CASIMIR OPERATORS FOR SYMPLECTIC GROUPS

KATHRIN MAURISCHAT

ABSTRACT. We give a full set of Casimir operators for the symplectic group of arbitrary genus in terms of a basis chosen such that the action on representations of known K-type becomes transparent. We give examples for the latter.

INTRODUCTION

The original intension of this work was to understand the action of Casimir operators on some kinds of automorphic forms for the symplectic group $\operatorname{Sp}_m(\mathbb{R})$. In [2], this problem is done for the standard first Casimir operator C_1 . Using the Cartan decomposition of the symplectic lie algebra $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$, one decomposes $C_1 = \operatorname{tr}(E_+E_-) + k_1$, where $\operatorname{tr}(E_+E_-)$ is a differential operator on the Siegel halfplane depending only on $\mathfrak{p}^{\mathbb{C}}$ and k_1 is some constant coming from $\mathfrak{k}^{\mathbb{C}}$ depending on the K-type only. Surprisingly, an analog for higher Casimir operators up to the genus m does not exist in literature. Usually Casimir operators are realized with respect to a Cartan subalgebra which evidently is not of any help here. We use a basis of $\mathfrak{g}^{\mathbb{C}} = \mathfrak{k}^{\mathbb{C}} \oplus \mathfrak{p}_+ \oplus \mathfrak{p}_-$ which has pleasing properties: Lie multiplica-

tion as well as matrix multiplication is simple and the dual basis (with respect to half the trace) is essentially deduced by rearranging. The basis differs from that used in [2] in the $\mathfrak{k}^{\mathbb{C}}$ -part. For this basis we evaluate the common formula ([1], IV. 7)

(1)
$$D_r = \sum_{i_1, \dots, i_r} \operatorname{tr}(X_{i_1} \cdots X_{i_r}) X_{i_1}^* \cdots X_{i_r}^*$$

for Casimir elements to get a set $\{D_2, \ldots, D_{2m}\}$ of *m* Casimir elements which indeed generates the center $\mathfrak{Z}(\mathfrak{g}^{\mathbb{C}})$ of the universal envelopping algebra. As examples, we give precise formulae for D_2, D_4 .

We apply the result to determine the action of $\mathfrak{Z}(\mathfrak{g}^{\mathbb{C}})$ on a representation of K-type $(\lambda, \ldots, \lambda)$ to be given by that of $\operatorname{tr}(E_+E_-), \ldots, \operatorname{tr}((E_+E_-)^m)$. For automorphic forms, the latter are differential operators on the Siegel halfplane.

1. NOTATION

Let $G = \operatorname{Sp}_m(\mathbb{R})$ be the real symplectic group of genus m and let $\mathfrak{g} = \mathfrak{sp}_m(\mathbb{R})$ be its Lie algebra. We consider the matrix realization of its complexification

Date: 23rd Nov, 2010, 01:20.

²⁰⁰⁰ Mathematics Subject Classification. 11F70, 22E45.

Key words and phrases. Casimir operators, symplectic groups.

 $\mathfrak{g}^{\mathbb{C}} \subset M_{2m,2m}(\mathbb{C})$ consisting of those g satisfying

$$g'\begin{pmatrix}0&-\mathbf{1}_m\\\mathbf{1}_m&0\end{pmatrix}+\begin{pmatrix}0&-\mathbf{1}_m\\\mathbf{1}_m&0\end{pmatrix}g=0.$$

The Cartan decomposition for \mathfrak{g} implies that $\mathfrak{g}^{\mathbb{C}} = \mathfrak{k}^{\mathbb{C}} \oplus \mathfrak{p}_{+} \oplus \mathfrak{p}_{-}$, where $\mathfrak{k}^{\mathbb{C}}$ is given by those matrices satisfying

$$\begin{pmatrix} A & -S \\ S & A \end{pmatrix}, \quad A' = -A, \quad S' = S,$$

and

$$\mathfrak{p}_{\pm} = \left\{ \begin{pmatrix} X & \pm iX \\ \pm iX & -X \end{pmatrix}, \quad X' = X \right\}.$$

Let $e_{kl} \in M_{m,m}(\mathbb{C})$ be the elementary matrix having entries $(e_{kl})_{ij} = \delta_{ik}\delta_{jl}$ and let $X^{(kl)} = \frac{1}{2}(e_{kl} + e_{lk})$. Further, let $A^{(kl)} = e_{kl} - e_{lk}$ and $S^{(kl)} = 2X^{(kl)}$. The elements $E_{\pm kl} = E_{\pm lk}$ of \mathfrak{p}_{\pm} are defined to be those corresponding to X =

The elements $E_{\pm kl} = E_{\pm lk}$ of \mathfrak{p}_{\pm} are defined to be those corresponding to $X = X^{(kl)}$, $1 \leq k, l \leq m$. Then $E_{\pm kl}$, $1 \leq k \leq l \leq m$, form a basis of \mathfrak{p}_{\pm} . For abbreviation, let E_{\pm} be the matrix having entries $E_{\pm kl}$.

Define the following elements of $\mathfrak{k}^{\mathbb{C}}$ for $1 \leq k, l \leq m$: Let $a_{kl}k^{\mathbb{C}}$ be given by S = 0and $A = A^{(kl)}$ and let $s_{kl}k^{\mathbb{C}}$ be given by A = 0 and $S = S^{(kl)}$. Then a basis of $\mathfrak{k}^{\mathbb{C}}$ is given by $B_{kl} := \frac{1}{2}(a_{kl} + is_{kl}), 1 \leq k, l \leq m$. Let $B = (B_{kl})_{kl}$ be the matrix with entries B_{kl} and let B^* be its transpose having entries $B^*_{kl} = B_{lk}$. Lie multiplication in $\mathfrak{g}^{\mathbb{C}}$ is easily checked to be given by

$$\begin{split} [E_{+ij}, E_{+kl}] &= 0, \qquad [E_{-ij}, E_{-kl}] = 0, \\ [E_{+ij}, E_{-kl}] &= \delta_{ik} B_{jl} + \delta_{jl} B_{ik} + \delta_{il} B_{jk} + \delta_{jk} B_{il} \\ [B_{ij}, E_{+kl}] &= \delta_{jk} E_{+il} + \delta_{jl} E_{+ik}, \\ [B_{ij}, E_{-kl}] &= -\delta_{ik} E_{-jl} - \delta_{il} E_{-jk} \\ [B_{ij}, B_{kl}] &= \delta_{jk} B_{il} - \delta_{il} B_{kj}. \end{split}$$

We denote by \mathcal{B} the nondegenerate bilinear form on $\mathfrak{g}^{\mathbb{C}}$ defined by

(2)
$$\mathcal{B}(g,h) = \frac{1}{2}\operatorname{tr}(g \cdot h)$$

With respect to \mathcal{B} we get the following dual basis: $E_{\pm kl}^* = \frac{1}{1+\delta_{kl}}E_{\mp kl}$ as well as $B_{kl}^* = B_{lk}$ for all k, l.

2. Casimir elements

In the following, we study words in the matrices E_+, E_-, B and B^* . Let us define some conditions on these words:

- (i) E_+ is followed by E_- or B^* .
- (ii) E_{-} is followed by E_{+} or B.
- (iii) B is followed by E_+ or B.
- (iv) B^* is followed by E_- or B^* .
- (v) E_+ occurs with the same multiplicity as E_- .

We start with a combinatorial lemma.

 $\mathbf{2}$

Lemma 2.1. Let r > 0 be an integer. Then there are 2^{2r} possibilities to choose a word w of length 2r in the matrices E_+, E_-, B and B^* such that the conditions (i) to (v) are satisfied.

Proof of Lemma 2.1. We make a second claim slightly modifying Lemma 2.1 and prove it along with the lemma itself by induction on r.

Claim: There are 2^{2r} possibilities to choose a word w of length 2r in the matrices E_+, E_-, B and B^* such that the conditions (i) to (iv) and

(v') The multiplicity of E_+ is that of E_- enlarged or reduced by one. are satisfied.

For r = 1, the four possible words of the lemma are E_+E_- , E_-E_+ , BB and B^*B^* , while the four possibilities of the claim are E_+B^* , E_-B , BE_+ and B^*E_- . Now look at a word w of length 2(r+1) satisfying (i)–(v). First, if w ends with E_+E_- or with E_-E_+ , then the initial subword of length 2r satisfies (i)–(v). And for any of these initial subwords, the ending among E_+E_- and E_-E_+ is unique. This gives 2^{2r} possibilities for w, using the lemma for r. Similarly, we get 2^{2r} possibilities for a word where E_{\pm} does not occur in the last two letters. If exactly one of the last two letters is E_{\pm} , then we again get $2 \cdot 2^{2r}$ possibilities by the claim for r. Together these are $2^{2(r+1)}$ possibilities. Similarly, we get the result for the claim, too.

In the following, we formally take the trace of a word w in the operator valued matrices. For example,

$$\operatorname{tr}(E_+E_-) = \sum_{k,l} E_{+kl} E_{-lk}.$$

Theorem 2.2. Let $\mathfrak{g} = \mathfrak{sp}_m(\mathbb{R})$ be the Lie algebra of the symplectic group of genus m.

(a) The r-th Casimir element is given by

$$D_{2r} = \sum_{w} (-1)^{L(w)} \operatorname{tr}(w),$$

where the sum is over all words w of length 2r satisfying conditions (i) to (v) above, and L(w) is the number of times $E_{-}B$ and BE_{+} occur isolatedly in w counted cyclicly.

(b) The center 3(g^ℂ) of the universal envelopping algebra of g^ℂ is generated by the m Casimir operators D₂,..., D_{2m}.

Here isolated means that $E_{-}B$ and BE_{+} must not hit each other, for example $L(E_{-}BE_{+}B^{*}) = 1$ while $L(E_{-}BBE_{+}) = 2$. And cyclic means that we have to take into account that the trace is cyclicly invariant, so e.g. $L(E_{+}E_{-}BB) = L(E_{-}BBE_{+}) = 2$.

Example 2.3. By Lemma 2.1, we have to sum over the traces of 2^{2r} words w. So the first two Casimirs are

$$D_2 = \operatorname{tr}(E_+E_-) + \operatorname{tr}(E_-E_+) + \operatorname{tr}(BB) + \operatorname{tr}(B^*B^*),$$

KATHRIN MAURISCHAT

$$D_4 = \operatorname{tr}(E_+E_-E_+E_-) + \operatorname{tr}(E_-E_+E_-E_+) + \operatorname{tr}(BBBB) + \operatorname{tr}(B^*B^*B^*B^*) + \sum_{\zeta \in Z_4} \left(\operatorname{tr}(\zeta(E_+E_-BB)) + \operatorname{tr}(\zeta(E_-E_+B^*B^*)) - \operatorname{tr}(\zeta(E_+B^*E_-B))\right),$$

where Z_4 is the group of cyclic permutations of four elements.

Proof of Theorem 2.2. (a) We define the following matrices $(a_1, a_2) = (a_1, a_2) + (a_2, a_3) + (a_3) + (a_4) +$

$$K_1 = \begin{pmatrix} \mathbf{1}_m & i\mathbf{1}_m \\ -i\mathbf{1}_m & \mathbf{1}_m \end{pmatrix}, \quad K_2 = \begin{pmatrix} \mathbf{1}_m & -i\mathbf{1}_m \\ i\mathbf{1}_m & \mathbf{1}_m \end{pmatrix},$$
$$P_+ = \begin{pmatrix} \mathbf{1}_m & i\mathbf{1}_m \\ i\mathbf{1}_m & -\mathbf{1}_m \end{pmatrix}, \quad P_- = \begin{pmatrix} \mathbf{1}_m & -i\mathbf{1}_m \\ -i\mathbf{1}_m & -\mathbf{1}_m \end{pmatrix}.$$

Notice that $K_j^2 = K_j$, while $P_{\pm}^2 = 0$. In the following, if we abbriviate $e_{jk}K_{1/2}$, $e_{jk}P_{\pm}$, for a $(m \times m)$ -elementary matrix e_{jk} and a $(2m \times 2m)$ -matrix $K_{1/2}, P_{\pm}$, we mean

$$e_{jk}K_1 = \begin{pmatrix} e_{jk} & ie_{jk} \\ -ie_{jk} & e_{jk} \end{pmatrix}, \quad \text{etc.}$$

Now we show that D_{2r} in (1) has the claimed shape. A single summand of D_{2r} looks like

$$\operatorname{tr}(X_{j_1j_2}^{(1)}X_{k_1k_2}^{(2)}\cdots X_{j_{2r-1}j_{2r}}^{(2r-1)}X_{k_{2r-1}k_{2r}}^{(2r)})(X_{j_1j_2}^{(1)}\cdots X_{k_{2r-1}k_{2r}}^{(2r)})^*,$$

where $X_{j_n j_{n+1}}^{(n)}$ runs through the basis $E_{\pm jk}$, $1 \leq j \leq k \leq m$, B_{jk} , $1 \leq j, k \leq m$. First we examine conditions for a pair $X_{j_1 j_2}^{(n)} X_{k_1 k_2}^{(n+1)}$ to occur in some summand. To get nice formulae, we sum over all pairs of the same kind. First, let $X_{j_1 j_2}^{(n)} = E_{+j_1 j_2}$ and $X_{k_1 k_2}^{(n+1)} = E_{-k_1 k_2}$. Computing the matrix product $E_{+j_1 j_2} E_{-k_1 k_2}$, taking duals and rearranging summation, we get

$$(3) \sum_{j_1 \le j_2; k_1 \le k_2} \frac{\operatorname{tr}(\dots E_{+j_1 j_2} E_{-k_1 k_2} \dots)}{(1 + \delta_{j_1 j_2})(1 + \delta_{k_1 k_2})} (\dots)^* E_{-j_1 j_2} E_{+k_1 k_2} (\dots)^* \\ = \frac{1}{4} \sum_{j_1, j_2, k_1, k_2} \operatorname{tr}\left((\delta_{j_1 k_1} e_{j_2 k_2} + \delta_{j_1 k_2} e_{j_2 k_1} + \delta_{j_2 k_1} e_{j_1 k_2} + \delta_{j_2 k_2} e_{j_1 k_1}) K_2 \right) \\ \cdot (\dots)^* E_{-j_1 j_2} E_{+k_1 k_2} (\dots)^* \\ = \sum_{j_1, j_2, k_1} \operatorname{tr}(\dots e_{j_1 k_1} K_2 \dots) (\dots)^* E_{-j_1 j_2} E_{+j_2 k_1} (\dots)^*.$$

Similarly we get for the other choices of basis elements

(4)
$$\sum_{j_1 \le j_2; k_1 \le k_2} \operatorname{tr}(\cdots E_{-j_1 j_2} E_{+k_1 k_2} \cdots) (\cdots E_{-j_1 j_2} E_{+k_1 k_2} \cdots)^* \\ = \sum_{j_1, j_2, k_1} \operatorname{tr}(\cdots e_{j_1 k_1} K_1 \cdots) (\cdots)^* E_{+j_1 j_2} E_{-j_2 k_1} (\cdots)^*,$$

(5)
$$\sum_{j_1 \le j_2; k_1, k_2} \operatorname{tr}(\cdots E_{+j_1 j_2} B_{k_1 k_2} \cdots) (\cdots E_{+j_1 j_2} B_{k_1 k_2} \cdots)^* \\ = -\sum_{j_1, j_2, k_1} \operatorname{tr}(\cdots e_{j_1 k_1} P_+ \cdots) (\cdots)^* E_{-j_1 j_2} B_{j_2 k_1} (\cdots)^*,$$

(6)
$$\sum_{j_1 \le j_2; k_1, k_2} \operatorname{tr}(\cdots E_{-j_1 j_2} B_{k_1 k_2} \cdots) (\cdots E_{-j_1 j_2} B_{k_1 k_2} \cdots)^* \\ = \sum_{j_1, j_2, k_1} \operatorname{tr}(\cdots e_{j_1 k_1} P_- \cdots) (\cdots)^* E_{+j_1 j_2} B_{j_2 k_1}^* (\cdots)^*,$$

(7)
$$\sum_{j_1,j_2;k_1 \le k_2} \operatorname{tr}(\cdots B_{j_1j_2} E_{-k_1k_2} \cdots) (\cdots B_{j_1j_2} E_{-k_1k_2} \cdots)^* \\ = -\sum_{j_1,j_2,k_1} \operatorname{tr}(\cdots e_{j_1k_1} P_{-} \cdots) (\cdots)^* B_{j_1j_2} E_{+j_2k_1} (\cdots)^*,$$

(8)
$$\sum_{j_1, j_2; k_1 \le k_2} \operatorname{tr}(\cdots B_{j_1 j_2} E_{+k_1 k_2} \cdots) (\cdots B_{j_1 j_2} E_{+k_1 k_2} \cdots)^* \\ = \sum_{j_1, j_2, k_1} \operatorname{tr}(\cdots e_{j_1 k_1} P_+ \cdots) (\cdots)^* B_{j_1 j_2}^* E_{-j_2 k_1} (\cdots)^*,$$

(9)
$$\sum_{j_{1},j_{2},k_{1},k_{2}} \operatorname{tr}(\cdots B_{j_{1}j_{2}}B_{k_{1}k_{2}}\cdots)(\cdots B_{j_{1}j_{2}}B_{k_{1}k_{2}}\cdots)^{*}$$
$$= \sum_{j_{1},j_{2},k_{1}} [\operatorname{tr}(\cdots e_{j_{1}k_{1}}K_{1}\cdots)(\cdots)^{*}B_{j_{1}j_{2}}B_{j_{2}k_{1}}(\cdots)^{*} + \operatorname{tr}(\cdots e_{j_{1}k_{1}}K_{2}\cdots)(\cdots)^{*}B_{j_{1}j_{2}}B_{j_{2}k_{1}}^{*}(\cdots)^{*}].$$

From equations (3) to (9) we get the following conditions for the occuring summands

- (i') $E_{+j_1j_2}$ is followed only by $E_{-j_2k_1}$ or $B_{j_2k_1}^*$. (ii') $E_{-j_1j_2}$ is followed only by $E_{+j_2k_1}$ or $B_{j_2k_1}$. (iii') $B_{j_1j_2}$ is followed only by $E_{+j_2k_1}$ or $B_{j_2k_1}$. (iv') $B_{j_1j_2}^*$ is followed only by $E_{-j_2k_1}$ or $B_{j_2k_1}^*$.

These conditions correspond to the former (i) to (iv). Now let us sum over $j_1, \ldots, j_{2r}, k_1 \ldots, k_{2r}.$

$$(10) := \sum_{j_1,\dots,j_{2r},k_1\dots,k_{2r}} \operatorname{tr}(X_{j_1j_2}^{(1)}X_{k_1k_2}^{(2)}\cdots X_{j_{2r-1}j_{2r}}^{(2r-1)}X_{k_{2r-1}k_{2r}}^{(2r)})(X_{j_1j_2}^{(1)}\cdots X_{k_{2r-1}k_{2r}}^{(2r)})^* = (-1)^{L(w)} \sum_{j_1,\dots,j_{2r},k_1\dots,k_r} \operatorname{tr}(e_{j_1k_1}e_{j_3k_2}\cdots e_{j_{2r-1}k_r}\sigma(w))\tilde{X}_{j_1j_2}^{(1)}\tilde{X}_{j_{2k_1}}^{(2)}\cdots \tilde{X}_{j_{2r-1}j_{2r}}^{(2r-1)}\tilde{X}_{j_{2r}k_r}^{(2r)} = (-1)^{L(w)} \sum_{j_1,\dots,j_{2r}} \operatorname{tr}(e_{j_1j_1}\sigma(w))\tilde{X}_{j_1j_2}^{(1)}\tilde{X}_{j_{2j_3}}^{(2)}\cdots \tilde{X}_{j_{2r}j_1}^{(2r)},$$

KATHRIN MAURISCHAT

where $\tilde{E}_{\pm} = E_{\mp}$, $\tilde{B} = B^*$, $\tilde{B}^* = B$. Depending only on the word $w = \tilde{X}^{(1)} \cdots \tilde{X}^{(2r)}$, $\tilde{X}^{(l)} \in \{E_+, E_-, B, B^*\}$, there is some sign $(-1)^{L(w)}$ and a matrix $\sigma(w)$ which is a product of r matrices of the form $K_{1/2}, P_{\pm}$. In this way we get the sum over one type of word w satisfying conditions (i)–(iv). All other words do not occur in D_{2r} .

We evaluate (10) further. First we assume that w is a word in B, B^* only. Then $(-1)^{L(w)} = 1$ and $\sigma(w)$ is a product in K_1 and K_2 . As $K_1K_2 = 0 = K_2K_1$, we get

$$(10) = \sum_{j_1,\dots,j_{2r}} \left(\operatorname{tr}(e_{j_1j_1}K_1)B_{j_1j_2}\dots B_{j_{2r}j_1} + \operatorname{tr}(e_{j_1j_1}K_2)B_{j_1j_2}^*\dots B_{j_{2r}j_1}^* \right)$$
$$= \sum_{j_1,\dots,j_{2r}} \left(B_{j_1j_2}\dots B_{j_{2r-1}j_{2r}} + B_{j_1j_2}^*\dots B_{j_{2r}j_1}^* \right)$$
$$= \operatorname{tr}(B^{2r}) + \operatorname{tr}((B^*)^{2r}).$$

Now we allow E_{\pm} to occur in w. Then $\sigma(w)$ is a product of $K_{1/2}$ and P_{\pm} . Notice that $P_+P_- = K_2$, $P_-P_+ = K_1$, $P_+K_2 = 0 = K_1P_+$, $P_+K_1 = P_+ = K_2P_+$, $P_-K_1 = 0 = K_2P_-$ and $P_-K_2 = P_- = K_1P_-$. Thus, $\sigma(w)$ does not vanish if and only if w satisfies (i) to (iv). Additionally, $\operatorname{tr}(\sigma(w)) \neq 0$ if and only if P_+ occurs exactly as often as P_- , i.e. if and only if

(v) E_+ occurs with the same multiplicity as E_- .

In this case $tr(e_{j_1j_1}\sigma(w)) = 1$ and we have

$$(10) = (-1)^{L(w)} \operatorname{tr}(w).$$

Thus, part (a) of the theorem is proved apart from the sign $(-1)^{L(w)}$. To compute this sign, we must count the signs (-1) given by equations (5) and (7) in the right way. That is, we find L(w) to be the number of times $E_{-}B$ and BE_{+} occur isolatedly in w cyclicly.

For part (b) we notice that as long as r < m, the element $D_{2(r+1)}$ is not a polynomial in D_2, \ldots, D_{2r} . For example, we never get $\operatorname{tr}((E_+E_-)^{r+1})$ as a combination of $\operatorname{tr}(E_+E_-), \ldots, \operatorname{tr}((E_+E_-)^r)$. On the other hand it is well known and due to the Harish-Chandra isomorphism that $\mathfrak{Z}(\mathfrak{g}^{\mathbb{C}})$ is generated by m elements of length $2, \ldots, 2m$. So D_2, \ldots, D_{2m} must do.

3. Applications

Let us assume we have an admissible representation Π of $G = \operatorname{Sp}_m(\mathbb{R})$ and let us look at its isotypical component Π_{ρ} for some irreducible representation ρ of the maximal compact subgroup $K = K_m$. As K is isomorphic to the unitary group U_m by

$$J: K \to U_m, \quad \begin{pmatrix} A & -S \\ S & A \end{pmatrix} \mapsto A + iS,$$

 $\mathbf{6}$

 ρ is characterized by its highest weight $(\lambda_1, \ldots, \lambda_m)$. Let $v_h \neq 0$ be a highest weight vector of ρ . For $j \geq k$, the action of B_{jk} on v_h is determined by

$$\rho(B_{jk})v_h = \frac{d}{dt}\rho(\exp(tJ(B_{jk})))v_h|_{t=0} \\
= \begin{cases} \frac{d}{dt}\rho(diag(1,\ldots,e^{-t},1,\ldots,1))v_h|_{t=0} = -\lambda_j v_h, & \text{for } j = k, \\ \frac{d}{dt}\rho(\mathbf{1} - te_{kj})v_h|_{t=0} = 0, & \text{for } j > k, \end{cases}$$

as $\exp(tJ(B_{jk}))$ is an upper triangular matrix if $j \leq k$. Similarly we get for a lowest weight vector v_l ,

$$\rho(B_{kj})v_l = \begin{cases} -\lambda_j v_l, & \text{for } j = k, \\ 0, & \text{for } j > k. \end{cases}$$

Next we notice that for all words w occuring in Theorem 2.2, $\operatorname{tr}(w)$ is $\mathfrak{E}^{\mathbb{C}}$ -invariant (as we get telescopic sums for the commutators). Thus by Schur's lemma, the Casimirs' action on Π_{ρ} is deduced by the actions of their single summands $\operatorname{tr}(w)$ on each K-irreducible component.On these components the summands are constant given by evaluating on the highest weight vector, for example.

Furthermore, $\operatorname{tr}(B^{2r})$, $\operatorname{tr}((B^*)^{2r})$ belong to $\mathfrak{Z}(\mathfrak{k}^{\mathbb{C}})$, so they act by constants on Π_{ρ} deducible by $\rho(B_{jk})v_h$, $j \geq k$. For example, if we rearrange

$$\operatorname{tr}(BB) = \operatorname{tr}(B^*B^*) = \sum_j B_{jj}^2 + \sum_{k < j} (2B_{kj}B_{jk} + B_{jj} - B_{kk}),$$

then we get

$$\rho(\operatorname{tr}(BB))v_h = \sum_j \left(\lambda_j^2 + (m+1-2j)\lambda_j\right)v_h.$$

For the general case notice that in any summand $B_{j_1j_2} \ldots B_{j_2rj_1}$ of $\operatorname{tr}(B^{2r})$ there is some $B_{j_nj_{n+1}}$ where $j_n > j_{n+1}$, if not all j_n are equal. So by rearranging, we can determine the action of this summand by the action of terms of lower length. For words w in which both E_{\pm} and B, B^* occur, the evaluation of $\operatorname{tr}(w)$ is not that simple. But rearranging $\operatorname{tr}(w)$ (thereby producing terms of lower length satisfying again conditions (i)–(v) above) such that all terms B, B^* are collected on the right, they can be evaluated first. For example, for the first two Casimirs (see Ex. 2.3) we get

Corollary 3.1. Let $C_1 := \frac{1}{2}D_2$ and $C_2 := \frac{1}{2}D_4$. Then

$$C_1 = \frac{1}{2}(\operatorname{tr}(E_+E_-) + \operatorname{tr}(E_-E_+)) + \operatorname{tr}(BB),$$

$$C_{2} = \frac{1}{2} \left(\operatorname{tr}(E_{+}E_{-}E_{+}E_{-}) + \operatorname{tr}(E_{-}E_{+}E_{-}E_{+}) + \operatorname{tr}(B^{4}) + \operatorname{tr}((B^{*})^{4}) \right) + 2 \left(\operatorname{tr}(E_{+}E_{-}BB) + \operatorname{tr}(E_{-}E_{+}B^{*}B^{*}) \right) - \sum_{i,j,k,l} \left\{ (E_{+})_{kl}, (E_{-})_{ij} \right\} B_{jk} B_{il} + \frac{(m+1)^{2}}{2} \left(\operatorname{tr}(E_{+}E_{-}) + \operatorname{tr}(E_{-}E_{+}) \right),$$

KATHRIN MAURISCHAT

where

$$\frac{1}{2}(\operatorname{tr}(E_{+}E_{-}) + \operatorname{tr}(E_{-}E_{+})) = \operatorname{tr}(E_{+}E_{-}) - (m+1)\operatorname{tr}(B),$$

$$\frac{1}{2}(\operatorname{tr}(E_{+}E_{-}E_{+}E_{-}) + \operatorname{tr}(E_{-}E_{+}E_{-}E_{+})) = \operatorname{tr}(E_{+}E_{-}E_{+}E_{-})$$

$$-\frac{1}{2}(\operatorname{tr}(E_{+}E_{-}) + \operatorname{tr}(E_{-}E_{+}))\operatorname{tr}(B) - \frac{m+2}{2}(\operatorname{tr}(E_{+}E_{-}B) + \operatorname{tr}(E_{-}E_{+}B^{*}))$$

In the case $\rho = (\lambda, ..., \lambda)$, we now have transparent formulae at hand. Here ρ has dimension one, so highest and lowest weight vectors coincide and we have $\rho(B_{jk}) = -\lambda \delta_{jk}$. So the only terms of B, B^* left are B_{jj} which produce a common constant. For example,

$$\Pi_{\rho}(C_1) = \Pi_{\rho}(\operatorname{tr}(E_+E_-)) + \lambda m(m+1+\lambda)$$

and

$$\Pi_{\rho}(C_2) = \Pi_{\rho}(\operatorname{tr}(E_+E_-E_+E_-)) + m\lambda^4 + ((m+1)^2 + 2\lambda(m+1) + 2\lambda^2) (\Pi_{\rho}(\operatorname{tr}(E_+E_-) + \lambda m(m+1)).$$

Similarly it is evident that

1

$$\Pi_{\rho}(D_{2r}) = 2\Pi_{\rho}(\operatorname{tr}((E_{+}E_{-})^{r})) + \Pi_{\rho}(P_{2r}),$$

where P_{2r} is a polynomial in $tr(E_+E_-), \ldots, tr((E_+E_-)^{r-1})$. So we get

Corollary 3.2. On Π_{ρ} , $\rho = (\lambda, ..., \lambda)$, the Casimir operators are exactly the polynomials in tr $(E_+E_-), \ldots, tr((E_+E_-)^m)$.

As an application, we consider modular forms on the Siegel halfplane \mathcal{H}_m . For an irreducible representation (V, ρ) of $\operatorname{GL}_m(\mathbb{C})$ (equivalently of K_m), let $f : \mathcal{H}_m \to V$ be a C^{∞} -function of moderate growth satisfying

$$f(g.z) = \rho(cz+d)f(z)$$

for all $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{Sp}_m(\mathbb{Z}), \ g.z = (az+b)(cz+d)^{-1}$. That is, f is a non-

holomorphic modular form for ρ . Then $f(g) = \rho^*(ci + d)f(g.i\mathbf{1}_m)$ defines an automorphic form on G. If more precisely f is a modular form of weight κ , then $\rho^* = (-\kappa, \ldots, -\kappa)$. By Corollary 3.2, the action of $\mathfrak{Z}(\mathfrak{g}^{\mathbb{C}})$ on such modular forms is given by evaluating $\operatorname{tr}(E_+E_-), \ldots, \operatorname{tr}((E_+E_-)^m)$, which are differential operators on \mathcal{H}_m ([2], Ch. 3, 4). Especially, if f is holomorphic, then $\operatorname{tr}((E_+E_-)^r)f = 0$.

References

- Knapp, A. W., Vogan, D. A.: Cohomological Induction and Unitary Representations, Princeton University Press, Princeton, New Jersey (1995)
- [2] Weissauer, R.: Stabile Modulformen und Eisensteinreihen, Lecture Notes in Mathematics 1219, Springer, Heidelberg (1986)

Kathrin Maurischat, Mathematics Center Heidelberg (MATCH), Heidelberg University, Im Neuenheimer Feld 288, 69120 Heidelberg, Germany *E-mail address*: maurischat@mathi.uni-heidelberg.de

8