting. This makes use of Secfion 3.

SectiorL6 lists all tori of dimensionwith an action of a lattice in a simple
Lie group of rankn— 1. Since Sectiorls 3.4 ahd 6 provide complements to the
Main Theorem, we recommend to skip them in a first reading.

1.5. Aknowledgment. Thanks to Michel Brion, Jean-Pierre Demailly, Igor
Dolgachev, Stéphane Druel, Jean-Francois Quint for niseudsions, com-
ments, and ideas. Demailly provided the proof of Theorerfwhize Brion
and Dolgachev helped us clarify Section|3.1.

2. COHOMOLOGY, HODGE THEORY MARGULIS EXTENSION

Let M be a connected, compact, Kéhler manifold of complex dintensi
2.1. Hodge Theory and cohomological automorphisms.

2.1.1. Hodge decompositionHodge theory implies that the cohomology groups
H¥(M, C) decompose into direct sums

H*(M,C)= € HPYM,C),
p+a=k

where cohomology classesi#P9(M,C) are represented by closed forms of
type (p,q). This bigraded structure is compatible with the cup prodGctm-
plex conjugation permutds?9(M,C) with H%P(M,C). In particular, the co-
homology group#HP-P(M,C) admit a real structure, the real part of which
is

HPP(M,R) = HPP(M,C)NHZ’(M,R).
If [K] is a K&hler class (i.e. the cohomology class of a Kahler fortimn
[K]P € HPP(M,R) for all p.

2.1.2. Notation. In what follows, the vector spadé¢>1(M,R) is denotedV.
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2.1.3. Primitive classes and Hodge index theorehet [k] € W be aKahler
class i.e. the class of a Kahler form (alternatively, Kéhler sks are also
calledample classes). The set of primitive classes with respedkjds the
vector space of class@g in W such that

/ K" A U] = 0.
M

Hodge index theorem implies that the quadratic form

(1o ) = [ (K" 2A AW

is negative definite on the space of primitive forms (see,[86}3.2). We
refer the reader to [16], [15] and [40] for stronger resuitd aonsequences on
groups of automorphisms ™.

2.1.4. Cohomological automorphisms.

Definition 2.1. A cohomological automorphismof M is a linear isomor-
phism of the real vector spaét (M, R) that preserves the Hodge decomposi-
tion, the cup product, and the Poincaré duality.

Note that cohomological automorphisms are not assumedetgepre the
set of Kéhler classes or the lattieE' (M, Z), as automorphism$* with f
Aut(M) do.

2.2. Nef cone and big classesRecall that a convex cone in a real vector
space issalient when it does not contain any line: In other words, a salient
cone is strictly contained in a half space.

TheKahler cone of M is the subsex (M) C W of K&hler classes. This set
is an open convex cone; its closukg(M) is a strict and closed convex cone,
the interior of which coincides withx (M). We shall say thatg (M) is the
cone ofnef cohomology classes of typd,1). All these cones are invariant
under the action oAut(M).

A class[w)] in HY1(M, R) is big and nefif itis nef and [, w" > 0. The cone
of big and nef classes plays an important role in this paper.

Theorem 2.2(Demailly and Paun)Let M be a compact Kahler manifold, and
[w] € HY1(M,R) be a big and nef class which is not a Kahler class. Then

(1) there exists an irreducible analytic subset™M of positive dimension

such that
/ wimY) — g
Y
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(2) the union of all these analytic subsets Y is a proper Zarisksed
subset ZC M.

Proof. The existence of in property (1) follows from Theorem 0.1 in [14].
Let us now prove property (2). Theorem 0.5(in/[14] shows thatdasgw)|
is represented by a closed positive currénwhich is smooth in the comple-
ment of a proper analytic subsétc M, has logarithmic poles along, and
is bounded from below by a Kéhler form, i.€.> k for some Kahler fornx
onM. Our goal is to show that all irreducible analytic sub&éts M of posi-
tive dimension that satisfy property (1) are contained.itvWe assume that
is not contained iiZ and din{Y) > 0, and we want to show that the integral of
[co]dim(Y) onY is positive. In order to compute this integral, we represehy
T and regularizd in order to take its dirfY )-exterior power.
Leta be a smooth and closed form of tyfie 1) which represents the class
[w]. LetC > 0 be a constant such that> —Ck. Write T as

i
= — >
T=0+ naaq; > K,
and consider the sequence of truncated currgpi > 0, defined by
Ta=0+ I—n65 max(y, —a).

On the setp > —a, T, coincides withT and thusT; > K; on the setp < —aiit
coincides witho. In particular,T, > —Ck onM. Sincel has logarithmic poles
alongZ, the setsp < —a are contained in smaller and smaller neighborhoods
of Z whena goes tow.

Since is locally the difference of a smooth function and a plurisaib
monic function,y is upper semi-continuous and, as such, is bounded from
above. ThusT, has bounded local potentials, and its Monge-Ampere prod-
ucts can be computed on any analytic subse¥iddy Bedford-Taylor tech-
nique (seel[3]).

Since the cohomology class ©f is equal to the class df we have

/ [ m(Y) /lem / dim(Y)_/ (Ck)dmeY).
Yn{y>—a+1} Yn{y<—a+1}

The first term of the right hand side of this inequality goesdm whera goes
to —co. The second term converges to the volum¥ efith respect tx. This
concludes the proof. O

2.3. Margulis rigidity and extension. Let H be a group. A property is said
to holdvirtually for H if a finite index subgroup of satisfies this property.
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Similarly, a morphisnin: T — L from a subgrou of H to a groupL. virtually
extends toH if there is a finite index subgroulpp in ' and a morphisniﬁ :
H — L such thah coincides withh on the subgroup.

The following theorem is one version of the superrigiditepbmenum for
linear representations of lattices (seel [27].or [36]).

Theorem 2.3(Margulis). Let G be a semi-simple connected Lie group with
finite center, with rank at leagt, and without non trivial compact factor. Let
I C G be an irreducible lattice. Let hIr — GLy(R) be a linear representa-
tion of I'. The Zariski closure of (') is a semi-simple Lie group; if this Lie
group does not have any infinite compact factor, then h viluextends to a
(continuous) linear representatidn: G — GLk(R).

Another important statement due to Margulis asserts thedircible lattices
I in higher rank semi-simple Lie groups are "almost simpléTlis a normal
subgroup ofl", eitherl™ is finite or " has finite index in". Thus, ifp is a
morphism froml” to a groupL with infinite image, therp is virtually faithful
(seel[27] orl[36]).

As explained in[[13], Margulis theorems, Lieberman-Fujikeorem, and
the fact that the action dfut(M) onH*(M, R) preserves the lattidd*(M, Z)
imply the following proposition.

Proposition 2.4. Let G andl" be as in theorem 2.3. Let: ' — Aut(M) be a
representation into the group of automorphisms of a comiabter manifold
M. Letp*: T — GL(H*(M,2Z)) be the induced action on the cohomology ring
of M.

(a) If the image op* is infinite, thenp* virtually extends to a representa-
tion p* : G — GL (H*(M, R)) by cohomological automorphisms.

(b) If the image ofp* is finite, the image op is virtually contained in
Aut(M)°.

2.4. Orbifolds. In this paper, an orbifoldp of dimensionn is a compact
complex analytic space with a finite number of quotient slagties g;; in
a neighborhood of eacty, Mg is locally isomorphic to the quotient aE"
near the origin by a finite group of linear transformationdl examples of
orbifolds considered in this paper are locally isomorpbi€t'/n; wheren;
is a scalar multiplication of finite orddg. Thus, the singualrity; can be
resolved by one blow-up: The poigt is then replaced by a hypersurfage
which is isomorphic t®"~1(C) with normal bundleo (—k;).
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All classical objects from complex differential geometrg aefined oM
as follows. Usual definitions are applied on the smooth Wt {q1, ..., ok}
and, around each singulariy, one requires that the objects come locally from
ni-invariant objects oi€". Classical facts, like Hodge decomposition, Hodge
index theorem, Yau theorem, remain valid in the context difolds. The
reader will find more details in [10, 39].

3. LIE GROUP ACTIONS AND INVARIANT ANALYTIC SUBSETS

3.1. Homogeneous manifolds.The following theorem is a direct consequence
of the classification of maximal subgroups in simple Lie groyseel[35],
chapter 6, or Sectidn 3.4 below).

Theorem 3.1.Let H be a connected almost simple complex Lie group of rank
rkc(H) = n. If H acts faithfully and holomorphically on a connectedrgact
complex manifold M of dimensiaa n then, up to holomorphic conjugacy, M

is the projective spacB"(C), H is locally isomorphic td°GL ,;1(C), and the
action of H on M is the standard action by linear projectivartsformations.

Following a suggestion by Brion and Dolgachev, we sketchaofpthat
does not use the classification of maximal subgroups of Loeigs. LetA
be a Cartan subgroup . SinceH has rankn this group is isomorphic to
the multiplicative grougC*)". The action ofA on M is faithful; this easily
implies that diffM) = n and thatA has an open orbit. Thusl is a toric
variety of dimensiom with respect to the action of the multiplicative gro@ip
In particular, there is no faithful action &f on compact complex manifolds
of dimension less than. SinceH is almost simple and connected, all actions
of H in dimension< n are trivial.

As a corollaryH acts transitively oM, because otherwidd has a proper
Zariski closed orbit: This orbit has dimensienn and, as such, must be a
pointm € M; the action ofH at m can be linearized, and gives a non-trivial
morphism fromH to GL (TZ\M) ~ GL,(C), in contradiction withrkc(H) = n.
ThusM = H/L for some closed subgroup

SinceH /L is compactL is contained in a parabolic subgroBp(see [2]).
Since the dimension dfl is the smallest positive dimension oHzrhomoge-
neous spacd? = L andP is a maximal parabolic subgroup. Sineés maxi-
mal, the Picard number &f is equal to 1 (see [2], §4.2).

As a consequenc®) is a smooth toric variety with Picard number 1 and, as
such, is isomorphic t&"(C) (see[[19]). Since the group of automorphisms of
P"(C) is the rankn groupPGL ;1(C), the conclusion follows.
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3.2. First part of the Main Theorem. Let us apply Theorein 3.1. LEtbe a
lattice in an almost simple real Lie grop Assume thal acts faithfully on

a connected compact Kahler manifoiti with dimc(M) < rkr(G). By [11],

the dimension oM is equal to the rank o6 and the image of in Aut(M)

is virtually contained inAut(M)°. Hence, we can assume that the action of
[ on M is given by an injective morphismp: I — Aut(M)°. As explained

in [11], the complex Lie group\ut(M)° contains a copy of an almost simple
complex Lie groupH with rkc(H) > rkr(G). More precisely, ifp(I") is not
relatively compact iut(M)°, one apply Theorein 2.3 to extend the morphism
p virtually to a morphismp: G — Aut(M)9; if the image ofp is relatively
compact, then another representat@n ™ — Aut(M)? extends virtually to

G; in both cases, the Lie algebraldfis the smallest complex Lie subalgebra
containing @q(g)-

Theoren 3.1 shows thad is the projective spacB"(C) and Aut(M) co-
incides withPGL,;1(C) (and thus withH). As a consequence, the groGp
itself is locally isomorphic t&L ny1(R) or SLy1(C).

Summing up, the inequality digiM) > rkr(G) as well as property (1) in
the Main Theorem have been proved.

3.3. Invariant analytic subsets. Let us now study -invariant analytic sub-
setsZ C M under the assumption of assertion (2) in the Main Theorem; in
particular ding(M) = rkr(G) +1. LetZ be arl-invariant complex analytic
subset. Assume, first, that @ is irreducible and (ii)2 has positive dimen-
sion.

3.3.1. Singularities. If dim(Z) < n—1, part (1) of the Main Theorem implies
that a finite index subgroup &f fixesZ pointwise. If the sek is not smooth,
its singular locus i -invariant and has dimension n— 2. Hence, changing
I" into a finite index subgroup, we assume thdixes the singular locus &t
pointwise as well aZ itself if its codimension is larger than 1.

If I fixes a pointq € Z, the image of the morphis®y: ' — GL(T4qM)
defined by the differential a, i.e. by

Oq(Y) = dyg,

preserves the tangent coneZoétg; in particular, the Zariski closure @(I")

in PGL(TgM) is a proper algebraic subgroup BGL (TqM). Since proper
algebraic subgroups 6fGL ,(C) have rank less tham— 1 = rkg (G), Margulis
rigidity theorem implies that the image &f is finite. These facts provide the
following alternative:
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e EitherZ is a smooth hypersurface,
e or Z contains a fixed poing for which the morphisndy has finite
image.

From [8], the action of in a neighborhood of a fixed poigtcan be linearized.
Thus, in the second alternative, a finite index subgroup a€ts trivially in a
neighborhood of). Since the action of is holomorphic andM is connected,
this contradicts the faithfulness of the morphiEm> Aut(M). We deduce that
all irreduciblerl -invariant analytic subsets of positive dimension are simoo
hypersurfaces

3.3.2. Geometry of Z By the first part of the Main Theorem (sek_83.2), a
smooth invariant hypersurface is a copy®¥ (C) on whichT acts as a
Zariski dense subgroup &fGL»(C). Such a subgroup does not preserve any
non empty algebraic subset. ThiZsdoes not intersect any other irreducible
I-invariant subset. Replacirgby finite index subgroups, one can now apply
this discussion to all-invariant analytic subsets:

Proposition 3.2. Let ' be a lattice in an almost simple Lie group of rank
n—1> 2. If I acts faithfully by holomorphic transformations on a compac
complex manifold M of dimension n, afyinvariant analytic subset Z M

is a disjoint union of isolated points and smooth hyperstefaisomorphic to
P"-1(C).

3.3.3. Contraction of Z.Section 3.2 in[[13] can now be applied almost word
by word to show the following result.

Theorem 3.3.Letl" be a lattice in an almost simple Lie group G. Assume that
I" acts faithfully on a connected compact Kahler manifold M,

rkR(G) = dimc(M) -1,

and the image off in Aut(M) is not virtually contained irut(M)°.

Let Z be the union of all -invariant analytic subsets Y¥: M with positive
dimension. Then Z is the union of a finite number of disjoiie® of the
projective space iZ= P"~1(C). Moreover there exists a birational morphism
. M — Mg onto a compact Kahler orbifold ysuch that

(1) mtcontracts all Zto points g € Mo;

(2) around each pointigthe orbifold M is either smooth, or locally iso-
morphic to a quotient ofC", 0) by a finite order scalar multiplication;

(3) mis an isomorphism from the complement of Z to the complenient o
the points ¢
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(4) mtis equivariant: The group acts on M in such a way thattoy=yoTt
forallyinT.

3.4. Lie group actions in caserkr(G) = dim(M) — 1. In case (2-b) of the
Main Theorem, the group is a lattice in a rank— 1 almost simple Lie group,
andr virtually embeds intdAut(M)°. This implies thatAut(M)° contains an
almost simple complex Lie grouf, the rank of which is equal to— 1. The

goal in this section is to list all possible examples. Thus,assumptions are

(i) Hisanalmostsimple complex Lie group, and its rank is equaHd;
(i) M is a connected, compact, complex manifold andglih) = n > 3;
(iii) H is contained imMut(M)°.
We now list all such possible paifM, H).

Example 3.4. The groupSL»(C) acts onP"~(C) by linear projective trans-
formations. In particulaSL ,(C) acts on products of tyd@"~1(C) x B where
B is any Riemann surface.

The action ofSL,(C) on P"-1(C) lifts to an action on the total space of
the line bundle® (k) for everyk > 0; sections oD (k) are in one-to-one cor-
respondence with homogeneous polynomials of defread the action of
SLn(C) on H%(P"1(C), 0(k)) is the usual action on homogeneous polyno-
mials inn variables. Letp be a positive integer anl the vector bundle of
rank 2 overP"~1(C) defined byE = 0 @ o(p). ThenSL(C) acts onE, by
isomorphisms of vector bundles. From this we get an actiotherprojec-
tivized bundleP(E), i.e. on a compact Kahler manifod which fibers over
P"-1(C) with rational curves as fibers.

Whenk = 1, one can blow down the section BfE) given by the line
bundleo(1). This provides a new smooth manifold with an actiorsbf,(C)
(for other values ok, a singularity appears). In that casd,,(C) has an
open orbitQ, the complement of which is the union of a point and a smooth
hypersurfac@"~1(C).

A similar example is obtained from the*-bundle associated to(k). Let
A be a complex number with modulus different from 0 andr'he quotient
of this C*-bundle by multiplication by\ along the fibers is a compact Kahler
manifold, with the structure of a torus principal bundle oP&~1(C). Since
multiplication byA commutes with th&L ,(C)-action ono (k), we obtain a
(transitive) action o6L 5(C) on this manifold. In this cas@ is not Kéhler; if
k=1, M is the Hopf manifold, i.e. the quotient @" \ {0} by the multiplica-
tion by A.
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Example 3.5. Let H be the groupO5(C) (resp.SO(C)). The rank ofH is
equal to 2 (resp. 3). The projective quad@g C P*(C) (resp.Q4 C P°(C))
given by the equatio@x,-2 = 0 is H-invariant, and has dimension 3 (resp. 4).
The space of isotropic lines contained @ is parametrized byP3(C), so
that P3(C) is a SO5(C)-homogeneous space: This comes from the isogeny
betweernSO5(C) andSp4(C) (see [20], page 278), and provides another ho-
mogeneous space of dimensi&(SO5(C)) + 1.

Similarly, SOg(C) is isogenous t6L 4(C), andPSOg(C) acts transitively
onP3(C). However, in this case, the rank of the group is equal to theedi
sion of the space (as in Theorém]|3.1).

Theorem 3.6.Let M be a connected compact complex manifold of dimen-
sion n> 3. Let H be an almost simple complex Lie group witl(H) =

n— 1. If there exists an injective morphism-H Aut(M)°, then M is one of
the following:

(1) a projective bundI®(E) for some rank vector bundle E oveP"~1(C),
and then H is isogenous ®GL,(C);

(2) a principal torus bundle oveP"~1(C), and H is isogenous tBGL n(C);

(3) a product ofP"~1(C) with a curve B of genus(§) > 2, and then H is
isogenous t&@GL »(C);

(4) the projective spac®"(C), and H is isogenous t®GL,(C) or to
PSO5(C) when n=3;

(5) a smooth quadric of dimensidor 4 and H is isogenous t605(C)
or to SO(C) respectively.

The proof splits into three cases, according to the sizeabtbits ofH.

3.4.1. Transitive actions.Let us come back to the rank/dimension inequality
obtained in Theorem 3.1. L& be a connected compact complex manifold on
which a complex semi-simple Lie grogacts holomorphically and faithfully.
LetK C Sbhe a maximal compact subgroup andrtelbe a point oM. Then
(1) dimg(S) = dimg(K);
(2) dimgr(K) = dimgr(K(m)) 4+ dimg(Km) whereK(m) is the orbit ofm
andKp, is its stabilizer;
(3) Km embeds into a maximal compact subgrougbf(TyM); in other
words,Kn, is a closed subgroup of the unitary group, n = dim(M).

The inequality
dime(S) < dimg(M) +dimr U = 2n+1? (3.1)
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follows. Moreover, if the rank o8is less tham, thenKy, has positive codi-
mension inUy; this implies that codim(Km) > 2n— 2 by classification of
maximal subgroups df,, or an argument similar td 83.1. The inequalify {3.1)
can therefore be strengthen, and gives

dime(S) < n?+2.

We now apply this inequality to the proof of Theoréml3.6 inecébk acts
transtively. Thus, the semi-simple gro8gs now replaced by the almost sim-
ple complex Lie groupd, with rankr =n— 1.

If the Lie algebra oH is of typeB; or C;, i.e. H is locally isomorphic to
SO2r+1(C) orSp2r(C), we have

dimg(H) =2r2+r < (r+1)+2

and thusr? < r +3. This impliesr < 3. Whenr = 2, the groupH is lo-
cally isomorphic ta&5O5(C) andSp 4(C); there are two examples of compact
quotients of dimension 3: The quad@c P*(C), and the projective space
P3(C) parametrizing the set of lines contained in this quadrie @eample
[3.5). Wherr = 3, the groufH is isogenous t607(C) (resp. toSpg(C)) and
there is no example dfi-homogeneous compact complex manifold of dimen-
sion 4 (see example 3.5 and [35], page 169, [2], page 65).

Let us now assume that is of typeDy, i.e. H is isogenous t&0 5 (C),
with r > 3. We getr? < 3r + 3, so that = 3 andH is isogenous t§0¢(C).
There is a unique homogeneous spisloaf dimension 4 for this group, namely
the quadricQ c P5(C).

Similarly, the inequality excludes the five exceptionalgysEg(C), E7(C),
Es(C), F4(C), andG2(C): None of them acts transitively on a compact com-
plex manifold of dimensiomk(H) + 1.

The remaining case concerns the grétip- SL,(C), acting transitively on
a compact complex manifold of dimensiom > 3. WriteM = H /L whereL
is a closed subgroup ¢f. Two cases may occur: Eitheris parabolic, or not.

If L is parabolic, theM is a flag manifold of dimensionfor SL,(C). Flag
manifolds forSL ,(C) are well known, and only two examples satisfy our con-
straints. The first one is given by the incidence varkety P?(C) x P?(C)" of
pairs(x,) wherex is a point contained in the ling or equivalently the set of
complete flags o€3: This is a homogeneous space under the natural action of
PGL3(C) and, at the same time, this iSP4(C)-bundle oveiP?(C). The sec-
ond example is given by the Grassmanni(i, 3) of lines inP3: This space
has dimension 4 and is homogeneous under the natural adtiBGlo(C).
This example appears for the second time: By Plicker emhgd@i1,3) is
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a smooth quadric if?°(C) and, as such, is a homogeneous spacé@y(C)
(the groupsSO5(C) andSL 4(C) are isogenous, see page 286.0f [20]).

If the groupL is not parabolic, theh is contained in a parabolic group
with dim(P) > dim(L). This gives rise to &l -equivariant fibration

M —H/P

with dim(H /P) < n. By Theoreni-311H /P is the projective spacé"1(C)
and dim(P) = dim(L) + 1. The fibers of the projectioM — H /P are quotient
of a one parameter group by a discrete subgroup and, as swck]ligtic
curves. This implies tha¥ is an elliptic fibre bundle oveP"~(C), as in

examplé 3.4.

3.4.2. Almost homogeneous examplégt us now assume th is not ho-
mogeneous under the actiontéf but thatH has an open orb@ = H/L; let
Z =M\ Q be its complement; this set is analytic addnvariant. A theorem
due to Borel ([7]) asserts that the number of connected coes ofZ is at
most 2. By Proposition 32, each componenZag either a point or a copy of
P"-1(C); if one component is isomorphic #'1(C) thenH is isogenous to
SL»(C) and acts transitively on this component. Assume nowZhaintains
an isolated poinin. This point is fixed by the action ¢f, and this action can
be linearized locally arounoh. SinceH has rankn— 1 andM has dimension
n, the groupH is isogenous t8L ,(C). Blowing up the pointn, we replacem
by a copy ofP"~1(C). Thus,H is isogenous t&L,(C), and blowing up the
isolated points oZ, we can assume thatis the union of one or two disjoint
copies ofP"~1(C) on whichH acts transitively. This situation has been stud-
ied in details in[[23] and [22]; we now describe the conclasiof [23] and
[22] without proof.

Let P be a maximal parabolic subgroup wittyP = P"~1(C) (P is unique
up to conjugacy).

Suppose, first, thal is connected. Theh C P (up to conjugacy)M is
a projective rational manifold and it fibers equivariantty®—%(C) = H/P;
the fibers are isomorphic ®'(C), each of them intersecting in one point
(see [23]). The intersection of each fiber withis isomorphic toC and, at
the same time, is isomorphic #y/L; this is not possible fon > 2 because
all morphisms from the maximal parabolic groBpto the groupAff (C) of
holomorphic diffeomorphisms df factor through the natural projectiéh—
C*, and there is no transitive action Gf onC.

Thus,Z has indeed two connected components, as ih [22] (seelal}o [23
This case corresponds ®'-bundles ovei®"~1(C), as in examplé_3l4M
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fibers equivariantly of?"~1(C) with one dimensional fibers ~ P1(C), each
of them intersecting in two points; the two connected componentZadre
two sections of the projection onR§—1(C), which correspond to the two line
bundleso ando (k) from examplé-3}4.

If k=1, one of the sections can be blown down to a fixed point (tlusgss
inverses the blow up construction described at the begiywfisection 3.4/)2).

3.4.3. No open orbit.Let us now assume thit does not have any open orbit.
Then, blowing up all fixed points dfi, all orbits have dimension— 1. By
Theoreni3.1LH is isogenous t&L,(C) and its orbits are copies &"~1(C).

In that case, the orbits define a locally trivial fibratior\bbver a curveB. Let

A be the diagonal subgroup 6t ,(C). The set of fixed points oA definesn
sections of the fibratioM — B. This shows that this fibration is trivial aid

is a produc"1(C) x B. A posteriori,H had no fixed point oM.

4. INVARIANT CONES FOR LATTICES ANDLIE GROUPS

This paragraph contains preliminary results towards tloefpof the Main
Theorem in case (2-b). Under the assumption of assertidm), (Rroposition
2.4 applies, and one can extend the actiof an W = HYY(M,R) to an
action of G; unfortunately, the nef con& (M) is notG-invariant a priori. In
this section, we find &-invariant subcone which is contained4n(M). This
is done in the general context of a linear representationsaai-simple Lie
groupG, for which a latticd™ C G preserves a salient cone.

4.1. Proximal elements, proximal groups, and representations.

4.1.1. Proximal elements and proximal groupketV be a real vector space
of finite dimensiork. Let g be an element oGL (V). LetA1(g) > A2(9) >
... > Ak(g) be the moduli of the eigenvalues @f repeated according to their
multiplicities. One says thatis proximal if A1(g) > A2(Q); in this caseg has
a unique attracting fixed poing in P(V). A subgroup ofGL (V) is proximal
if it contains a proximal element, and a representa@oen GL (V) is proximal
if its image is a proximal subgroup.

If " is a proximal subgroup o&L (V), the limit set /\I}D of the groupl” in
P(V) is defined as the closure of the g& |g < I, g is proxima}.

4.1.2. Proximal representations and highest weight vectdrst G be a semi-
simple Lie group and\ be a Cartan subgroup (B; let g anda be their respec-
tive Lie algebras, and the system of restricted roots: By definitians the
set of non-zero weights for the adjoint actionaadn g. One chooses a system
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of positive roots>*. A scalar product:|-) ona is also chosen, in such a way
that it is invariant by the Weyl group. One denotes/Mythe set ofveightsof
2; by definition

Wt:{)\eaWan, ZMGZ}.

(ala)
The set odlominant weightsis Wt™ = {A e Wt| Va € =+, (A|a) > 0}. This
set corresponds to positive elements for the order definadftoloy A > A’ if
and only if (A|a) > (M|a) for all a in 7.

Letp: G— GL(V) be an irreducible representation®f This provides a
representation of the Lie algebrgsanda. By definition, the weights of in
V are the (restricted) weights pf This finite set has a maximal element
for the order defined okVt: This highest weightA is contained inWt™, is
unique, and determines the representapiaip to isomorphism.

The image ofG in GL (V) is proximal if and only if the eigenspace 6f
corresponding to the highest weighhas dimension 1 (seel[1]).

If one starts with a representatiprwhich is not irreducible, one first splits
it as a direct sum of irreducible factors, and then apply tiegipus description
to each of them; this gives a list of highest weights, one &mheirreducible
factor. The maximal element in this list is the highest wemfip (see § 4.2)2).

4.2. Invariant cones. In this paragraph we prove the following proposition.

Proposition 4.1. LetI" be a lattice in a connected semi-simple Lie group G.
Let G— GL (V) be a real, finite dimensional, linear representation of G. If
" preserves a salient cor@ C V which is not reduced t¢0}, the coneQ
contains a G-invariant salient subcone which is not redutce{D}.

Let G be a connected semi-simple Lie group &nbe a Zariski dense sub-
group of G. Letp: G — GL(V) be a real, finite dimensional, linear repre-
sentation ofG. Assume thap(I") preserves a salient cofiewith Q # {0}.

If the interior of Q is empty, therQ) spans a propedr-invariant subspace of
V; sincel is Zariski dense this proper invariant subspacé-svariant. We
can therefore restrict the study to this invariant subspateassume that the
interior of Q is non empty.

Remark 4.2. As the proof will show, if the action df on the linear span d@
is not trivial, the action of5 on the linear span of its invariant subcone is also
not trivial. In particular, ifG is simple, this action is faithful.
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4.2.1. Irreducible representationsWe first assume thatis irreducible. Propo-
sition 3.1, page 164, of [4], implies thatl") is a proximal subgroup diL (V),
and the limit set/\]g(r) of I is contained iNP(Q). As a consequence, is a
proximal representation of the gro@and the limit seV\Ig(G) of p(G) coin-
cides with the orbit of the highest weight line of its Cartabgroup: This orbit
is the unique closed orbit @f(G) in P(V). As such/\Ig(G) is a homogeneous
spaceG/P, whereP is a parabolic subgroup @.

Assume now thal is a lattice inG. By [30], lemma 8.5, all orbit§ - x of
[in G/P are dense, so th&(; s, = G/P coincides withAj . In particular,

/\IE(G) is ap(G)-invariant subset dP(Q). The convex cone generated,ﬁ&(G)

is a closed ands-invariant subcone of). This proves Proposition 4.1 for
irreducible representations.

4.2.2. General caselet us now consider a linear representatpnG —
GL (V) which is not assumed to be irreducible. Prasad and Raghamath
proved in [31] thatl intersects a conjugate of the Cartan subgrélg G
on a cocompact latticd- C A'. ChangingA into A', we assume thdt inter-
sectsA on such a latticé\r.

SinceG is semi-simpleV splits into a direct sum of irreducible factors;
let A be the highest weight dfp,V), letVy, ... Vin be the irreducible factors
corresponding to this weight, and &t be the direct sum of th:

V= P V.

1<i<m

By construction, all representatioxis 1 < i < m, are isomorphic.

Lemma 4.3. Sincerl is a lattice,Q intersects the sum"\of the highest weight
factors on a closed, salient cog® which is not reduced to zero.

Proof. If uis any element of2, one can decomposeas a sung, uy where
eachuy is an eigenvector of the Cartan subgr@dugorresponding to the weight
X. SinceQ has non empty interior, we can choose such an elem@rith a
non zero component, for the highest weighh. SinceAr is a lattice inA,
there is a sequence of elemewtsn Ar such that
u
Yn(U) _ Z X(Yn) Uy
V(W & llya(u)]]

converges to a non zero multiplewf. SinceQ is I'-invariant and ally, are in
I, we deduce tha® intersects/’. O
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The subspace &f’ which is spanned b@’ is a direct sum of highest weight
factors; for simplicity, we can therefore assume tats spanned by’. In
particular, the interiotnt(Q’) is a non-empty subset bf.

Let g be the projection 0f' = @V, onto the facto¥;. The image ofnt(Q’)
by  is an open subcorm (Q') in V.

If this cone is salient, the previous paragraph shows thaté¢presenta-
tion (p1,V1) is proximal. Thus, alV; can be identified to a unique proximal
representatiorR, with a given highest weight line = Ru™. We obtainm
copiesL; of L, one in each copy; of R. Apply Lemma[4.B and its proof:
SinceQ’ is I-invariant,l is a lattice, and)’ has non empty interior, there is
a pointv € L1 & ... ® Ly, which is contained iQ’. Let (a,...,am) be the real
numbers such that= (aqut,...,anu™). The diagonal embedding — V’,
w— (a1w,...,anw) determines an irreducible sub-representatio dfito V
that intersect€)’, and the previous paragraph shows tBatreserves a salient
subcone ofY'.

If the conem(Q’) is not salient, the fiberql(O) intersectsQ’ on ar-
invariant salient subcone; this reduce the number of iceadiel factors frorm
tom— 1, and enables us to prove Proposifiod 4.1 by induction omtimeber
m of factorsV.

5. LINEAR REPRESENTATIONS AMPLE CLASSES AND TORI

We now prove the Main Theorem. Recall thatis a connected, almost
simple, real Lie group with real rankr (G) > 2, thatA is a Cartan subgroup of
G, and thaf" is a lattice inG acting on a connected compact Kéhler manifold
M of dimensiom.

From Sectior_3]2, we know that the rank @fis at mostn and, in case
rkr(G) = n, the groupG is isogenous t8L . 1(R) orSL,11(C) andM is iso-
morphic toP"(C). We now assume that the rank®fsatisfies the next critical
equalityrkr(G) = n— 1. According to Proposition 2.4, two possibilities can
occur.

e The image ofl" is virtually contained inAut(M)%; Theorem 3.6 in
Sectiori 3.4 gives the list of possible paiM,G). This corresponds to
assertion (2-a) in the Main Theorem.

e The action of” on the cohomology d¥1 is almost faithful and virtually
extends to a linear representation®bn H* (M, R).

Thus, in order to prove the Main Theorem, we replaicby a finite index
subgroup and assume that the actiom @n the cohomology oM is faithful
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and extends to a linear representatiorGofOur aim is to prove that all such
examples are Kummer examples (whep(G) = dim¢(M) — 1).

We denote byw the spaceH'1(M,R), by Aw the highest weight of the
representatio® — GL (W) and byE the direct sum of the irreducible factors
V; of W corresponding to the weighiy (all Vi are isomorphic representations).

5.1. Invariant cones in € (M). Since the Kahler cong (M) is al -invariant,
convex, and salient cone W with non empty interior, Propositidn 4.1 as-
serts thatx (M) contains a non-trivia-invariant subcone. More precisely,
% (M)NE contains aG-invariant salient subcon& g which is not reduced
to {0}, and the action o6 on the linear span ok g is faithful (see E412).

From now on, we replacg by the linear span of the core g. Doing this,
the conex g has non empty interior ifE, and is aG-invariant subcone of
% (M). SinceG is almost simple, the representati@n— GL (E) is unimodu-
lar. Thus, the action of the Cartan subgra@upn E is unimodular, faithful and
diagonalizable.

5.2. Actions of abelian groups. We now focus on a slightly more general sit-
uation, and use ideas from |16]. Latbe the additive abelian grolp™, with

m > 1; in the following paragrapA will be a Cartan subgroup @, and thus
m= rkr(G) will be equal to dinfM) — 1. LetE be a subspace &f andx g be

a subcone of (M) N E with non empty interior. Lep be a continous repre-
sentation ofA into GL (H*(M, R)) by cohomological automorphisms. Assume
that

(i) p(A) preserve€ and« g;
(i) the restrictionpe : A— GL (E) is diagonalizable, unimodular, and faith-
ful.

From (ii), there is a basis & and morphism3; : A— R, 1 <i <dim(E), such
that the matrix ofpg(a) in this basis is diagonal, with diagonal coefficients
exp(Ai(a)). The morphism3; are the weights ofg; the set of weights

A={\,1<i<dm(E)}

is a finite subset oAY whereAY, the dual ofA, is identified with the space
of linear forms on the real vector spade= R™. The convex hull ofA is a
polytopec (A) C A and the set of its extremal vertices is a sulfsetof A;
equivalently, a weighA is extremal if and only if there is an elemertc A
such that

Aa) >a(a), VaeA\{Ar}.
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Since any convex set is the convex hull of its extremal poiltsis not empty
andc (A") coincides withc (A).
For all weightsa € A, we denote by, the eigenspace & of weighta:

Eq = {u €eE| VaeA pe(a)(u)= e“(a)u}.

We denote byE™ the vector subspace & which is spanned by th, where
A described\".

Lemma 5.1. The following three properties are satisfied.
(1) The representatiopg+: A — GL(E™) is injective.
(2) The convex hulk (A) of AT contains the origin in its interior; in par-
ticular the cardinal ofA™ satisfiedA™| > dim(A) + 1.
(3) Forall A e A* we have EN % g # {0}.

Proof. The three properties are well known.

Property (1).— The kernel gbg+ is defined by the set of linear equations
A(a) = 0 whereh describeg\*. Since all weightsr € A are barycentric com-
binations of the extremal weights, the kernepef is contained in the kernel
of pe. Property (1) follows from the injectivity obg.

Property (2).— Ifc (A) has empty interior, it is contained in a strict subspace
of AV, contradicting Property (1). In particular, the cardinél/o™ satifies
|IAT] > dim(A) + 1. Since the sum of all weighig(a), repeated with multi-
plicities, is the logarithm of the determinant pf(a) and the representation
is unimodular, this sum is 0; in other words, the originfofis a barycentric
combination of all extremal weights with strictly positiceasses. This shows
that the origin is in the interior of (A).

Property (3).— The proof is similar to the proof of Lemmal4L®t A be an
extremal weight and led € A satisfyA(a) > a(a) for all a € A\ {A}. Letu
be any element of g; write u as a linear combination = ¥ 4. Ug Where
Uy € Eq for all a in A. Sincex g has non empty interior, we can choasi
such a way that, # 0. Then the sequence

PE(na) (u)

exp(hA(a))
is a sequence of elements Kfg that converges towards, whenn goes to
+o00. Sincex g is closed, property (3) is proved. O

Lemma 5.2. Let k be an integer satisfying
1 <k <min(dim(M),dim(A) + 1).
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LetAi € A, 1 <i <dim(A)+ 1, be distinct weights, andjvbe non zero el-
ements in N« g. For all multi-indices = (iy,...ik) of distinct integers
ij€{1,...,dim(A)+ 1} the wedge product

Wi i= Wi AL AW
is different from0.

The proof makes use of the following proposition which is tu®inh and
Sibony (se€l[16], Corollary 3.3 and Lemma 4.4). Lemma 4.4L6f [s stated
for cohomological automorphisms that are induced by autphisms ofM,
but the proof given in[16] extends to all cohomological antwphisms.

Proposition 5.3. Let M be a connected compact Kahler manifold. Let u and v
be elements ok (M).
(1) If uand v are not colinear, thenaiv # 0.
(2) Letw,...,v;, | <n—2, be elements ok (M). If viA... AV Auand
ViA... AV| AV are non zero eigenvectors with distinct eigenvalues for
a cohomological automorphism, thém A ... Avi) A (UAV) # 0.

Proof of Lemma5]2The proof is an induction ok. Since allw; are assumed
to be different from 0, the property is establishedKee 1. Assume that the
property holds for all multi-indicekof length|l| = k with

k < min(dim(M),dim(A) +1) — 1.

LetJ = (i1,...,iks1) be a multi-index of lengthk+ 1. Letvy,...,v_1 denote
the vectorswi,,...,w;_,, letu be equal tav, andv be equal tow;,,,. Since
the property is proved for length we know that

VIA...AVyAU and ViA... AV|AV

are two non zero eigenvectorsAfwith respective weights
j=k—1 j=k-1
Ai + Z Ai; and A, + Z Aij.
j=1 j=1

These two weights are different becausg# A;,,,. Thus, property (2) of
proposition 5.8 can be applied, and it implies thatis different from zero.
The Lemma follows by induction. O

Let us now assume that digfA) = dimc (M) — 1, i.e.m=n—1. According
to property (2) in Lemma5l1, we can fimd= dim(A) + 1 extremal weighta;
such that all linear maps

a— (M(a),...,Ai—1(a),Ai+1(),...,An(@), 1<i<n,
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are bijections fromA to R"1. B property (3) in Lemm&a®5l1, there exist ele-
mentsw; in Ex, N % g \ {0} for all 1 <i < dim(A) + 1. Once such a choice of
vectorsw; is made, we defina/a as the sum

Wa =Wq1+Wo ...+ Wh.

This class is nef and, by Lemrha k.2, itdh power is different from zero ; it
is a sum of productsi, A... Aw;, which are positive because all classgsire
nef. Thus,

WA" = WA AWAA ... AWp > 0.

According to Sectiof 212, this proves the following corpfla
Corollary 5.4. If dimg(A) = dimc(M) — 1, the class w is nef and big.

5.3. A characterization of torus examples. Let us apply the previous para-
graph to the Cartan subgrodwf G; by assumptionG has rankh— 1 and thus
dimg(A) =dimc(M) —1=n—1. The group$ andA act onW and preserve
E, and we denote bpg(g) the endomorphism of obtained by the action
of g € G onE (thus,pe(g) is the restriction ofy* if gis in ). We keep the
notation of Sectioh 512, as well as the choice of claggemdwa. According
to Corollary(5.4, the classp is nef and big.

Proposition 5.5. If the class v is a Kahler class then, up to a finite cover, M
is a torus.

Remark 5.6. In Sectior 5.4, this result is applied in the slightly moregel
context whereM is an orbifold with isolated singularities.

Proof. Letc; (M) € HYY(M,R) andcy(M) € H>2(M, R) be the first and sec-
ond Chern classes 8. Both of them are invariant under the actionfofand
therefore also under the action@f

Let u € W be aG-invariant cohnomology class. Lét= (iy,...,in—1) be a
multi-index of lengthn — 1, andw; be the productvi, A... AW, ,. Letv be
the class of typén, n) defined byv = w; A u. Sinceu is A-invariant we have

n-1
pe(a)(v) = exp<_zlmj (a)> v
J:

Sincevis an element dfi™"(M, R) and the action oG is trivial onH""(M, R),
we get the alternative: Either= 0 or z}j_l)\ij(a) =0 forallae A. Thus,
property (i) of the extremal weighlg implies thatv is equal to O for all choices
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of multi-indicesl of lengthn— 1. As a consequenca,is a primitive element
with respect to the Kahler clagg:

wi-TAu=0.
| i

In the same way, one proves thd,fz Au= 0 for all G-invariant conomology
classesiin H>2(M,R).

Let us apply this remark to the first Chern clagéM). Since this class is
invariant, it is primitive with respect taa. Sincecy(M)? is alsoG-invariant,

Wi 2 Ac1(M)?=0;

From Hodge index theorem we deduce tbgtM) = 0. Yau'’s theorem pro-
vides a Ricci flat Kahler metric ol with Kéhler formwpa, and Yau’s formula
reads

—2 _ 2
[ w22 AcaM) = [ R

whereRm is the Riemannian tensor ards a positive constant (see€ [5], page
80, and [25], §IV.4 page 112-118). From the invariancegM) we get
WR‘Z AC2(M) = 0 and therRm = 0. This means thaVl is flat and thusM is
finitely covered by a torué. U

Using this proposition, we now need to change the big andlas$wa into
an ample class by a modification lf. This is the main goal of the following
paragraph.

5.4. Obstruction to ampleness, invariant subsets, and Kummer emples.

5.4.1. Let us start with the following simple fact.
Proposition 5.7. Let B be an irreducible real analytic subset of the vector
space H1(M,R). Assume that

(i) all classes w in B are big and nef classes but
(i) none of them is ample.

Then there exists an integer d with< d < n and a complex analytic subset
Yo C M of dimension d such thaﬁ'{ovvc| = Ofor all classes w in B.

Proof. The set of class€¥] of irreducible analytic subse¥sc X is countable.
For all such classel], let Zy; be the closed, analytic subset®fwhich is

defined by
Zy) = {We B| [ wim) = o}.
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Apply Sectiori 2.R. Since all elements®fire nef and big but none of them is
ample, the family of closed subsélg, with dim(Y) > 1 coversB. By Baire’s
theorem, one of the subsets| has non empty interior. Lefy, be such a
subset, with diniYp) > 1. The map

Wi [ wdimto)

Yo

is algebraic and vanishes identically on an open subsBt dbinceB is an
irreducible analytic subset #f11(M,R), this map vanishes identically. O

5.4.2. Coming back to the proof of Theorem A, and assumingwias not
ample (for all Cartan subgroupsof G), we consider the orbit of the clasg
under the action of. This orbitB = G.wp satisfies the following properties:

(1) Bis made of big and nef classes, but none of them is ample;
(2) Bis a connected Zariski open subset in an irreducible algebuiset
of E.

We can thus apply Proposition 5.7 to the BetL et Z be the union of analytic
subset¥ C M such that 6&< dim(Y) < dim(M) and

/ wimY) — o vweB.
Y

Propositio{ 5.7 and Sectién 2.2 show tiais a non empty proper analytic
subset ofM. SinceB is the orbit ofwa under the action o6, this set isl -
invariant.

5.4.3. Letus now apply Theorém B.3 to the sulzsetM that is constructed
in the previous paragraph. We get a birational morphisrivl — Mg and con-
clude that the image ofip in Mg is ample. From Sectidn 5.3 and Proposition
5.3 applied in the orbifold context, we deduce thktis covered by a torus.
Let us be more precise. In our caddy is a connected orbifold with trivial

Chern classes; (Mp) andcz(Mp). This implies that there is a flat Kahler met-
ric on Mg (see([25]). The universal cover My (in the orbifold sense) is then
isomorphic toaC" and the (orbifold) fundamental grom§™(Mo) acts by affine
isometries orC" for the standard euclidean metric. In other wom?(Mo)
is identified to a cristallographic group of affine motions ofC". Let A* be
the group of translations containedinBieberbach’s theorem shows that (see
[38], chapter 3, theorem 3.2.9).

a.- A* is a lattice inC™;

b.- A* is the unique maximal and normal free abelian subgrouft of

rank .
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The torusA is the quotient o€" by this group of translations. By construction,
A coversMy. Let F be the quotient group/A*; we identify it to the group of
deck transformations of the coveriag A — Mg. To conlude the proof of the
Main Theorem, all we need to do is to lift virtually the actiohl” on Mg to an
action onA. This is done in the following lemma.

Lemma 5.8.

(1) A finite index subgroup df lifts to Aut(A).

(2) Either Mg is singular, or My is a torus.

(3) If Mg is singular, then N is a quotient of the torus A by a homothety
(X,¥,2) — (NX,NY,nz), wheren is a root of1.

Proof. By property (b.) all automorphisms o lift to A. LetT” C Aut(A) be
the group of automorphisms é&f made of all possible lifts of elements bf
So,T is an extension df by the grougF:

1-F—T—=TI—1

LetL : Aut(A) — GL(C) be the morphism which applies each automorphism
f of Ato its linear partL(f). SinceA is obtained as the quotient @" by

all translations contained iA, the restriction ofL to F is injective. Let

N C GLn(C) be the normalizer of.(F). The groupL(T") normalizesL(F).
Hence we have a well defined morphi$m— N, and an induced morphism
0:I — N/L(F). Changing into a finite index subgroug is injective. Since

I" is a lattice in an almost simple Lie group of rank- 1, the Lie algebra of
N/L(F) contains a subalgebra of rank- 1. Sincesl,(C) is the unique com-
plex subalgebra of rank— 1 in gl,(C), we conclude thal containsSL ,(C).

It follows thatL(F) is contained in the cent&*Id of GL,(C).

EitherF is trivial, and thenMg coincides with the torué\, or F is a cyclic
subgroup ofC*ld. In the first case, there is no need to Iiftto Aut(A). In
the second case, we fix a generagaf F, and denote by the root of unity
such that (g) is the multiplication byn. The automorphisrg has at least one
(isolated) fixed pointg in A. Changingl’ into a finite index subgroup,
we can assume th&t fixes xp. The linear part. embedd 7 into GL(C).
Selberg’s lemma assures that a finite index subgroup;dfias no torsion.
This subgroup does not intersd€t hence projects bijectively onto a finite
index subgroup ofF 1. This proves that a finite index subgrolip of I" lifts to
Aut(A). O
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6. CLASSIFICATION OF KUMMER EXAMPLES

In this section, we list all Kummer examples of dimensiokr 3 with an
action of a latticd™ in a rankn— 1 simple Lie grougs, up to commensurabil-
ity and isogenies. The main step is to classify @H A such thatiut(C"/A)
contains a copy of . As seen in the proof of Lemnia 5.8, a finite index sub-
group ofT lifts to a linear representation inf. ,(C) that preserves the lattice
A. Margulis theorem implies that this linear representatiotually extends
to a representation @ itself. Thus, we have to list triplgs, M, A) whereG
is a real almost simple Lie group represente@lin(C), I' is a lattice inG, A
is a lattice inC", andl™ preserves\. This is done in paragraphs 6.1[fo 613.1:
The list is up to commensurability fdr, and up to isogeny fo€"/A. Then
we discuss Kummer examples in paragraph 6.4.

6.1. Preliminaries. If a rankn— 1 connected simple real Lie group acts
on C" linearly, thenG is locally isomorphic t&SL(R) or SL,(C). We can
therefore assume th&tis eitherSL,(C) or SLy(R) andr is a lattice inG.

For actions of latticeB C SL(C) on tori, proposition 8.2 of [13] can be ap-
plied: There is a negative integeysuch thaf” is commensurable t8L n(04)
whereoy is the ring of integers of the quadratic number fi€l¢h/d), and the
torusM is isogeneous tOC/0q4)".

We can therefore restrict our study to the casBlaf(R).

6.1.1. Setting. In what follows,I" is a lattice inG = SLy(R), G acts linearly
onV = C", by a morphisnp : G — SL,(C), andl" preserves a latticA C V.

If we forget the complex structure, we can identify the vedpaceV =
C" with R?" and the lattice\ with A = Z2"; the complex structure o¥ is
then given by a linear operatdre GL2,(R) with J2 = —ldyy. The linear
representatiop of G preserves the complex structure. As a consequenise,
equivalent to the diagonal representatiofonP whereP = R" is the standard
representation os. More precisely, the vector spa¥esplits asP; & J(P)
whereP; is aG-invariant totally reah dimensional subspace; restricted?o
and toJ(Py), the representation @ is conjugate to its standard representation
P. The complex structurd acts as follows: If(u,v) is a point inP x P ~V,
thenJ(u,v) = (—Vv,u).

Up to finite index, the lattic&€ coincides with the lattice

{ge G|p(9)(A) = A},

that is with the (preimage of the) intersectip(G) NSL2n(Z). In particular,
P(G)NSLon(2) is Zariski dense ip(G).
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6.1.2. Centralizer. LetCg C SL (V) be the centralizer gb(G):
Ce={heSL(V)[hp(g)=p(g)h VgeG}.
As a Lie groupCg is isomorphic tdSL»(R) acting onvV = P x P by
(u,v) € Px P~ (au+bv,cu+dv).

In particular, it does not preserve the complex structureSince p(G) N
SLon(Z) is Zariski dense irp(G), the centralizelCg is defined ovelZ in
SLon(R); henceCg(Z) = CoNSLan(Z) is an arithmetic lattice itCg. As
such, eithelCg(Z) is not cocompact and is then commensurabl8lig(Z),
or Cg(Z) is cocompact and is then commensurable to a lattice derroed &
guaternion algebra (sek _86.3 beldw, [24], and [29], ch&®ter

Lemma 6.1. The following properties are equivalent.
(1) p(G) preserves an n- dimensional planeiRV which is defined over

Q.

(2) p(G) is conjugate by an element SE o,(Q) to the standard diagonal
group{(A,A)|A€ SLh(R)} in SL2n(R).

(3) up to finite indicesp(I") is conjugate to the diagonal copy SE ,(Z)
in SLZn(R).

(4) up to finite indicesl is conjugate tbL(Z) in G = SLy(R).

(5) Cs(2) is not cocompact, and is thus commensurablglig(Z).

Proof. If p(G) preserves an-dimensional plan®; defined oveQ, we apply
an element oCg(Z) to find anothep(G)-invariantn-planeP, defined over
Q which is in direct sum wittP]. Thus, there is an elemeBtof SLn(Q)
which maps the standard decompositRf! = R"® R" to R*" = P| @ P,
and conjugatep(G) to the diagonal copy oL n(R) in SLon(R). The group
p(IN) is virtually conjugate, by the same mati to the intersection of the
diagonal copy obL (R) with SL2,(Z), so thaf” is commensurable 8L ,(Z)
in SLn(R). This shows the following implications

(1) =(2)=(3) = (4).

Assume (4). LefT be an element oL, (R) such thatTI' T~ intersects
SLn(Z) on a finite index subgroup. LeéX™ be the group of upper trian-
gular matrices inSL,(R), let NT(Z) be its intersection witirF'T—1, and
N = T-INT(Z)D. The action ofp(N{) onV fixes a 2-plan&J pointwise,
andU is define overZ becauseN! preserves the latticA = Z2". Since
Nr+ fixes a unique directiol® in P = R", the planeU is equal toD x D in
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V =P xP. Letu= (ax,bx) be an element o) "A\ {0}. Then then-
dimensional plan®’ defined by

P’ = {(x,y) € Px P|ay= bx}

is p(G)-invariant and contains a lattice point A. The orbit ofu underp(I")
is a lattice inP’, and thus”’ is defined oveZ. This shows that

(4) = (1),

Assume (2) and denote byi,...,Xn,VY1,...,Y¥n) the coordinates itV =
R" ¢ R" in which p(G) is a diagonal copy ofbL,(R). ThenCg acts as
(Xi,Vi) — (ax + byi,cx + by;). Since this coordinates are defined o@r
Cs(Z) is commensurable t8L 2(Z), so that (2) implies (5). Assume (5), and
take a unipotent elemebltin Cg(Z) \ {Id}. The set of fixed points df in V
is ann-dimensional plane defined ov&which is invariant byp(G). Thus (5)
implies (1), and all five properties are equivalent. 0

6.2. Stabilizers, cocompactness, and odd dimensions.

6.2.1. Letus now fix a non-zero elemérg,yo) # O in the intersectiod\ N
(PxP).

Remark 6.2. If xg is proportional toyp, with bxy = ayp, then-planeP’ given

by the equatiox = ayis G-invariant and contains a lattice point. As seen in
the proof of Lemma 61, this implies thBet is defined oveQ and thatl" is
commensurable tbL y(Z).

We now assume thag andyp are not collinear. LeH be the stabilizer
of (xo,Y0) in G. TakingXxp andyp as the first elements of a basis 8y the
groupH can be identified with the semi-direct prodStt, »(R) x R%"2) of

matrices
1 0 u
01 v
0 0A

whereA is in SL_»(R) andu andv are row vectors ilR"2. The G-orbit of
(X0,Yo) in V is homeomorphic t&/H and itsI-orbit is a discrete subset of
G/H. From [28], Theorem 3.11 and Remark 3.12 (see also [33], LarB),
we deduce that

M =rNH

is a lattice inH. SinceH is the semi-direct product of its radids}y = R2("—2)
with the semi-simple facto®q = SL,_2(R), I' intersects\y onto a lattice/\y
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(see [32], Corollary 8.28 page 150). In particulag andl” contain unipo-
tent elements; this implies thatis not cocompact, and proves the following
proposition.

Proposition 6.3. LetI" be a lattice in G=SLn(R), with n> 3. If " preserves
a lattice A in the diagonal representation of G R x R" thenl is not cocom-
pact.

6.2.2. Letus now denote ty the 2-plane contained iAwhich is generated
by Xp andyp. By construction, the 4 dimensional space

Bo=EgxEgCPxP

coincides with the set of fixed points éf. Sincel intersectsH on a lat-
tice, Eg x Ep is defined oveRQ. Note thatBy is J-invariant, i.e. is a complex
subspace of complex dimension 2in

If we reproduce the same construction for another pointy1) in P x PNA
with x; andy; not collinear, we get another 2-plaigin P and another 4-plane
B; in P x P. Letk be the maximum number of such 4-plarigs= E; x E;,
0<i < k-1, such that the sum of tH& has dimensionk Let B; be the
direct sum of theB;; this plane of dimensionkdis defined oveR. Similarly,
the direct sunk. of theEj has dimensioni

Let (X, Yk) # (0,0) be an element of\ such thatx andyk are not pro-
portional. The intersection of the corresponding 4-plBpevith B¢ has pos-
itive dimension, andy intersectsE.. If this intersection is a lin®, we see
that By N B¢ is equal toD x D; sinceByg N B¢ is rational, there exists a point
(u,v) #0in AN (D x D). The vectorsl andv are proportional, and Remark
[6.2 implies thaf” is commensurable t6L. ,(Z). Thus, we can assume that all
planesBy, for all starting pointgxx, yk) in /A are indeed contained B¢. This
shows the following.

Lemma 6.4. Letl” be a lattice inSL,(R) if " preserves a lattice in the diago-
nal representation &L ,(R) in R?", then

e eitherl" is commensurable 6L (Z)
e or n= 2k and there exists k distinct poins;j,y;j) in A such that the
4-planes B constructed above are in direct sum.

Remark 6.5. In particular, if the dimension is odd, the latticé is commen-
surable td5L(Z) and the grougs is conjugate by an element 6£ 2,(Q) to
the diagonal copy oL ,(R) in SL2n(R).



HOLOMORPHIC ACTIONS AND ZIMMER PROGRAM 31

6.3. Quaternion algebras and even dimensionsWe now explain, conserv-
ing the same notation, how all examples can be construcedeimdimension.

6.3.1. Quaternion algebras and lattices §1. »(R) (se€[24], [29]). Letaand
b be two integers. LeH,p, (or Hap(Q)) be the quaternion algebra over the
rational number§) defined by its basiél, i, j, k), with

i=a,j?=b,ij=k=—ji.

This algebra embeds into the space of 2 matrices oveQ(+/a) by mapping
i andj to the matrices

(6 %a) (5o)

In what follows, we denote b, ,(Z) the set of quaternions with coefficients
in Z, and byHa»(R) the tensor produdti;p ®g R. The determinant of the
matrix which is associated to a quaternigpe- X+ Vi + zj +tk is equal to its
reduced norm

Nrd(q) = x> —ay? — bZ + abt®.

Assume thaH,p, is a division algebra, i.e. that Nfq) # 0 if q # 0 is an
elementoH,(Q). Thentheimage dfi;p(Q)* is contained irGL2(Q(v/a));
moreover

(1) The group of quaterniong with reduced norm 1 and integer coeffi-
cients determines a cocompact lattig, in SL»(R);

(2) This lattice acts by left multiplication ollat(R) ~ R4, preserving
the (image of the) lattickl; ,(Z).

Quaternions also act by right multiplication. The group mfertible linear
transformations of the vector spaklg n(R) = Mat2(R) that commute with
the left action ofC,, coincides with the groupl,p(R)* of quaternions with
real coefficients and non-zero reduced norms, that is wetgtbupGL 2(R),
acting onMat2(R) by right multiplications. The third property we need is the
following.

(3) If L C Hap(R) is a lattice which is invariant by a finite index subgroup
of Cap, thenL is commensurable to a right translddg ,(Z)B by an
elementB of the centralizeGL 2(R) of Cap.

The last important fact characterizes the lattiCgsg.

(4) If Cis an arithmetic lattice iSL 2(R) with rational traces fic) € Q for
all c € C, thenC is commensurable tG, , for some division algebra
Hap withaandbin Z.
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6.3.2. Letus come back to the studyG(Z) and its action oV and theB;.
SinceCg(Z) preserveg\ and the representati@s(R) — GL (V) is equivalent
to n diagonal copies of the standard actionSaf;(R) on R?, one concludes
thatCg(Z) is an arithmetic lattice with rational traces. Thus, proypé4) in
Sectior[ 6.3.]1 implies th&lg(Z) is commensurable tG, , for some division
algebraH, . Moreover, property (3) shows thajg is commensurable to a left
translate ofH,,(Z) by an element of the centralizer 6(Z). This shows
that the lattice\ itself is commensurable tbla,b(Z)k up to the action of an
element in the group of complex linear transformation¥ of

The groupp(I") acts onV, preserveg\, and commute t&€s. Thus, up to
a linear isomorphisnp(I') is commensurable to the group of linear transfor-
mationLy(a,b; Z) of Hap(R)K which preserves the lattidé, ,(Z)k and com-
mutes to the diagonal action Hif, n(R)* by right multiplications orH p(R)X.

Theorem 6.6. Let M be a complex torus of complex dimension n, together
with a faithful holomorphic action of a lattice of SLy(R). Then

e either M is isogeneous to the product of n copies of an etliptirve
C/No andrl is commensurable t8L,(Z);

e or n= 2k is even and there exists a division algebta, overQ such
that M is isogeneous to the product of k copies of the abeliafase
C2/Hap(Z) andT is commensurable to the group of automorphisms
of the abelian grou;ia-lam(Z)k that commute to the diagonal action of
Hab(Z) by left multiplications.

In particular, ' is not cocompact and M is an abelian variety.

6.4. Kummer examples and singularities. Once we have the list of possible
tori and lattices, Kummer examples are obtained by a quiotigh respect to
a finite group of automorphisms of the torus.

Let A= C"/A be a torus and’ be a lattice inSL,(R) or SLy(C) acting
faithfully on M. Let F be a finite group of automorphisms &f which is
normalized by the action df. From Lemma 58, we can assume tRais a
finite cyclic group of homotheties.

If Ais isogeneous teC/Ao)", with Ag a lattice inC andA = A, the order
of Fis 1, 2, 3,4 or 6 (see [13]). I = 2k is even andM is isogeneous to
(C2/Hap(Z))K, the same conclusion holds: The finite grdeijs contained in
the centralizer of, that is in the groujg, preservesg\, and is finite cyclic.
Thus,F can be identified to a finite cyclic subgroup®©f . Viewed as a sub-
group ofSL2(R), the traces are even integers, and thus finite order elements
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have trace i{—2,0,2}. Thus the order of the cyclic groupis bounded by 2
in this case.
This proves the following fact.

Proposition 6.7. Let My be Kummer orbifold AF where A= C"/A is a torus
of dimension n and F is a finite group of automorphisms of A.ukssthat
there is a faithful action of a lattice in an almost simple gi®up G of a rank
n—1on My. Then M is the quotient A'F’ of a torus Aisogenous to A by a
finite cyclic group F which is generated by a scalar multiplication

(X17 cee 7Xn> = (nxb ) nxn)
wheren is a root of unity of ordeR, 3, 4 or 6.
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