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CASIMIR OPERATORS FOR SYMPLECTIC GROUPS

KATHRIN MAURISCHAT

ABSTRACT. We give a full set of Casimir operators for the symplectic group
of arbitrary genus in terms of a basis chosen such that the action on repre-
sentations of known K-type becomes transparent. We give examples for the
latter.

INTRODUCTION

The original intension of this work was to understand the action of Casimir oper-
ators on some kinds of automorphic forms for the symplectic group Sp,,(R).

In [2], this problem is done for the standard first Casimir operator C;. Using the
Cartan decomposition of the symplectic lie algebra g = ¢ @ p, one decomposes
Cy = tr(ELE_) + k1, where tr(E,E_) is a differential operator on the Siegel
halfplane depending only on p€ and k; is some constant coming from €€ depending
on the K-type only. Surprisingly, an analog for higher Casimir operators up to
the genus m does not exist in literature. Usually Casimir operators are realized
with respect to a Cartan subalgebra which evidently is not of any help here.

We use a basis of g€ = t€@p, @ p_ which has pleasing properties: Lie multiplica-
tion as well as matrix multiplication is simple and the dual basis (with respect to
half the trace) is essentially deduced by rearranging. The basis differs from that
used in [Z] in the £C-part. For this basis we evaluate the common formula ([T],
V. 7)

(1) D= > (X - X ) X[ - X
il,---,’ir

for Casimir elements to get a set {Da, ..., Doy} of m Casimir elements which in-
deed generates the center 3(g®) of the universal envelopping algebra. As examples,
we give precise formulae for Dy, Dy.

We apply the result to determine the action of B(QC) on a representation of K-type
(A\,...,A) to be given by that of tr(E;E_),...,tr((E+E_)™). For automorphic
forms, the latter are differential operators on the Siegel halfplane.

1. NOTATION

Let G = Sp,,(R) be the real symplectic group of genus m and let g = sp,,(R)
be its Lie algebra. We consider the matrix realization of its complexification
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g% C My 2, (C) consisting of those g satisfying

/ 0 _1m 0 _1m _
g<1m 0>+<1m 0)9—0'

The Cartan decomposition for g implies that g€ = € @ p, @ p_, where €€ is given
by those matrices satisfying

A _S ! _ !/
(4 5), wea sos

(X +iX ,
pi_{(iz’X —X)’ X_X}'

Let ey € My, ;,m(C) be the elementary matrix having entries (ex;);; = dird; and
let X () — %(ekl + eg). Further, let A®) = e — e, and S*D = 2X*D),

The elements Fip; = FE4j; of py are defined to be those corresponding to X =
X&) 1 < k1 < m. Then Eyp, 1 < k < 1 < m, form a basis of py. For
abbreviation, let £+ be the matrix having entries Fyg;.

Define the following elements of €€ for 1 < k,1 < m: Let axkC be given by S =0
and A = A®D and let s;;kC be given by A = 0 and S = S*. Then a basis of €€
is given by By := %(akl +isgr), 1 < k,l <m. Let B = (B)r be the matrix with
entries By and let B* be its transpose having entries B}, = By;.

Lie multiplication in g is easily checked to be given by

[Eyij, Byl =0, [E_ij, E_y] =0,

E.ij, E_yi| = 6;xBji + 6;1Bi, + 0iBji + ;5 Byl
Bij, Ei] = 01 B + 6 Eyir,

Bij, E_pi| = —0iE_ji — SuE_jy,

Bij, Biy) = 0, Bit — 65 By

and

[
[
[
[
We denote by B the nondegenerate bilinear form on g® defined by

@) Blg. h) = 3 trlg - h).

With respect to B we get the following dual basis: E7},;, =
B}, = By, for all k,1.

1

Trog E+p; as well as

2. CASIMIR ELEMENTS

In the following, we study words in the matrices F,, E_, B and B*. Let us define
some conditions on these words:

(i) E4 is followed by E_ or B*.
(ii) E_ is followed by E or B.
(iii) B is followed by E, or B.
(iv) B* is followed by E_ or B*.
(v) E4 occurs with the same multiplicity as E_.

We start with a combinatorial lemma.
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Lemma 2.1. Let r > 0 be an integer. Then there are 2°" possibilities to choose
a word w of length 2r in the matrices E., E_, B and B* such that the conditions
(i) to (v) are satisfied.

Proof of Lemma[2.1. We make a second claim slightly modifying Lemma [2.1] and
prove it along with the lemma itself by induction on r.

Claim: There are 22" possibilities to choose a word w of length 2r in the matrices
E.,E_, B and B* such that the conditions (i) to (iv) and

(v’) The multiplicity of F; is that of E_ enlarged or reduced by one.

are satisfied.

For r = 1, the four possible words of the lemma are EyF_, E_FE., BB and B*B*,
while the four possibilities of the claim are E. B*, F_B, BE, and B*E_. Now
look at a word w of length 2(r+1) satisfying (i)—(v). First, if w ends with £, E_ or
with E_FE,, then the initial subword of length 2r satisfies (i)—(v). And for any of
these initial subwords, the ending among F, E_ and E_F_ is unique. This gives
227 possibilities for w, using the lemma for r. Similarly, we get 22" possibilities
for a word where F+ does not occur in the last two letters. If exactly one of the
last two letters is Ey, then we again get 2 - 22" possibilities by the claim for r.
Together these are 22("t1) possibilities. Similarly, we get the result for the claim,
too. O

In the following, we formally take the trace of a word w in the operator valued
matrices. For example,

tr(ELE-) = Z E B _y,.
ol

Theorem 2.2. Let g = sp,,,(R) be the Lie algebra of the symplectic group of genus
m.

(a) The r-th Casimir element is given by

Dy =Y (=1)"") tr(w),
w
where the sum is over all words w of length 2r satisfying conditions (i) to
(v) above, and L(w) is the number of times E_B and BE, occur isolatedly
i w counted cyclicly.
(b) The center 3(g®) of the universal envelopping algebra of g€ is generated
by the m Casimir operators Do, ..., Doy,.

Here isolated means that F_B and BFE, must not hit each other, for example
L(E_-BE;B*) = 1 while L(E_BBE,) = 2. And cyclic means that we have to
take into account that the trace is cyclicly invariant, so e.g. L(EyE_BB) =
L(E_BBE;) =2.

Example 2.3. By Lemma [Z1, we have to sum over the traces of 2" words w.
So the first two Casimirs are

Dy =tr(ELE_)+tr(E_E;) + tr(BB) + tr(B*B"),
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Dy = t(E E_E.E_)+tr(E_E,E_E,)+tr(BBBB) + tr(B*B*B*B*)

+ > (tr(¢(B+E-BB)) + tr(C(E-E+ B*B")) — tx({(E4+ B*E_B))),
CE€EZy

where Zy is the group of cyclic permutations of four elements.

Proof of Theorem[2.2. (a) We define the following matrices
Ki= <—i1m 1m>  HKe= <i1m L, ) ’
(1 il Ly —ily,
P = <z1m —1m>  B= (—z’lm —1m> '

Notice that K ]2 = K, while P? = 0. In the following, if we abbriviate ek /2,
eji Py, for a (m x m)-elementary matrix ej; and a (2m x 2m)-matrix K, Py,

we mean
Cilk ie ik
ejrK1 = ( J J > , etc.

—z'ejk €ik

Now we show that Dy, in (Il) has the claimed shape. A single summand of Dy,
looks like

tr(X(.l) XIE?L2”'X(2T’—1) (20 )(X@) L x @) ),

Jij2 Jar—1J2r " kor—1kar Jij2 kor—1kar

where X](-:])-nﬂ runs through the basis Fij;, 1 <j <k <m, B, 1 <5,k <m.
() x0+D)

First we examine conditions for a pair to occur in some summand. To

J1g2"  kike
get nice formulae, we sum over all pairs of the same kind. First, let X ](:L])z = Eij,
and X ,g?,:;l) = E_j, k,- Computing the matrix product E;, ;, E_g, k,, taking duals

and rearranging summation, we get

tr(E+E_kk) . .
(3) Z s 21321 32 (Y Ejrjs Byhaka ()
1< ok <ko (1 + 6510 ) (1 + Okyky)

1
= 4 Z tr((‘sjlkleh/@ + 6j1k2€j2k1 + 5j2k16j1k2 + 5j2k26j1k1)K2)

J1,J2,k1,k2
() B En, ()"

- Z tr('”ejlleé'”)(”’)*E—j1j2E+j2k1("')*'
Ji,j2.k1

Similarly we get for the other choices of basis elements
(4) S trl By Brrake ) By By )
N1<j2;k1<k2

= Z tr(. .. ej1k1K1 . )( .. )*E+j1j2E—j2k1(' .. )*7

Ji,j2,k1
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(5) Z tr("’E-‘rjlszkle "')("'E+j1szk1k2 )*
J1<g2;k1,k2
= Y e Pee ) ) By B ()
J1,J2.k1

(6) Z tr(- - E_jijo Bk - - )( - E_jijo Briks - )*
J1<j2sk1,k2

— Z (- ey P ) () By Bl (),
Ji,j2,k1

(7) S (- Bij Bt ) Bija Btarg )"
Jug2iki<ks

- _ Z tr(-- e Pe ) ) Bjyjo Bt (- )%,
J1,92,k1

(8) S 6 Byp Bk ) By By )"

Ji,g2;k1<ke

- Z tr(- - ey Pr- o) (- )*Bj"_‘lsz_jzkl(. S,

j17j27k1

) Z tr(- - By jo Braky -+ ) (- Bjrja Bryky )"

jl,j27k17k2

= > [tr( e Kr- )+ ) By Bigky ()

Ji,j2,k1
Htr( ey Ko ) () Bl Bl ()]

From equations ([B) to (@) we get the following conditions for the occuring sum-

mands

(i") E4jij, is followed only by E_j,x, or Bj ;.
(it’) E_j ;, is followed only by E;,k, or Bj,p,.
(iii’; Bj, j, is followed only by E_ i, or Bj,,.

(iv’) Bj , is followed only by E_;;, or Bj, .

These conditions correspond to the former (i) to (iv). Now let us sum over

j17 v 7j27“7 kl e 7k27“-
e (1) y(2) (2r=1) <-(2r) (1) (2r) *
(10) T Z tr(‘lejf)(klkz T XjZT'fljZT'Xk2r71k2r)(lej2 o Xk27“71k2r)
J1yerd2r,k1e kar
w >(1) (2 >(2r—1 >(2r
- (_1)L( ) Z tr(ejlklej3k2 o ej?"*lkrU(w))XJ(i;'zXJ('zl)ﬁ’ ' X.j('2r71j)2rX]('2r]z?T'
J1yeemrd2rsk1.. Ky
L(w >(1) (2 >(2r
- (_1) w Z tr(ejljla(w))Xj('u)'zXJ('zj)é o X]('zr])i’
j17---7j27‘
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where Fy = E-+, B = B*, B* = B. Depending only on the word w = XM .. x@)
X e {E,,E_, B, B*}, there is some sign (—1)“*) and a matrix o(w) which is
a product of r matrices of the form K/, Py. In this way we get the sum over
one type of word w satisfying conditions (i)—(iv). All other words do not occur in
Dy,..

We evaluate (I0) further. First we assume that w is a word in B, B* only. Then
(—1)L(“’) =1 and o(w) is a product in K; and K. As K1 Ko = 0= KoK, we get

(DIID = Z (tr(ejllel)lejz e szrjl + tr(ejlleg)B;‘ljz - B;—;le)
J1yenjor
= Z (Bj1j2 o Bl 1oy B;m'z T B;erl)
Jiyenjor

= tr(B*) + tr((B*)*).

Now we allow E+ to occur in w. Then o(w) is a product of K/, and Py. Notice
that P+P_ = KQ, P_P+ - Kl, P+K2 - 0 - K1P+, P+K1 - P+ - K2P+,
P_Ky=0= KyP_ and P_Ky = P_ = K;P_. Thus, o(w) does not vanish if and
only if w satisfies (i) to (iv). Additionally, tr(c(w)) # 0 if and only if Py occurs
exactly as often as P_, i.e. if and only if

(v) E4 occurs with the same multiplicity as E_.

In this case tr(ej,j,o0(w)) =1 and we have

@) = (—1)") tr(w).

Thus, part (a) of the theorem is proved apart from the sign (—1)**/). To compute
this sign, we must count the signs (—1) given by equations (B)) and (7)) in the
right way. That is, we find L(w) to be the number of times E_B and BE occur
isolatedly in w cyclicly.

For part (b) we notice that as long as r < m, the element Dy(;41) is not a polyno-
mial in Ds, ..., Do,.. For example, we never get tr((E, E_)"*!) as a combination
of tr(ELE_),...,tr((E+E_)"). On the other hand it is well known and due to
the Harish-Chandra isomorphism that 3(g®) is generated by m elements of length
2,...,2m. So Da, ..., Ds,, must do. U

L(w)

3. APPLICATIONS

Let us assume we have an admissible representation I of G = Sp,,,(R) and let us
look at its isotypical component II, for some irreducible representation p of the
maximal compact subgroup K = K,,. As K is isomorphic to the unitary group

Um by

A

J: K — Upn, <S

_S> > A4S,
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p is characterized by its highest weight (A1,...,\;,). Let v, # 0 be a highest
weight vector of p. For j > k, the action of Bj; on vy, is determined by

d
p(Bjr)vn = p(exp(tJ(Bjk)))vn le=o
_ { di,o(diag(l, s e 1 ))oy fi=o= —Ajup,  for j =k,
giP(1 —tegj)op [t=0= 0, for j > k,

as exp(tJ(Bjj)) is an upper triangular matrix if j < k. Similarly we get for a
lowest weight vector vy,

' _ —A\juy,  for j =k,
P(Brj)u = { 0, for j > k.

Next we notice that for all words w occuring in Theorem 2], tr(w) is £C-invariant
(as we get telescopic sums for the commutators). Thus by Schur’s lemma, the
Casimirs’ action on II, is deduced by the actions of their single summands tr(w) on
each K-irreducible component.On these components the summands are constant
given by evaluating on the highest weight vector, for example.

Furthermore, tr(B?"), tr((B*)?") belong to 3(£C), so they act by constants on II,
deducible by p(Bjk)vn, j > k. For example, if we rearrange

tr(BB) = tr(B*B*) = > B2+ Y (2By;Bji + Bjj — Bix),
J k<j

then we get

p(tr(BB))vy, = Z()\g + (m—+1—2j)A;)vp.
J

For the general case notice that in any summand Bj,j, . .. Bj,,j, of tr(B?") there
is some Bj, ;. ., where j, > jn41, if not all j, are equal. So by rearranging, we
can determine the action of this summand by the action of terms of lower length.
For words w in which both F1 and B, B* occur, the evaluation of tr(w) is not that
simple. But rearranging tr(w) (thereby producing terms of lower length satisfying
again conditions (i)—(v) above) such that all terms B, B* are collected on the right,
they can be evaluated first. For example, for the first two Casimirs (see Ex. [2.3))
we get

Corollary 3.1. Let Cy := %Dg and Cy := %D4. Then

) = %(tr(EJrE_) +tr(E_E,)) + tr(BB),

Oy = %(tr(EJrE_EJrE_) +tr(E_EyE_Ey) + tr(BY) + te((B*)Y)
+2(tr(E4 E_BB) + tr(E_E, B*B*)) = Y _ {(E4)n, (E-)ij} BjBi
i,5,k,l
n (m+1)? (tr(ELE_) + tr(E_E,)),

2
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where
%(tr(EJrE_) +tr(E_Ey)) = tr(BLE_) — (m + 1) tr(B),

1
§(tr(E+E_E+E_) + tr(E_E+E_E+)) = tI‘(E+E_E+E_)

1 2
—5 (B4 B_) + tr(E_EL)) tr(B) — %(tr(EJrE_B) +tr(E_E,B")).
In the case p = (A,..., ), we now have transparent formulae at hand. Here p
has dimension one, so highest and lowest weight vectors coincide and we have
p(Bji) = —Adji. So the only terms of B, B* left are B;; which produce a common
constant. For example,

II,(Cy) =1,(tr(E4 EZ)) + Am(m + 1+ X)

and
I,(Cy) = T,(tr(E+E-E+E-)) +m\!
+((m + 1) +2X\(m + 1) + 22?) (I, (tr(EL E_) + Am(m + 1)).

Similarly it is evident that

I, (Dgy) = 200, (tr((EE-)")) + T, (Par),
where Py, is a polynomial in tr(E, E_),...,tr((E;E_)""1). So we get
Corollary 3.2. On II,, p = (A,..., ), the Casimir operators are exactly the
polynomials in tr(ELE_),... tr((ELE_)™).

As an application, we consider modular forms on the Siegel halfplane H,,. For an
irreducible representation (V, p) of GL,,(C) (equivalently of K,,), let f: H,, = V
be a C"*°-function of moderate growth satisfying

flg-2) = plcz + d) f(z)

for all g = € Sp,,(Z), g.z = (az + b)(cz + d)~!. That is, f is a non-

b
d
holomorphic modular form for p. Then f(g) = p*(ci + d)f(g.i1l,,) defines an
automorphic form on G. If more precisely f is a modular form of weight x, then
p* = (=K, ..., —k). By Corollary B2, the action of 3(g*) on such modular forms is
given by evaluating tr(E;E_),... tr((E4+E_)™), which are differential operators
on H,, ([2], Ch. 3, 4). Especially, if f is holomorphic, then tr((E+E_)")f = 0.
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