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Abstract

We discuss research done in two important areas of nonequilibrium statistical
mechanics: fluctuation dissipation relations and dynamical fluctuations. The work
discussed here was reported before in [2, 3, 4, 70, 71].
In equilibrium systems the fluctuation-dissipation theorem gives a simple relation
between the response of observables to a perturation and correlation functions in
the unperturbed system. Our contribution here is an investigation of the form of
the response function for systems out of equilibrium. We found that the response
function can generally be written as the sum of two correlation functions. One
correlation function is linked to entropy exchange with the environment, and thus
to heat dissipation. The other correlation function has to do with a quantity which
we call traffic and which describes in a sense the activity of the system. The results
are applied to several explicit examples for which simulations have provided some
visualization.
Furthermore, we use the theory of large deviations to examine dynamical
fluctuations in systems out of equilibrium. In dynamical fluctuation theory we
consider two kinds of observables: occupations (describing the fraction of time
the system spends in each configuration) and currents (describing the changes of
configuration the system makes). We explain how to compute the rate functions of
the large deviations, and what the physical quantities are that govern their form.
As for fluctuation-dissipation relations, entropy and traffic are the main ingredients.
Moreover, the rate function that governs the joint probabilities of occupations and
currents is explicitly computed for the classes of models considered and is expressed
in terms of entropy and traffic. The rate function for the occupations can be
expressed entirely in terms of traffic. We also show that this traffic can be seen
as a thermodynamic potential for currents. Finally, for the close-to-equilibrium
regime, known variational principles as the minimum entropy production principle
are recovered.
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Nomenclature

kB Boltzmann’s constant, usually we work in units in which kB = 1,
β = 1

kBT inverse temperature,
U, V potentials,
F, f, g forces,
W,Q work and heat,
µ chemical potential.

Configurations and trajectories
Ω configuration/state space,
x, y, . . . configurations/states,
t, s, T times,
xt configuration at time t,
λt protocol,
ω = (xt)0≤t≤T trajectory/path during an interval [0, T ],
π kinematical time-reversal operator

changing the signs of velocities,
θω = (πxT −t)0≤t≤T time-reversal of trajectories,
dPx0(ω) path-probability measure for paths given x0,
µ0 probability distribution of initial configuration,
dPµ0 (ω) path-probability measure with

initial state sampled from µ0,
dPR path-probability measure with

reversed protocol,
〈f(ω)〉x0

=
∫

dPx0 (ω)f(ω) expectation value of a function f ,
〈f(ω)〉µ0

=
∫

dPµ0 (ω)f(ω) expectation value of a function f ,
dP∗

x0

dPx0
(ω) Radon-Nikodym derivative,

A(ω) = − log
dP∗

x0

dPx0
(ω) the action,

µt(x) time-evolved probability distribution,
ρ(x) stationary distribution,
jµ(x) probability current when in µ.
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Entropy and traffic

S(ω) = log dPx0

dPR
xT

θ (ω) entropy flux into environment,

Sµ(ω) = log dPµ0

dPR
µT

θ (ω) measure of irreversibility,

s(µ) Shannon/Gibbs entropy of µ,
σ(µ) expected entropy production rate when in µ,
Sex(ω) = AR(θω) −A(ω) excess entropy flux,
Tex(ω) = AR(θω) +A(ω) excess traffic,
τ(µ) expected traffic rate when in µ.

Markov jump processes
x, y, . . . configurations,
kt(x, y) transition rates,
λt(x) =

∑

y kt(x, y) escape rate.

Diffusions
x position,
xi = xi components of the position,
v velocity,
m mass,
γ friction coefficient,
χ mobility,
D diffusion coefficient,
Bt Wiener process.

Fluctuation-dissipation
ht time-dependent amplitude of the perturbation,
V perturbing potential,
Q observable, not to be confused with heat,
RQV (t, s) response function,
τ(ω, s) functional derivative of excess traffic w.r.t. hs.

Dynamical fluctuations
pω empirical occupation vector/density,
Jω empirical current,
µ fluctuation of the occupations,
j fluctuation of the current,
I rate function or fluctuation functional,
Kf a quantity K computed in a dynamics determined by a force f ,
µ1 small deviation of µ from ρ,
j1 small deviation of j from jρ.
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Chapter 1

Introduction

In this chapter we quickly review some important concepts in thermodynamics
and statistical mechanics that are relevant for the rest of this thesis. For a more
thorough introduction we refer to standard textbooks. After this we introduce
the reader to the realm of nonequilibrium phenomena and motivate the research
discussed in this thesis.

1.1 Thermodynamics

Figure 1.1: Sadi Carnot,
1796 - 1832.

Thermodynamics studies energy conversions between
mechanical work and heat. Although several results
in thermodynamics date back to the seventeenth
century, the theory as we now know it had its
major breakthrough in the nineteenth century, starting
with groundbreaking theoretical considerations by Sadi
Carnot. It is no coincidence that this happened in the
century of the industrial revolution. Thermodynamics
provided a deep and indispensable understanding of the
principles by which engines (and refrigerators) operate,
and the fundamental limits they must obey. It is
also a logical starting point for our discussion. In
the following pages we quickly review some aspects of
thermodynamics that are relevant to the rest of this
thesis; it is certainly not our goal to review the whole
theory of thermodynamics.

1



2 INTRODUCTION

Classical thermodynamics as developed in the nineteenth century is a theory of
macroscopic systems. As we now know, a macroscopic system consists of a large
(1023) number of particles (atoms/molecules). Thermodynamics thus describes
systems with variables such as temperature, pressure, volume, etc, ignoring the
microscopic details of the system (on the level of the molecules). When these
variables change in time we speak of a thermodynamic process.

Equilibrium As this text is situated in nonequilibrium thermal physics, it is useful
to describe what it means to be in equilibrium. With equilibrium we mean the
following:

• Two systems are said to be in mechanical equilibrium with each other when
the pressures (P ) they exert on each other are equal. If the pressures were
different, one system would do work on the other, causing a change in the
volumes (V ).

• Two systems that can exchange particles are in diffusive equilibrium when
their chemical potentials (µ) are the same. If they are not then there will be
a net current of particles from one system to another, causing the particle
numbers (N) of the system to change.

• Two systems are in thermal equilibrium when, after being brought into
thermal contact with each other, they do not exchange heat. In this case
their temperatures (T ) are the same. If the temperatures are not the same,
there will be heat flow from one system to the other, causing a change in a
new quantity, named entropy (S). (We will come back to this later).

• Two systems are in thermodynamic equilibrium if they are in mechanical,
diffusive and thermal equilibrium.

Usually we do not speak about two systems but about one system and its
environment, and say that a system is in equilibrium if it is in equilibrium with
its environment.

These definitions already tell us that we distinguish three ways of exchanging
energy between systems: work, particle exchange and heat exchange. Furthermore
six variables are introduced, grouped in three pairs: P, V and µ,N and T, S. These
variables are not independent. Simple systems, such as gases (or more generally
pure fluids) can be described by taking one variable of each group, depending on
the interaction of the system with its environment. This collection of variables
is then called the (equilibrium) state of the system. For example, if the system
is mechanically isolated from the environment, then its volume is fixed and can
be used to describe the system. One can also fix the pressure and let the volume
vary, thus allowing exchange of work, and so on. For example a system that can
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exchange work and heat but not particles with its environment is best described
by the variables P,N, T .

Note that V,N, S are extensive variables, i.e. they scale with the ‘size’ of the
system (e.g. if we take two copies of the same system, it has twice the volume,
twice the number of particles and twice the entropy). In contrast P, µ, T are
intensive variables, i.e. they are independent of the size of the system.

There is a special class of thermodynamic processes which have the following
property: if the process is run backwards, eventually the system and its
environment return to the same equilibrium state they had before the original
process. We call this a reversible process. Actually, for this to be true in real
systems, the process should go infinitely slowly, and can in that case be described
by a sequence of equilibrium states. As it turns out, many processes in real life
are slow enough for this description to be a reasonable approximation.

Of course, not all quantities mentioned here have a clear intuitive meaning.
Especially the quantities heat and entropy that have to do with thermal
equilibrium are vague. The laws of thermodynamics give a further specification
of these concepts. We discuss them here shortly, as the understanding of entropy
and its role in nonequilibrium systems is very important throughout this thesis.

The first law The internal energy U of a system corresponds microscopically to
the sum of all kinetic energies of the particles and all their interaction potentials.
The first law of thermodynamics then dictates that a small change of the energy
dU of a system can only be caused by work, heat or a particle flow:

dU =d̄Q+d̄W + µdN

where d̄Q is an infinitesimal amount of heat flow into the system and d̄W is an
infinitesimal amount of work done on the system. The notation with d̄ stems from
the fact that heat and work can’t generally be expressed as the difference of a state
function (a function only depending on the state of the system, not on its history).
If the system contains different species of particles with chemical potentials µi

then the last term should be replaced by
∑

i µidNi.

For a system with a fixed number of particles and a fixed volume, the first law tells
us that the energy of a system can only change through heat flow. In a sense this
is a definition of heat: it is an energy transfer that is not work and not a particle
current.

To have a better understanding of the concept of heat let us make a little thought
experiment. Think of a box containing a gas (system). We imagine the box
standing in a room filled with air (environment). The box is closed and has a
fixed volume. Going down to the microscopic level (leaving thermodynamics for
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Figure 1.2: The experiment with which J.P. Joule showed that heat and mechanical
work are both forms of energy transfer.

a moment), we can imagine that particles outside the box collide with the box,
thus exchanging work with the box. The particles in the box also exchange work
with the box. In this way energy can be transferred between the system and the
environment. However when we zoom out to the macroscopic level, we can no
longer see the individual collisions of all the particles, and if we do not see forces,
we can’t compute their work. We only see that energy is exchanged. In this way
heat is defined as energy exchange due to work of forces we can’t see from our
macroscopic point of view. More generally heat can also be particle exchange of
particles we can’t see. Note that this definition is arbitrary in that it depends on
the level of description of the system.

The second law This law is used to define the quantity entropy. It states that
there exists a state function, called the entropy S, such that

∆S ≥
∫

d̄Q
T

where ∆S = Sf −Si is the change in entropy of the system from the initial value Si

to the final value Sf , and the integral is over a thermodynamic process. Moreover,
only for a reversible process the inequality becomes an equality, thereby exactly
defining entropy changes. Apart from defining the entropy, this second law is also
a restriction on the heat flow during a process. For example this law predicts that
heat never spontaneously flows from a cold to a hot object. It also places a bound
on engines that extract work by utilizing two reservoirs at different temperatures.

For an isolated system (i.e. d̄Q = 0), what does it mean to be ‘in equilibrium’?
From the second law we see that any process the system undergoes will increase
its entropy (or leave it unchanged). Only when the system reaches its equilibrium
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state, the entropy does not change. One can thus characterize equilibrium for an
isolated system as the state with maximum entropy.

Thermodynamic potentials Thermodynamic potentials are (scalar) functions
that describe the thermodynamic state of a system. From them, many relations
between thermodynamic quantities can be derived. Therefore they play a role in
thermodynamics comparable to the Lagrangian or Hamiltonian in mechanics. Part
of this thesis discusses the use of thermodynamical potentials in nonequilibrium
systems. Because of this, we provide here a quick introduction to these potentials
in thermodynamics.

The first and most intuitive thermodynamic potential is the internal energy of the
system: U . We can use the first law for a reversible process to write

dU = TdS − PdV + µdN

where PdV is the work done by the system on its environment. From this we can
see that the natural variables of U are S, V and N , while the variables T, P, µ all
depend on them through

∂U

∂S
= T,

∂U

∂V
= −P, ∂U

∂N
= µ

The internal energy is thus fixed in a system for which S, V,N are fixed and
is thus the most natural potential here. Equivalently we can write the entropy
S = S(U, V,N) which is most natural in a system with U, V,N fixed, i.e. a totally
isolated system. As we already argued, the entropy characterizes the equilibrium
state of such a system because it is maximal then. Such a characterization of
equilibrium is a key feature of thermodynamic potentials.

For a system with a fixed volume and particle number, but which can exchange
heat with an environment which is in equilibrium at a fixed temperature, the
natural variables are T, V,N . What characterizes equilibrium for such a system?
To see this, we assume that the total of system plus environment is isolated. The
energy of an isolated system is constant. So dU + dUe = 0, where dU is the
change of energy of the system, and dUe of the environment. From the first law
of thermodynamics, we see that for the environment (which is at equilibrium):
dSe = 1

T dUe = − 1
T dU . The system is in equilibrium with its environment if the

total of the two is in equilibrium. In that case the total entropy is maximal:

d(S + Se) = 0, d2(S + Se) < 0
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Written in terms of the system, this gives:

d(S − U

T
) = 0, d2(S − U

T
) < 0

This defines a thermodynamic potential S−U/T , but a slightly different potential
is more commonly used: the Helmholtz free energy F = U −TS. We see that it is
minimal in equilibrium. This free energy for an equilibrium system is thus defined
by

F (T, V,N) = inf
S

[U(S, V,N) − TS]

which means that it is a Legendre transform of the internal energy U .

Similarly the enthalpy

H = U + PV

is defined for a system that is thermally isolated but can change its volume with
an environment at constant pressure. In equilibrium we have

H(S, P,N) = inf
V

[U(S, V,N) + PV ]

The Gibbs free energy

G(T, P,N) = U + PV − TS

is defined for a system in contact with an environment at a constant temperature
and pressure. More potentials can be defined when particle exchange with the
environment is allowed.

The collection of thermodynamic potentials, all connected through Legendre trans-
forms, form a very powerful and useful theoretical formalism for thermodynamics
of equilibrium systems.

1.2 Equilibrium statistical mechanics

Statistical mechanics, also called statistical thermodynamics, is the theoretical
framework that explains thermodynamics as a set of macroscopic properties of
materials, starting from the microscopic properties of the individual atoms or
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molecules. But it does more: it gives a more accurate description because it
also describes the fluctuations from the expected macroscopic behaviour. It uses
statistics/probability theory to be able to study systems that consist of a large
number (1023) particles. Historically, it was founded in the second half of the
nineteenth century, mainly by Ludwig Boltzmann and James Clerk Maxwell, but
also by Gibbs, Einstein and Planck. Their statistical mechanics is a theory of
equilibrium systems. We give a quick overview of some relevant aspects:

Micro and macro In statistical mechanics one makes the difference between
microstates and macrostates. A microstate (or microscopic configuration) of a
system contains all microscopic information about the system, such as the positions
and velocities of all its particles. A macrostate (or macroscopic configuration)
gives a description of the system in terms of a few macroscopic properties, such
as temperature and volume. Many microstates may correspond to the same
macrostate.

Figure 1.3: Boltzmann’s
gravestone.

Entropy One of the basic postulates of statistical
mechanics is that for an isolated system, all its
possible microstates are equivalent, i.e one is not
more important or more probable than another. As
a consequence, for an isolated system, macrostates
that correspond to more microstates are more
probable than macrostates that correspond to
fewer microstates. This is closely connected to
Boltzmann’s famous definition of entropy as a
statistical quantity: given a set of macrostates M ,
the entropy S is proportional to the logarithm
of W , where W is the number of microstates
corresponding to M :

S = kB logW (1.1)

where kB is Boltzmann’s constant. For continuous
microscopic configuration spaces, W is the ‘volume’
of the set of microstates corresponding to the
macrostate. Saying that a system in equilibrium
is characterized by a maximal entropy is thus
the same as saying that it is characterized by
the macrostates that correspond to the most
microstates, i.e. the most probable macrostates.
One of the major achievements of statistical
mechanics is that this entropy coincides with its



8 INTRODUCTION

thermodynamic counterpart mentioned above. As a testament to the significance
of this formula (1.1), it was engraved on the tombstone of Boltzmann.

Ensembles The macrostate M that a system is in at any moment depends on
the microstate x of the system: M = M(x). Statistical mechanics explains the
measured value of M from the viewpoint of the microstate x the system can be in.
It does this by working with ensembles. An ensemble is a set of (a large number
of) imagined copies of a system: one for each microstate the system could be
in. One then has to choose a probability distribution ρ(x) on this set of possible
microstates. The probability of observing a certain macrostate M is then the sum
(or integral) of ρ(x) over all microstates that correspond to M . The statistical
average of M can be computed by

〈M〉 =
∑

x

ρ(x)M(x)

where the sum can be an integral, depending on the system. Within the theory of
equilibrium ensembles the definition of entropy was provided by Gibbs:

S = −kB

∑

x

ρ(x) log ρ(x)

which is equivalent to the Boltzmann entropy for the microcanonical ensemble (see
below).

As macroscopic systems typically have 1023 particles, and thus a large number
of microstates, the law of large numbers from probability theory dictates that
the measured value of M is practically always equal to the computed average
〈M〉. Therefore, by choosing the right probability distribution ρ, one can recover
thermodynamics by considering the statistical averages of macrostates. The most
commonly used probability distributions are:

• The microcanonical ensemble is used for isolated systems, i.e. systems that
have a fixed energy E. The set of possible microstates is thus restricted to
microstates that have an energy E. Apart from that an equal probability is
assigned to all those microstates.

• The canonical ensemble is used for systems that can exchange energy only
in the form of heat with an environment at a fixed temperature T . The
canonical distribution is

ρ(x) =
1
Z
e−βE(x)
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where Z is a normalization factor, called the canonical partition function,
β = 1

kBT and E(x) is the energy of the system in microstate x.

• The grand canonical ensemble is used for systems that can exchange heat and
particles with a reservoir at a fixed temperature T and chemical potential µ:

ρ(x) =
1
Z eβµN(x)−βE(x)

where Z is a normalization factor, called the grand canonical partition
function, and N(x) is the number of particles of the system in microstate x.

As an example of how the link to thermodynamics is made: we explicitly substitute
the distribution for the canonical ensemble in the Gibbs entropy:

S = kB logZ +
〈E〉
T

The average energy 〈E〉 coincides by the law of large numbers to the measured
energy U , so

− 1
β

logZ = U − TS = F

where F is the Helmholtz free energy of the system.

1.3 Out of equilibrium

In the end, the purpose of statistical mechanics is twofold: on the one hand
to describe the macroscopic world, and derive its physical behaviour, starting
from the microscopic level. On the other hand, statistical mechanics makes
more predictions than thermodynamics, because it also describes the deviations
(fluctuations) from the average behaviour.

Equilibrium statistical mechanics is in this sense very powerful, because it
is seen that measurable quantities, using the law of large numbers, can be
computed through averaging over equilibrium distributions of microstates. These
are themselves expressed solely in terms of external constraints (temperature,
chemical potential), and conserved quantities like energy and particle number.
Going beyond thermodynamics, for example the fluctuation-dissipation theorem
is a useful and well-known physical relation. (Part of this text discusses the
generalization of this to nonequilibrium systems).
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However, up to the moment that this text is written, there is no general
paradigmatic theoretical framework that describes systems out of equilibrium,
neither in thermodynamics nor in statistical mechanics, not even for stationary
systems. This poses a problem, because many processes in real life can’t be
described as reversible processes, and many systems are not in equilibrium.

How to be out of equilibrium In general we distinguish two ways for systems
to be out of equilibrium. First, systems that are in the process of relaxing to
equilibrium: when a parameter determined by the environment changes, like
temperature or volume, the system always needs some time to relax to that new
equilibrium state. For example, when a hot cup of coffee is placed in a room at
room temperature, heat will start to flow from the coffee to the air of the room (we
ignore heat exchange by radiation with the walls of the room). After some time
the coffee and the air will relax to a new equilibrium state: the coffee cools down
to room temperature. Before that time, however, the coffee is not in equilibrium
with the room, and the process is not reversible. If it was reversible, then we would
not be surprised to observe heat to flow spontaneously from the air to the coffee,
heating it up again. Sometimes the external parameters change continuously and
fast enough such that the system never has enough time to relax to equilibrium.
Think for example of combustion engines.

Secondly there are systems that are driven from equilibrium by what we call
thermodynamic forces. Here we distinguish three subgroups, corresponding to
thermal, diffusive and mechanical exchanges of energy:

• Systems in contact with parts of the environment at different temperatures.
For example a wall of a house: on one side it is in contact with the warm air
inside, and on the other side it is in contact with cold air. In such systems
there are constantly heat currents. A part of the environment that is in
thermal contact with the system, is called a heat bath. The thermodynamic
force here is the temperature difference.

• Systems in contact with parts of the environment at different chemical
potentials. Think of a cell membrane with a bigger particle density on the
inside than on the outside. In such systems one sees particle currents. A
part of the environment that is in diffusive contact with the system is called
a particle reservoir. The thermodynamic force here is the chemical potential
difference.

• Systems under the influence of mechanical nonconservative forces. A
nonconservative force is a force which is not the derivative from a potential.
Think of the pressure difference that makes water run out of a tap.
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To simplify this second group of systems, one usually assumes that the parts of
the environment in contact with the system are and stay in equilibrium during
the process. For this one should assume that there is no interaction between the
different parts of the environment, and that the interaction between system and
environment is weak, i.e. changes in each part of the environment are small enough
such that it relaxes fast enough to equilibrium for our description of the system.
One also assumes that the heat baths and particle reservoirs are big, such that
during the process their temperatures and densities do not change measurably.
Systems under such conditions can often relax to a stationary state. This is a
state in which the variables (macrostates) with which we describe the system do
not change in time. Such variables include heat or particle currents in contrast
to equilibrium systems. One of the goals of nonequilibrium thermodynamics is to
describe such stationary regimes and correctly predict the directions and sizes of
their currents.

Dynamics An important property of nonequilibrium systems, in contrast to
equilibrium, is that time plays an important role. First of all because
nonequilibrium processes are irreversible: an arrow of time is introduced. The
question of how irreversibility emerges when going from the reversible microscopic
world to the macroscopic world was already discussed by Boltzmann himself.

Apart from that, it seems clear that nonequilibrium systems are by their very
nature dynamical. This is because systems are either out of equilibrium because
they are driven from equilibrium and are in some stationary regime in which there
are particle or heat currents present, or because they are in the process of relaxing
to equilibrium (or to a stationary state). This means that not only the microstates
themselves are important, but also the way in which they change in time. The
dynamics of the process should enter our (theoretical) description.

Statistical mechanics of stochastic processes: the mesoscopic level Ideally,
one would therefore like to answer physical questions about average behaviour and
fluctuations, by starting from the microscopic Hamiltonian dynamics. However,
this is often just impossible. This is not necessarily a disaster, because we
expect (hope) that not every detailed aspect of that dynamics is relevant for
the macroscopic world. Therefore most models used in nonequilibrium statistical
mechanics are already reduced descriptions, meaning that they do not contain
all information of the microscopic world. For example, one usually reduces the
description of the environment of the system to some parameters as temperature or
chemical potential. On the other hand, to be able to describe fluctuations from the
typical macroscopic behaviour, a more detailed description than the macroscopic
one is needed. We then say that we are working on the mesoscopic level.
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One should thus think of a mesoscopic model as describing a small system, for
which the description is not detailed enough to be Hamiltonian, but is not big
enough for the law of large numbers to apply. Fluctuations around the statistical
averages are important. As a consequence a model describing a mesoscopic system
can be a stochastic process. A stochastic process is therefore a very important
tool in nonequilibrium statistical processes. An important part of the present day
research is therefore committed to finding ‘recipes’ for defining stochastic processes
that are physically relevant. One way to do this is via the local detailed balance
assumption, which will be discussed in the next chapters, and is used throughout
this text.

Applications As said before, many processes in everyday life are not reversible,
and many quantities of interest are some form of current, which is not found in
equilibrium systems. On the macroscopic scale we find important examples in
ecology and meteorology. In meteorology, we see that the temperature at the
poles is on average much lower than at the equator. That is responsible for major
energy currents in the earth’s weather system. On a smaller scale one is interested
in predicting local weather, like temperature changes and air flows (wind), given
observational data concerning high and low pressure areas etc. In ecology one is
interested in the energetic and material (food) flows between different species of
organisms.

On a much smaller scale we see that mesoscopic models are not only useful as
a step towards macroscopic theories, but also as a description of interesting but
very small systems. In recent years the nonequilibrium world of small systems has
become more accessible experimentally, opening and expanding research areas as
biophysics and nanotechnology. In biophysics a lot of attention nowadays is going
to e.g. the dynamics of DNA and RNA, transport of ions through cell membranes,
molecular motors, etc. In nanotechnology the electrical current in extremely small
devices or parts of devices is central. Finally, in everyday life there are many finite
networks, like transport and communication networks, on which processes occur
which are well described on the mesoscopic scale.

A lot of interesting and useful research has been done and is being done in these
areas, where explicit models (stochastic processes) are examined to derive results
for each specific area of interest. However, this is not the goal of the research
reported in this thesis. Instead, we try to find general physical structures of
nonequilibrium statistical mechanics. Such a scheme should in the long run
and together with many other contributions lead to a better understanding of
nonequilibrium physics. Such an understanding should then give useful predictions
applicable to the specific areas of interest mentioned above.



OUTLINE AND PREVIEW OF THE RESULTS 13

1.4 Outline and preview of the results

Part I: Stochastic processes Because of the lack of a general theory, it may come
as no surprise that the present day research into nonequilibrium systems focuses
on simple physical systems. It is then important to define a stochastic process that
models it correctly. The first part of this thesis therefore contains an introduction
to the stochastic models that are used in the rest of the text, focusing on the
relevant aspects for understanding the next two parts.

Throughout this text, we restrict ourselves to classical systems, meaning that we
do not consider relativistic or quantum effects. (Quantum mechanics only enters
in some specific models in the discretization of configuration space).

Part II: Fluctuation-dissipation relations In this part of the thesis, we investigate
how a system responds to a perturbation, namely a small change in its energy. The
central object that summarizes this is the response function. To be more precise,
we denote the energy of the system in configuration x by U(x). As a perturbation
this energy is changed by the addition of a potential: U → U − htV , where the
time-dependent function ht is the amplitude of the perturbation. We restrict our
possible class of systems to those in which a small amplitude ht only has small
effects (excluding for example the regime of phase transitions). Then we can write
the expectation of an observable Q in the perturbed system as the expectation in
the unperturbed system plus a small correction:

〈Q(xt)〉h ≈ 〈Q(xt)〉0 +
∫ t

0

dshsRQV (t, s)

This defines the response function RQV (t, s). In equilibrium systems it is known
that this response function can be written in terms of a correlation function in the
unperturbed system (a system in equilibrium at inverse temperature β):

RQV (t, s) = β
∂

∂s
〈Q(xt)V (xs)〉0

This is called the fluctuation-dissipation theorem. Our contribution has been to
discuss the form of the response function for systems out of equilibrium. We
found that the response function can generally be written as the sum of two
correlation functions. One correlation function is linked to heat dissipation into
the environment, and thus to entropy changes. The other correlation function has
to do with a quantity which we call traffic, which describes in a sense the activity
of the system. The main results of this part are summarized by formulae (5.6),
(5.14) and (6.7). These results are then applied to several explicit examples for
which simulations have provided some visualization and verification.
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The research discussed in this part was reported before in [2, 3, 4].

Part III: Dynamical fluctuations In this part of the thesis we use the theory
of large deviations to examine certain fluctuations in systems out of equilibrium.
For equilibrium statistical mechanics, large deviation theory provides a natural
mathematical framework especially for the thermodynamic potentials discussed
above. It is therefore useful to investigate that theory also for nonequilibrium
systems.

In this theory we consider the empirical occupation density p (which describes the
fraction of time the system spends in each configuration) and the empirical current
J (describing the changes of configuration the system makes) as observables. The
probability is then considered that these observables take on some given values
p ≈ µ and J ≈ j. Such a probability often shows an exponential decay, whenever
µ and j do not correspond to the typical values of the observables:

Prob(p ≈ µ, J ≈ j) ≈ e−T I(µ,j)

where the duration T of the process is very large, and I(µ, j) is called the rate
function.

The questions in this part of the thesis are then: how to compute the rate function,
and what are the physical quantities governing its form? As in the previous
part, entropy and traffic are the main ingredients. Moreover, the rate function
I(µ, j) is explicitly computed for the classes of models considered and expressed
in terms of entropy and traffic, see (10.25) and (11.10). The rate function for the
occupations can be expressed entirely in terms of traffic. We also show that this
traffic can be seen as a thermodynamic potential for currents. Finally, for the close-
to-equilibrium regime, known variational principles such as the minimum entropy
production principle are recovered.

The research discussed in this part was published before in [70, 71].
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Stochastic processes
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“Observe what happens when sunbeams are admitted into a building and shed
light on its shadowy places. You will see a multitude of tiny particles mingling in a
multitude of ways... their dancing is an actual indication of underlying movements
of matter that are hidden from our sight... It originates with the atoms which move
of themselves. Then those small compound bodies that are least removed from the
impetus of the atoms are set in motion by the impact of their invisible blows and
in turn cannon against slightly larger bodies. So the movement mounts up from
the atoms and gradually emerges to the level of our senses, so that those bodies
are in motion that we see in sunbeams, moved by blows that remain invisible.”

Lucretius, De rerum natura, ca. 60 BC.



Chapter 2

Describing stochastic processes

Stochastic processes are a useful tool to explore nonequilibrium statistical
mechanics. The basic ingredient here is not the microstate but the trajectory, i.e.
the sequence of states the system visits during the process. In this chapter we
therefore discuss how to work with such trajectories in statistical physics. To lift the
mathematical models to a more physical level, the local detailed balance assumption
is made and explained. As we will see, some well-known general physical results
are a direct consequence of this assumption.

2.1 Stochastic processes

Mathematically we describe a system by its configuration or state. This state
contains all information of the system that is relevant for our description. Let
us denote it by x, being an element of the configuration space Ω. This x can
be for example the vector of positions and momenta of a gas, or the set of spin-
configurations of a magnet, or maybe just the position of one particle submerged
in a fluid. Consequently, the set Ω can be continuous or discrete, unbounded,
compact or even finite.

In the course of time the configuration of the system will change, i.e. the
configuration depends on time: x = xt. How it changes, is determined by the
dynamics of the process. In classical mechanics, the dynamics at the microscopic
level is Hamiltonian and therefore deterministic. Indeed, when all positions and
momenta of the particles of a gas in an isolated container are given at a time t,
one can in principle determine the positions and momenta at any later time.

17
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Unfortunately, this is not always possible. Most of the times the system under
consideration is not isolated, but interacts with some environment of which the
exact configuration is unknown. Moreover it is usually even impossible to measure
the exact configuration of the system itself. Because of such factors, uncertainty
enters, and must enter our mathematical description. This gives rise to stochastic
processes, and the configuration xt of the system at each time becomes a stochastic
variable Xt. A stochastic process is then the sequence of these stochastic variables:

{Xt|0 ≤ t ≤ T }

When the history of the system is given, i.e. xt for t ∈] − ∞, T ], the stochastic
dynamics of the process gives a probability to find the system in a configuration
y at a later time.

Again one has to be more modest, as the complete history of a system is rarely
known. A widely used and usually well-working approximation is the Markov
approximation. This consists of the assumption that the probability of finding the
system at a later time in some configuration, only depends on the configuration of
the present, not the past. Informally, for a sequence of times t1 < t2 < . . . < tn < t:

Prob(xt = x|xtn
= yn, . . . , xt1 = y1) = Prob(xt = x|xtn

= yn) (2.1)

A Markov process is a stochastic process for which the Markov assumption (2.1)
is valid. Note that Hamiltonian dynamics, governing the evolution of the state
(x, v), although deterministic, also satisfy this assumption. In the rest of this text
we always assume our processes to be Markovian. In many cases the dynamics of
the Markov process have the property that

Prob(xt = x|xs = y) = Prob(xt−s = x|x0 = y) ∀s < t

In such cases we speak of time-independent dynamics (or time-homogeneous
dynamics). However, this is not always the case in this thesis.

For the reader who is unfamiliar with probability theory and stochastic processes,
we refer to [46] for a thorough introduction.

A particle in a box As an easy introductory example, consider a box with volume
V filled with air. In this box we place one charged test-particle. We also apply an
electric field to move the particle in our favourite directions. If we knew all the
positions and velocities of all the particles in the box, in principle the trajectory
of test-particle could be computed with Hamilton’s equations. Practically, this



TRAJECTORIES 19

is not possible, but suppose that in some way the position of the test-particle
can be measured at time intervals of 1 second, the first measurement being at
time zero. The precision of the measurement is limited: one can only determine
the position up to a small volume ∆V . Therefore we divide the box into N =
V/∆V parts, labelled by x = 1, 2, . . .. Given the configuration (position) x after
n seconds, denoted by xn, the position xn+1 is not determined exactly. There
are usually several possible positions that the particle can be in, each having a
probability determined by the temperature of the air, the electric and magnetic
fields, etc. These probabilities can also depend on the previous positions of the
particle. However, let us assume that the interaction with the air molecules is
sufficiently strong compared to the influence of the electromagnetic fields and
inertial effects, such that the particle loses its memory quickly enough for the
Markov assumption to be valid.

Having this physical example in our mind, let us write the probabilities of the
successive positions (transition probabilities) as follows:

Pn(x, y) = Prob(xn+1 = y|xn = x)

Mathematically, this defines what is called a Markov chain, which is the simplest
example of a Markov process. In the next two chapters we discuss two other classes
of Markov processes: Markov jump processes and diffusions, but in this chapter
we use these simple Markov chains to illustrate the introduced concepts.

The N ×N matrix Pn is called the transition matrix at time n, and it determines
the dynamics of the process. Note that we should have that

∑

y Pn(x, y) = 1
for every n, where the sum is of course over all configurations. When the
electromagnetic fields are constant in time, the dynamics are time-homogeneous:
Pn = P . When the fields are time-dependent, so are the dynamics. The time-
dependence of the fields is determined by some parameter λt which continuously
changes in the time t, so Pn = Pλn

. This λt is controlled externally, and we
imagine it to be deterministic. It is called the protocol.

2.2 Trajectories

A realization of a stochastic process is called a trajectory or path. We denote it
by ω = (xt)0≤t≤T . If the dynamics of the stochastic process are given, one can
in principle compute the probability measure on such paths ω. Suppose that the
configuration of the system at time zero x0 is given. We denote by dPx0(ω) the
path-probability measure of ω given x0. With it we can compute the expectation
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values of observables: take any observable f(ω) that depends on the trajectory.
Then its expectation value is

〈f(ω)〉x0
=
∫

dPx0(ω)f(ω) (2.2)

where one integrates (or sums, depending on the model) over all possible
trajectories that start from x0 at time zero. More generally, given a probability
distribution (or density) µ0 of initial configurations, we denote the probability
measure of a path by dPµ0 (ω) = µ0(x0)dPx0(ω) and the expectation value of f(ω)
by

〈f(ω)〉µ0
=
∫

dPµ0(ω)f(ω)

where integration/summation is now over all possible trajectories.

Basic probabilistic rules dictate that the path-probability measure should be
normalized:

∫

dPµ0 (ω) = 1 (2.3)

Moreover, if we split the trajectories into ω1 = (xt)0≤t≤s and ω2 = (xt)s<t≤T , for
any s in the interval [0, T ], then the path-probability measure of paths ω1, which
we just denote by dPµ0 (ω1), is found by integrating over all ω2:

dPµ0 (ω1) =
∫

ω2

dPµ0 (ω) (2.4)

This is an important property. For example, in many computations in this thesis
we take expectation values of state functions, evaluated at some time s. This gives

〈f(xs)〉µ0
=
∫

dPµ0 (ω)f(xs) =
∫

dPµ0(ω1)f(xs)

i.e. we only need to take an average over all paths in the interval [0, s].

Particle in a box For Markov chains, a trajectory is determined by the successive
configurations: ω = (x0, x1, . . . , xm), where m corresponds to the time T . The
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probability of a trajectory ω is just Px0(ω) =
∏m−1

n=0 Pn(xn, xn+1). If we take for
example a function f(x) evaluated at time m, then

〈f(xm)〉x0
=

∑

x1,...,xm

[

m−1
∏

n=0

Pn(xn, xn+1)

]

f(xm)

2.3 Probability distribution of states

The probability of finding the system in a configuration x at time t is denoted
by µt(x), the time-evolved distribution (actually in the case of a continuous
configuration space, µt(x) is a probability density). It can easily be written in
terms of expectation values:

µt(x) = 〈δ(xt − x)〉µ0
(2.5)

using δxt,x instead of δ(xt −x) for discrete state spaces. Equivalently, for any state
function f(x):

〈f(xt)〉µ0
=
∫

dxµt(x)f(x) (2.6)

The integral becomes a sum for discrete state spaces. In systems with time-
independent dynamics, there often exists a distribution which does not change
under the time-evolution. This is called the stationary distribution. If the system
is in the stationary distribution, it is said to be in the ‘steady state’. We always
denote the stationary distribution with ρ:

ρ(x) = 〈δ(xt − x)〉ρ ∀t

Under certain conditions on the dynamics, it can be proven that such a distribution
exists, is unique, and that all distributions µt converge to it in the long time limit
(the system relaxes to the stationary distribution). Unless stated otherwise, we
always assume this to be true for time-independent dynamics. See [46] for a
rigorous treatment.

The existence of such a stationary measure implies ergodicity, meaning that for
trajectories ω and an arbitrary state function g:

1
T

∫ T

0

dtg(xt) →
∫

dxρ(x)g(x) for T → ∞ (2.7)

almost surely. More precisely: the probability that the system follows a trajectory
that satisfies (2.7) is equal to one.
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Particle in a box For a Markov chain we get:

µm(x) =
∑

x0,...,xm−1

µ0(x0)

[

m−2
∏

n=0

Pn(xn, xn+1)

]

Pm−1(xm−1, x)

Note that the distribution one time-step later can be written as µm+1(x) =
∑

y µm(y)Pm(y, x), and thus:

µm+1(x) − µm(x) =
∑

y

[µm(y)Pm(y, x) − µm(x)Pm(x, y)]

In the case that Pn = P , if there is a stationary distribution it has to satisfy

0 =
∑

y

[ρ(y)P (y, x) − ρ(x)P (x, y)]

2.4 The action

Suppose now that one has two stochastic processes, each having the same
configuration space but a different dynamics. The action gives a way of switching
between expectation values computed in those dynamics. This is essential to the
rest of this text.

We denote the path-probability measures of the processes by dP and dP∗

respectively. Suppose that dP∗ is absolutely continuous with respect to dP . This
means that

∫

M
dP∗(ω) = 0 for any set of trajectories M for which

∫

M
dP(ω) = 0.

Then one has

〈f(ω)〉∗
µ0

=
∫

dPµ0 (ω)
dP∗

µ0

dPµ0

(ω)f(ω) =
〈

f(ω)
dP∗

µ0

dPµ0

(ω)
〉

µ0

(2.8)

The quantity
dP∗

µ0

dPµ0
(ω) is called the Radon-Nikodym derivative between the two

processes [83]. In words: it is the probability of a path in one dynamics divided
by the probability of the same path in another dynamics. It is common to write
this in the following way:

dP∗
µ0

dPµ0

(ω) = e−A(ω) (2.9)
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where A(ω) is called the ‘action.’ For Markov processes it is independent of µ0.

Normalization of the path-probability measure (2.3) tells us that

〈

e−A(ω)
〉

µ0

= 〈1〉∗
µ0

= 1 (2.10)

for any initial distribution µ0.

Particle in a box For a Markov chain the action is easily computed to be

A(ω) =
m−1
∑

n=0

log
Pn(xn, xn+1)
P ∗

n(xn, xn+1)

2.5 Time-reversal

To be able to talk about time-reversibility we first define an operator θ which acts
as a time-reversal on trajectories. This means that it reverses all trajectories, also
taking care that velocities change sign under time-reversal:

ω = (xt)0≤t≤T 7→ θω = (πxT −t)0≤t≤T

where π changes signs of velocities. Moreover, if the dynamics of the process is time-
dependent, we also reverse this time-dependence. For example if the dynamics is
governed by a force Ft(x), then time-reversal changes this to FT −t(x). This means
that the path-probability measure will also change. Therefore, whenever we deal
with time-dependent dynamics, we denote the new path-probability measure by
dPR, (the R stands for ‘reversed’). These reversals together make the time-reversal
that intuitively corresponds to playing the movie of a process backwards.

Let us consider the following measure of irreversibility, defined in terms of a Radon-
Nikodym derivative:

Sµ(ω) = log
dPµ0

dPR
µT
θ

(ω) (2.11)

where µ0 is an arbitrary probability distribution from which the initial state of
the system is sampled. For the time-reversed process the initial distribution is
taken to be µT , which is defined (given µ0) through (2.5). This quantity Sµ(ω)
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is a measure of irreversibility of a certain trajectory ω. It is the probability of ω
divided by the probability of its time-reversed twin in the time-reversed dynamics.
Let us rewrite (2.11) as follows:

Sµ(ω) = log
(

µ0(x0)
µT (xT )

dPx0

dPR
xT
θ

(ω)
)

=: log
µ0(x0)
µT (xT )

+ S(ω) (2.12)

which defines the quantity S(ω). Note that for Markov processes S(ω) does not
depend on the initial distribution of the system.

Particle in a box For Markov chains, time-reversal of the path gives θω =
(xm, . . . , x1, x0), as long as the configurations do not contain velocities, like in
the example of the particle in a box. The reversal of the dynamics gives transition
probabilities Pn → Pm−n−1. Together they give

S(ω) =
m−1
∑

n=0

log
Pn(xn, xn+1)
Pn(xn+1, xn)

(2.13)

2.6 Equilibrium

The most general way of defining equilibrium is that systems in equilibrium are
stationary and time-reversible. The first condition means that the probability of
finding the system in a state x does not depend on time, i.e. it is given by the
stationary distribution ρ(x) (the dynamics have to be time-independent of course).
The second condition means that when we are shown a movie of an equilibrium
process, we can not tell if the movie is played normally or backwards. More
mathematically: Sρ(ω) as defined in (2.11) with µ0 = µT = ρ is zero for any
trajectory ω:

Sρ(ω) = log
dPρ

dPR
ρ θ

(ω) = 0 (2.14)

This has as an immediate consequence (see (2.12)) that

S(ω) = log ρ(xT ) − log ρ(x0) (2.15)

We can use our knowledge of equilibrium systems (see Section 1.2) to see what this
means physically. E.g. for a system in contact with a heat bath in equilibrium at
inverse temperature β, ρ is given by the canonical distribution. We get:

S(ω) = −β[U(xT ) − U(x0)] (2.16)
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with U(x) the energy of the system in configuration x. The change of energy of
the system is equal to minus the change of energy of the environment. It becomes
more clear what this quantity S is when we consider a system in contact with a
particle reservoir at inverse temperature β and chemical potential µ. For this ρ is
the grand canonical distribution, and we get

S(ω) = −β[U(xT ) − U(x0)] + βµ[N(xT ) −N(x0)] (2.17)

This is exactly the change of entropy in the environment, stated in terms of the
configurations of the system (up to a factor of kB, Boltzmann’s constant, which
we set to one for notational simplicity). This means that S(ω) can be interpreted
as the entropy flux from the system to its environment during the trajectory ω. In
the following section we generalize the connection between entropy flux and S(ω)
to nonequilibrium processes.

Here we would like to point out that there is a fundamental difference between
a system in equilibrium and a system with an equilibrium dynamics. As we can
see from (2.12), S(ω) is independent of the initial distribution µ0, it only depends
on the dynamics of the process. So if the system has an equilibrium dynamics,
(2.15) holds for any ω, even if the system is not in the stationary (equilibrium)
distribution. This is also called a detailed balanced dynamics. Only if the system
is also stationary, then (2.11) is zero for any ω and we say that the system is in
equilibrium.

Particle in a box For a Markov chain to be in equilibrium, (2.14) must hold
for any path. It should therefore hold at least for paths that last only one step:
ω = (x0, x1). So a necessary condition for equilibrium is:

0 = log
(

ρ(x0)P (x0, x1)
ρ(x1)P (x1, x0)

)

for any x0, x1, which is equivalent to

ρ(x0)P (x0, x1) = ρ(x1)P (x1, x0)

This is called the detailed balance condition. One can easily check that it is also
a sufficient condition for an equilibrium dynamics.



26 DESCRIBING STOCHASTIC PROCESSES

2.7 Irreversibility and entropy: local detailed balance

For a very large class of nonequilibrium systems we will assume that

S(ω) = the entropy flux from the system into the environment.

This assumption is called ‘local detailed balance,’ because it is based on the
assumption that locally in time and in space the system has a dynamics that
is detailed balanced. This assumption is restricted to the case that the reservoirs
only interact with the system, not with each other. Moreover the coupling between
system and reservoirs should be sufficiently weak and the reservoirs sufficiently
big, such that the reservoirs stay in equilibrium throughout the process. The
local detailed balance assumption can be seen as a restriction on the possible
mathematical models that we use to describe the system. More constructively, it
gives a partial recipe to write down models that correspond to the physical world.
Partial, because local detailed balance does not fully specify the dynamics. The
ideas behind this assumption have been used already for some time, see e.g. [62],
but it was first called local detailed balance in [56]. A more rigorous treatment
of this assumption was then later done in [66, 73, 74] and mostly in [67]. Local
detailed balance is central to the results discussed in this thesis, and we always
assume it to be true.

Let us give a heuristic motivation why such an assumption is reasonable. As said
in Section 1.3, there are several ways in which a system can be driven away from
equilibrium. Let us first consider the case of a system in contact with two heat
baths which are themselves in equilibrium at different temperatures β1 and β2.
The baths do not interact with each other, only with the system. Microscopically
the system never interacts with the two baths at the exact same time. Imagine
therefore that we let the system run for only a very short time-interval [0, T ]. This
interval is so short that the system interacts only with heat bath 1 within [0, t], an
only with heat bath 2 in [t, T ]. (A more elaborate discussion of such a process can
be found in [53, 54]). By its mathematical definition (2.12), S(ω) is then just the
sum of contributions from [0, t] and [t, T ]. As the dynamics are detailed balanced
in each time interval separately (there is interaction with only one heat bath at a
fixed temperature), we can use the results of the last paragraph to see that

S(ω) = −β1[U(xt) − U(x0)] − β2[U(xT ) − U(xt)] = β1Q1 + β2Q2

where Q1 and Q2 denote the heat fluxes into heat bath 1 and 2 respectively.
Therefore, S(ω) is the change in entropy of the environment due to the process of
the system, i.e. the entropy flux from the system into the environment. Given an
arbitrary time-interval, it is therefore reasonable to assume that we can split this
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interval into many small intervals which are short enough so that we can assume the
dynamics to be detailed balanced in each interval separately: we assume detailed
balance ‘locally in time’. Adding all the contributions to S(ω) from these small
intervals gives us that

S(ω) = β1Q1 + β2Q2

Using the same reasoning we can expand this formula to the case in which the
system interacts with several heat baths and particle reservoirs. The conclusion
stays the same: the quantity S(ω) is the entropy flux from the system into the
environment.

Finally, a system can be driven from equilibrium by some nonconservative forcing.
Let us illustrate this last class of systems with an example:

Particle in a box Consider the following example: the box in which the charged
particle resides is surrounded by an environment at equilibrium at a single
temperature (air or water). The air inside the box is also at equilibrium at that
temperature. Suppose the box has the shape of a thin torus, with a circumference
L, which we divide into N segments of length d (d would be the error of our
measurement). The configuration space is thus a ring with N sites, labelled
x = 1, 2, . . . , N,N + 1 ≡ 1. We assume that the particle can maximally move one
site to the left or right during one time step. An electric field E (constant in time)
is applied on the box. As a consequence, the particle gains an energy E(x, y) · d
when going to the left or right (y = x± 1). Note that E(x, y) = −E(y, x).

First of all, suppose that the electric field is of the form E(x, y) · d = U(y) −U(x),
meaning that U(x) is the energy of the particle at site x. In this case the forcing is
conservative, and the dynamics of the system should satisfy the detailed balance
condition:

P (x, y)
P (y, x)

= e−β[U(y)−U(x)] = eβE(x,y)·d

If we restrict our attention to only two sites x, y, it is impossible so say if the electric
field is conservative or not. For a nonconservative force we therefore assume that
detailed balance holds locally (i.e. between each pair of states separately):

P (x, y)
P (y, x)

= eβE(x,y)·d
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The quantity S(ω) is then given by (2.13):

S(ω) =
m−1
∑

n=0

log
P (xn, xn+1)
P (xn+1, xn)

= β

m−1
∑

n=0

E(xn, xn+1) · d

which is the entropy production in the environment (the entropy flux into the
environment).

In general, note that the word ‘conservative’ is a global property. If one considers
a small enough region of the configuration space, one can always define a
local potential from which the force is derived. So restricting our observation
momentarily to this small region, we assume that the dynamics of the system is
detailed balanced (detailed balance locally in space), and still conclude that S(ω)
is the entropy flux into the environment. Returning to the global picture, the sum
of all these small regions gives then the total entropy flux into the environment.
The only difference with a real detailed balanced dynamics is that this entropy
flux is no longer the difference of a state function, but depends on the whole path
ω.

2.8 Average entropy

It turns out that we can also attach a physical meaning to Sµ(ω), as defined in
(2.11), when the average is taken. This means again an average over all possible
trajectories ω = (xt)0≤t≤T .

〈Sµ〉µ0
=
〈

log
µ0(x0)
µT (xT )

〉

µ0

+ 〈S(ω)〉µ0

The second term on the right-hand side is the average entropy flux into the
environment. The first term can be rewritten, using the fact that for any state
function f , we have that 〈f(xt)〉µ0

=
∫

dxµt(x)f(x) (where the integral becomes
a sum for Markov jump processes). We see that the average of Sµ becomes

〈Sµ〉µ0
= s(µT ) − s(µ0) + 〈S(ω)〉µ0

(2.18)

with s(µ) the Shannon entropy of the distribution µ

s(µ) = −
∫

dxµ(x) log µ(x)

(again up to a factor of kB). When µ is an equilibrium distribution, the Shannon
entropy is equal to the Gibbs entropy, which is in equilibrium statistical mechanics
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the (physical) entropy of the system. Therefore we still call it here the entropy
of the system, making the average of Sµ equal to the average of the total entropy
change in the world due to the process of the system.

The average entropy change is positive. This is a direct consequence of its
definition,

〈

dPR
µT
θ

dPµ0

(ω)

〉

µ0

=
∫

dPµ0 (ω)
dPR

µT
θ

dPµ0

(ω) = 1

and Jensen’s inequality:

1 =
〈

e−Sµ
〉

µ0
≥ e

−〈Sµ〉
µ0

2.9 Entropy and traffic

In (2.9) we wrote the Radon-Nikodym derivative, which compares the path-
probability measures of two different dynamics. This defined an action A(ω).
Similarly, we can define an action for the time-reversed process:

dP∗,R
µ0

dPR
µ0

(θω) = e−AR(θω)

As an immediate consequence of the local detailed balance assumption, we see that

AR(θω) −A(ω) = S∗(ω) − S(ω) = Sex(ω) (2.19)

In words: the time-antisymmetric part of the action A is equal to the difference in
entropy fluxes in the two dynamics. We call it an excess entropy flux. Here
we clearly see the limits of local detailed balance: it only specifies the time-
antisymmetric part of the action. And, in contrast to equilibrium dynamics,
the time-symmetric part does play an important role in statistical physics out of
equilibrium. Therefore it has been proposed [11, 22, 68] to examine the following
quantity more closely:

Tex(ω) = T ∗(ω) − T (ω) = AR(θω) +A(ω)

The quantity T (ω) is called traffic [69, 71, 70], and the time-symmetric part of the
action is therefore an excess traffic. The action A can thus be written as

A(ω) =
Tex(ω) − Sex(ω)

2



30 DESCRIBING STOCHASTIC PROCESSES

and the Radon-Nikodym derivative:

dP∗
µ0

dPµ0

(ω) = e
Sex(ω)−Tex(ω)

2 (2.20)

The physical and operational meaning of traffic is up to now not completely clear.
From the research discussed in this thesis, it seems to be of great importance in
results of nonequilibrium statistical physics.

2.10 General physical results

Using as an assumption only local detailed balance, a number of well-known results
can be very generally derived. We conclude this chapter with these derivations.

2.10.1 Fluctuation theorem

A recent and celebrated result of out-of-equilibrium statistical physics is the
fluctuation theorem for entropy fluxes [38, 39, 42], valid for systems with a time-
independent dynamics:

lim
T →∞

1
T

log
(

P (S(ω) = Tσ)
P (S(ω) = −Tσ)

)

= σ (2.21)

where P (S(ω) = Tσ) is the probability density that the entropy flux is equal to
a value Tσ. We use local detailed balance to relate entropy fluxes to the path-
probability measure. With this the derivation is not difficult. We first consider
the probability density for Sρ(ω) (started from the stationary distribution ρ), and
we let the process run for a finite time T .

P (Sρ(ω) = Tσ) =
∫

dPρ(ω)δ (Sρ(ω) − Tσ)

where, as before, the integral is taken over all possible paths ω = (xt)0≤t≤T . Of
course, computing this distribution is not possible in general, but we can rewrite
it:

P (Sρ(ω) = Tσ) =
∫

dPρ(θω)
dPρ

dPρθ
(ω)δ (Sρ(ω) − Tσ)

= eT σ

∫

dPρ(θω)δ (Sρ(ω) − Tσ)
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Where in the last line, we used the definition of Sρ(ω) and the fact that the delta
function makes sure that Sρ(ω) = Tσ. We now make a change of variables ω → θω,
which is an involution. Note that this changes Sρ to −Sρ:

P (Sρ(ω) = Tσ) = eT σ

∫

dPρ(ω)δ (Sρ(ω) + Tσ)

= eT σP (Sρ(ω) = −Tσ)

This is what is called a fluctuation theorem for finite times for the quantity Sρ.
However, the local detailed balance assumption only says that S(ω) is an entropy
flux. Without going into mathematical rigour, we do expect that, typically:

lim
T →∞

S(ω)
T

= lim
T →∞

Sρ(ω)
T

because the difference between S and Sρ is only in temporal boundary terms.
With this we get the fluctuation theorem (2.21). Note that it is possible that the
boundary terms stay important even in the long time limit. In such cases the
fluctuation theorem is not valid, see [90].

2.10.2 Work relations

Nonequilibrium work relations [19, 20, 52] can be derived for a system connected to
a single heat bath, with a time-dependent dynamics parametrized by a parameter
λt. This parameter is called the protocol. Of course, because λt changes in time,
the system is pulled out of equilibrium. Usually it is assumed that for each fixed
value λ the dynamics is detailed balanced. Actually, to have work relations, the
dynamics only needs to be detailed balanced at the beginning and the end of the
process.

We start at time zero with the system prepared in the equilibrium distribution
corresponding to the value λ0 = A. We then let the process run in the time-
dependent dynamics until time T . During the process there is local detailed
balance, but at time T there is again a detailed balanced dynamics with λT = B.
Consider the following quantity:

dPρA

dPR
ρB
θ

(ω) =
ρA(x0)
ρB(xT )

eS(ω)

where S(ω) is by the local detailed balance assumption equal to β times the
heat flux Q(ω) into the environment . Remember that with the time-reversal,
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also the protocol λt changes to λT −t (see Section 2.5), hence the superscript
R. Substituting the explicit expression of the equilibrium distributions (ρA(x) =

1
ZA
e−βU(A,x) and similarly for λ = B), we get

dPρA

dPR
ρB
θ

(ω) = eβ[FA−FB−U(A,x0)+U(B,xT )+Q(ω)] = eβ[−∆F +W (ω)]

where ∆F = FB − FA = 1
β [logZA − logZB] is the change of free energy between

the equilibrium states corresponding to the values A and B of the parameter λ,
and W is the work done on the system.

From this basic result a work relation can be derived, which was done for the first
time by Crooks [19, 20]: let P (W = w) be the probability density that the work
during the process is equal to w. Then

P (W = w) =
∫

dPρA
(ω)δ(W (ω) − w)

=
∫

dPR
ρB

(θω)eβ[−∆F +W (ω)]δ(W (ω) − w)

= eβ[−∆F +w]

∫

dPR
ρB

(ω)δ(W (ω) + w)

= eβ[−∆F +w]PR(W = −w)

where we defined PR(W = −w) as the probability density that the work during
the reversed process is equal to −w, and we used that W (θω) = −W (ω). From
this relation the following equality can easily be derived (obtained by Jarzynski in
[52]):

〈

e−βW
〉

ρA
=

∫

dwP (W = w)e−βw

=
∫

dwe−β∆FPR(W = −w)

= e−β∆F

which relates nonequilibrium work-values to equilibrium free energies. Again we
see that these results are an immediate consequence of the local detailed balance
assumption.
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2.10.3 McLennan formula

The McLennan formula [79, 80] gives an approximation of the stationary measure
for a dynamics that is close to detailed balance. For a system in contact with two
heat baths (particle reservoirs) close to detailed balance means that the difference
in the temperatures (chemical potentials) is small, while for a system under the
influence of a nonconservative force this means that the force is small. In general,
we can parametrize the ‘distance’ from detailed balance by a parameter ǫ, (e.g.
ǫ = T2 − T1 or the nonconservative force F = ǫf). In the case that ǫ is small, one
can expand the stationary distribution around ǫ = 0. Up to first order in ǫ this
gives the McLennan formula.

We derive the McLennan formula in the following way: suppose that until time
t = 0 the system is detailed balanced (ǫ = 0), and at time t = 0 the system has the
corresponding equilibrium distribution µ0 = ρ0. At time zero, we drive the system
from equilibrium, parametrized by ǫ. After a time t the probability distribution
of being in a state x is then given by

µt(x) = 〈δ(xt − x)〉ǫ
ρ0

where the average is an average over all possible paths in the interval [0, t],
computed in the dynamics with ǫ (hence the superscript). To rewrite expectation
values in the nonequilibrium system into expectation values in the equilibrium
system, let us write down the Radon-Nikodym derivative (2.9):

e−A(ω) =
dPǫ

ρ0

dP0
ρ0

(ω)

so that the probability distribution becomes:

µt(x) =
〈

δ(xt − x)e−A(ω)
〉0

ρ0

with the superscript 0 denoting that the average is taken in the equilibrium process.
The expectation value of an observable Q(ω) in an equilibrium process, is the same
as that of the time-reversed observable Q(θω). This is a simple consequence of
(2.14). This means that we have

µt(x) =
〈

δ(x0 − x)e−A(θω)]
〉0

ρ0

=
〈

δ(x0 − x)e−Sex(ω)e−A(ω)
〉0

ρ0
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=
〈

δ(x0 − x)e−Sex(ω)
〉ǫ

ρ0

where the excess entropy flux Sex = Sǫ − S0 is the difference in entropy fluxes
in the nonequilibrium and the equilibrium system (see (2.19)). One can see from
the definition of Sex that it is zero when ǫ is zero. Moreover, in physical systems
(and certainly the ones we discuss in this thesis) , Sex is at least of first order in
ǫ: limǫ→0 Sex/ǫ < ∞. An expansion in ǫ gives

µt(x) = ρ0(x) − 〈δ(x0 − x)Sex(ω)〉0
ρ0 + o(ǫ) = ρ0(x)[1 − 〈Sex(ω)〉0

x] + o(ǫ)

where the last expectation is an average over all trajectories starting from the state
x. Up to first order in ǫ this formula gives the probability distribution of finding
the system in state x at an arbitrary time. Letting the time go to infinity, this
will converge to the stationary state ρǫ(x) corresponding to the nonequilibrium
dynamics.

2.10.4 Fluctuation-dissipation theorem in equilibrium

The equilibrium fluctuation-dissipation theorem [13, 59] tells us how systems
respond to a small change in their Hamiltonian (energy), at least in the linear
regime. The framework in which we work here is almost the same as for the
McLennan formula: up to time zero the system enjoys an equilibrium dynamics
with a Hamiltonian H0, and at time zero it has relaxed to the corresponding
equilibrium distribution ρ ∝ exp(−βH0). At time zero an extra potential is added
to the dynamics: H = H0−hV , where h is a small parameter. For finite times after
this perturbation has been made, the system is not yet in equilibrium. We want to
compute the expectation values of observables in this perturbed (nonequilibrium)
system. We consider only observables that are state functions, denoting them by
Q(x). With a reasoning completely analogous to the one made for the McLennan
formula (the only difference is that the observable δ(xt − x) is replaced by Q(xt))
one then finds that:

〈Q(xt)〉h
ρ0 =

〈

Q(x0)e−Sex(ω)
〉h

ρ0

where the superscript h denotes that the averages are taken in the perturbed
system, and Sex is the excess entropy flux, excess of the perturbed system versus
the unperturbed system. As the only difference between the two dynamics is the
addition of the potential hV , this excess must be equal to βh[V (xt) − V (x0)].

In linear perturbation theory one is restricted to systems for which such a small
perturbation has only a small influence. One can therefore work up to linear order
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in the small parameter h:

〈Q(xt)〉h
ρ0 = 〈Q(x0)〉0

ρ0 − 〈Q(x0)Sex(ω)〉0
ρ0 + o(h)

= 〈Q(x0)〉0
ρ0 + 〈Q(xt)Sex(ω)〉0

ρ0 + o(h)

In the last step we have again used that in an equilibrium dynamics the
expectations of observables and their time-reversals are the same. Using the
explicit expression for the excess entropy flux, we get

∂

∂h
〈Q(xt)〉h

ρ0

∣

∣

∣

∣

h=0

= β 〈Q(xt)[V (xt) − V (x0)]〉0
ρ0 (2.22)

which is the fluctuation-dissipation theorem in equilibrium. it is valid for any
time t. The left hand side of this equation is called a response function. It is the
response of the expectation value of an observable to an added potential and is
thus equal to the correlation of the observable with the extra entropy flux created
by the potential.

The fluctuation-dissipation theorem is useful because it gives a relation between
two quantities in essentially different processes. One can e.g. determine the
response of a system without actually perturbing it. Part of the results in this
thesis are about the generalization of this relation to nonequilibrium systems.





Chapter 3

Markov jump processes

Markov jump processes are Markov processes where the configuration changes
discretely. This means that in a finite time-interval, the configuration changes
a finite number of times. In this thesis we only work with discrete configuration
spaces where Markov jump processes are concerned. Such processes are widely
used in physical modelling because they are relatively simple, but approximate real
physical systems quite accurately. The discrete configuration space can arise as a
result of a discrete approximation of a continuous space, or because of quantum
mechanical principles (e.g. spins in a magnetic field). We give a brief introduction
to Markov jump processes here, focusing on the properties relevant for the rest of
the thesis. For a thorough introduction, we refer to [46]. As a motivation, we start
with a very physical example.

3.1 An introductory example

Imagine a chemical reaction where two reactants A and B react to form a product
C. The reaction is facilitated by the use of a catalyst X as follows: first the
molecule A binds to the catalyst, forming a new molecule XA. Then B binds,
forming XAB. When bound to X , A and B react and form XC . Finally C
decouples from the catalyst, leaving the catalyst in its original state X , see Figure
3.1.

The details of the reaction A+B → C thus depend strongly on the reaction cycle
of the catalyst X . Apart from measuring the average speed or rate of such a cycle,
we are also interested in more detailed information. What are the fluctuations from
this average speed? Does the inverse cycle also occur, and with what probability?
For such questions a more detailed model of the reaction is required. As it is

37
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Figure 3.1: A catalytic reaction cycle.

impossible to predict all the precise positions and velocities of all the molecules,
a Hamiltonian description is not wanted. Therefore we use a stochastic model.
One can imagine all the molecules involved in the reactions are ‘wandering’ in
some solution. A reaction can occur when two molecules meet each other. The
speed or rate of each step in the reaction cycle then depends on parameters as
concentrations of the molecules in the solvent, temperature, and of course also on
the probability that, given that two molecules meet, they actually react. If the
concentrations of the molecules in the solvent are not too big, it is a rather good
assumption to think of this process as being Markovian. Indeed, we assume that a
reactant molecule makes many collisions with the solvent molecules before meeting
with another reactant, thus effectively losing its ‘memory’ on a timescale that is
much smaller than we are interested in: the timescale of the successive reactions.
Also, this allows us to treat the molecules of the catalyst as independent particles.

To make a model of the reaction cycle, we therefore take one catalyst molecule
as the system of interest. This molecule can be in four different chemical states:
X,XA, XAB and XC . At any time, regardless of its history, the molecule can
change its state as a consequence of a reaction. We thus arrive at a Markov
process on a finite configuration space, but in continuous time. This fits exactly
in the framework of Markov jump processes.

This is only one example where Markov jump processes provide a good model.
Other examples are traffic jams, transport of ions through nanotubes, the Ising
model and other models of spins in a magnetic field, population dynamics in
ecological systems, etc. Providing important and relevant models in physics,
Markov jump processes are used throughout this thesis. In this chapter we
therefore introduce the aspects relevant for the rest of this thesis. For a thorough
introduction, we refer to [46]. At the end of this chapter we return to this model
and see how to describe it as a Markov jump process.
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3.2 Definition

We work here with a discrete, even finite, set Ω of configurations x, y, . . .. The
dynamics of a Markov jump process is defined as follows: let P∆t(y|x, t) denote
the probability that the system changes (jumps) from configuration x to y 6= x
within [t, t+ ∆t], given that the system was in configuration x at time t. Then

P∆t(y|x, t) = kt(x, y)∆t+ o(∆t) (3.1)

The kt(x, y) are called transition rates. Obviously kt(x, y) ≥ 0. Also, as a
convention, we take kt(x, x) = 0. From (3.1) one also sees that the probability to
jump two times within a time span ∆t is of order o(∆t). Logically, the probability
P∆t(x|x, t) that the system does not jump within [t, t+ ∆t] is then

P∆t(x|x, t) = 1 − λt(x)∆t + o(∆t) with λt(x) =
∑

y 6=x

kt(x, y) (3.2)

This λt(x) is called the escape rate, as it quantifies the probability that the
system ‘escapes’ from x. We assume that ǫ ≤ λt(x) < λ for all t, x and for some
ǫ > 0, λ < ∞, to make sure that the expected time for the system to jump is finite.

In Figure 3.2, an example of a typical realization of a Markov jump process is
shown: the system stays in a certain configuration for an exponentially distributed
time (we prove this later on in this chapter), and then jumps to the next state.
We adopt the convention that at the jump time, the system is in the state after

Figure 3.2: A realization of a Markov jump process.

the jump, i.e. in Figure 3.2 the graph is right-continuous.
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3.3 Probability distributions and the Master equation

Suppose that we know the probability that the system is in state x at time t:
µt(x), for all x. From this we can compute the probability that the system is in
any state x at time t + ∆t. It is equal to the probability that the system was in
state x at time t and stayed there, plus the probability that it was in any state y
and jumped to x. With (3.1) and (3.2) it is clear that

µt+∆t(x) = µt(x)[1 − λt(x)∆t+ o(∆t)] +
∑

y 6=x

µt(y)[kt(y, x)∆t + o(∆t)]

This gives us a differential equation for µt:

dµt(x)
dt

= lim
∆t→0

µt+∆t(x) − µt(x)
∆t

=
∑

y 6=x

[µt(y)kt(y, x) − µt(x)kt(x, y)] (3.3)

This equation is called the Master equation. Notice that it is a deterministic
equation: all uncertainty is in the probability distribution µt, while the evolution
of µt through time is deterministic.

The quantity jµt
(x, y) = µt(x)kt(x, y) − µt(y)kt(y, x) can be seen as the current

between x and y, or better even: a probability current. Indeed, the first term is
the probability per unit of time that the system makes a jump from x to y, while
the second term is the probability per unit of time that the system makes a jump
from y to x. With this definition of current we can rephrase the Master equation
as a continuity equation:

dµt(x)
dt

+
∑

y 6=x

jt(x, y) = 0 (3.4)

3.4 Stationarity and detailed balance

In the special case that the transition rates of the Markov process are independent
of time (kt(x, y) = k(x, y)), we call the process time-homogeneous. As said
before, for time-independent dynamics we assume that there exists a stationary
distribution ρ, which is unique, and that all distributions µt converge to it in
the long time limit. This ρ solves the Master Equation (3.3) with the left-hand
side zero. The conditions under which this assumption is valid are conditions of
irreducibility: a jump process is called irreducible if the probability of the system
to go from any state x to any other state y in a finite time is non-zero. This
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is equivalent to saying there is a chain of states x = x1, x2, . . . , xn = y such that
k(xi, xi+1) > 0 for all i = 1 to n. The proof of this is beyond the scope of this text.

Finding the stationary distribution is difficult in general. There is however a
special case in which computations simplify: if there exists a function f(x), (f 6= 0
and f(x) ≥ 0), such that

f(x)k(x, y) = f(y)k(y, x) (3.5)

then ρ(x) ∝ f(x) solves the stationary Master Equation. If the transition rates
satisfy this property, then the process is said to satisfy detailed balance, and
ρ is called the equilibrium distribution. Once the system has relaxed to this
distribution, we then also have that jρ(x, y) = 0, so that in equilibrium all currents
between different states are zero. This definition of equilibrium coincides with the
one given in the previous chapter.

3.5 Finite time probabilities

To have a better idea of how the system evolves from configuration to configuration,
we compute the following probability: for any t > s, let P (y, t|x, s)dt be the
probability that the system remains in configuration x until it jumps within [t, t+
dt] to state y, given that the system was in configuration x at time s. Then

P (y, t|x, s)dt = kt(x, y)e−
∫

t

s
λu(x)du

dt (3.6)

We prove this as follows: divide the interval [s, t] into n pieces of length ∆t = t−s
n .

Then from (3.1) and (3.2) we see that

P (y, t|x, s)dt = kt(x, y)dt
n−1
∏

k=0

[1 − λs+k∆t(x)∆t + o(∆t)]

= exp

{

n−1
∑

k=0

ln [1 − λs+k∆t(x)∆t + o(∆t)]

}

kt(x, y)dt

= exp

{

n−1
∑

k=0

[−λs+k∆t(x)∆t + o(∆t)]

}

kt(x, y)dt

If we now let n → ∞, we get exactly (3.6).
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Let us examine this probability: the probability to jump to anywhere within
[t, t+ dt], given that the system was in state x at time s is

P (t|x, s)dt =
∑

y

P (y, t|x, s)dt = λt(x)e−
∫

t

s
λu(x)du

dt

On the other hand, given that the system jumps at time t, the probability that it
jumps to state y is then

pt(x, y) =
P (y, t|x, s)dt
P (t|x, s)dt =

kt(x, y)
λt(x)

The pt(x, y) are called the transition probabilities, and we see that
∑

y 6=x pt(x, y) =
1. In conclusion, when at time s the system is in a state x, it stays there for a
time t− s that is exponentially distributed, determined by the escape rate λt(x).
When it jumps, the probability that it jumps to a state y is pt(x, y).

3.6 Trajectories

A trajectory ω = (xt)0≤t≤T is completely described by giving the consecutive
states xi (with i = 0, . . . n) the system visits plus the times ti at which it jumped:

xt = xi for ti ≤ t < ti+1

where t0 = 0 and tn is the last jump time before time T . Using (3.6), we can
compute the probability measure of such a path:

dPµ0 (ω) = µ0(x0)
n−1
∏

i=0

[

kti+1(xi, xi+1)e
−
∫

ti+1

ti

λu(xi)du
dti+1

]

e
−
∫

T

tn
λu(xn)du

The last factor on the right-hand side is the probability that the system does not
jump in the interval [tn, T ]. We rewrite this path-probability measure in a slightly
more elegant form:
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dPµ0 (ω) = µ0(x0) exp

{

n−1
∑

i=0

log kti+1 (xi, xi+1) −
∫ T

0

λt(xt)dt

}

dt1 . . . dtn

(3.7)

With this path-probability one can then compute expectation values, as defined in
(2.2), and the time-evolved probability distribution of configurations µt, as defined
in (2.5). This definition of µt is completely consistent with the Master equation,
of course.

3.7 The Girsanov formula

Suppose now that one has a different Markov jump process with rates k∗(x, y)
and one wants to calculate the expectation values of observables in this process.
Then one can relate this to the expectation values in the original process by using
the Radon-Nikodym derivative (see (2.8) and (2.9)). The demand of absolute
continuity boils down to the demand that k∗(x, y) 6= 0 for any pair x, y for which
k(x, y) 6= 0. It follows immediately from (3.7) that

e−A(ω) = exp

{

n−1
∑

i=0

ln
(

k∗
ti+1

(xi, xi+1)

kti+1 (xi, xi+1)

)

+
∫ T

0

dt[λt(xt) − λ∗
t (xt)]

}

(3.8)

with the action defined as in (2.9) This is often schematically written as

A(ω) =
∫ T

0

dt[λ∗
t (xt) − λt(xt)] −

∑

t≤T

ln
(

k∗
t (xt− , xt)
kt(xt− , xt)

)

(3.9)

where the sum is over jump times, and t− is the time just before the jump. This
formula (3.9), the Radon-Nikodym derivative for Markov jump processes, is called
the Girsanov formula, and is of much use throughout this text. More details can
be found in Appendix 2 of [57].

3.8 Local detailed balance

The Markov jump processes as described up to now are little more than
mathematical models. To make a connection with physics we make the local
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detailed balance assumption: the quantity S(ω) that was defined in (2.12), is equal
to the entropy flux into the environment during the trajectory ω. For Markov jump
processes this becomes (see (3.7)):

S(ω) = log
(

dPx0

dPR
xT
θ

(ω)
)

=
∑

t≤T

log
kt(xt− , xt)
kt(xt, xt−)

We see that there is only an entropy flux when there is a jump, and the total
entropy flux is just the sum of entropy fluxes for each jump:

kt(x, y)
kt(y, x)

= eσt(x,y)

where σt(x, y) is the entropy flux associated to one jump from a state x to a state y.

Example 1: As a first example we imagine a system with time-homogeneous
dynamics, immersed in a single heat bath at inverse temperature β. We denote
the energy of the system, (which depends on the configuration x) as U(x). On
top of that there is a forcing, meaning that for every jump from a state x to
a state y, there is an amount of work W (x, y) needed. Note that by definition
W (x, y) = −W (y, x). Using the first law of thermodynamics, we see that

k(x, y)
k(y, x)

= e−β[U(y)−U(x)−W (x,y)] (3.10)

Indeed, local detailed balance allows us to express a part of the transition rates in
terms of physical, measurable quantities.

If there exists a state function V such that for all x, y we have W (x, y) = V (y) −
V (x), then the forcing is conservative, and by (3.10) the rates are detailed balanced
with the corresponding equilibrium distribution ρ(x) = 1

Z exp{−β[U(x) − V (x)]}.

Example 2: As a second example think of two big particle reservoirs with different
particle densities. Between these reservoirs there is a wall, with a narrow channel
going through it from one side to the other. The channel is so narrow that particles
are effectively restricted to one dimension. This is what happens for example in
ionic transport through cell membranes. Because of the difference in particle
densities a current arises towards the side with the lower density.

We model the channel as a set of sites labelled by i = 1, . . . , N . On each site
there can either be one or no particle. A configuration of the system is thus an
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array x, with empty sites xi = 0 and particles xi = 1. Each particle can hop to the
neighbouring site left or right if that site is unoccupied. Such a process is called an
exclusion process. Hence the only transitions allowed are x → x(ij) where j = i±1
and

x
(ij)
k =







xk if i 6= k 6= j
xj if k = i
xi if k = j

(3.11)

An exception occurs at the boundaries of the system i = 1, N , where particles
can enter and leave the system. Hence transitions x → x(i) are also allowed, with
i = 1, N and

x
(i)
k =

{

xk if k 6= i
1 − xk if k = i

(3.12)

This means that at the left and right boundary the system is in contact with
particle reservoirs, which are characterized by a temperature and a chemical
potential. In Figure 3.3 an example of such a process is visualized. This is an
example of Kawasaki dynamics.

Physically, we assume here that there is no interaction between the particles,
except for the exclusion. We take therefore the energy of the system zero. The
particle number of this system is not conserved however. If both reservoirs have
the same inverse temperature β and chemical potential µ, the system is detailed
balanced, and for any two states x, y:

k(x, y)
k(y, x)

= eβµ[n(y)−n(x)]

with n(x) the number of particles in configuration x. We see from this that when
a particle hops within the system, the transition rate is symmetric: k(x, x(ij)) =
k(x(ij), x). Detailed balance gives us as equilibrium distribution

ρ(x) =
eβµn(x)

(1 + eβµ)N

and the average particle density d

d =
∑

x

ρ(x)
n(x)
N

=
eβµ

1 + eβµ
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This d is the particle density of the particle reservoir, as it is equal to the density
of the system when in equilibrium.

If the chemical potentials of the two reservoirs are not the same, we use local
detailed balance. We get our inspiration from the detailed balance case to write

k(x, x(i))
k(x(i), x)

= eβµi[n(x(i))−n(x)] (3.13)

for events where a particle enters or leaves the system (i = 1, N), and k(x, x(ij)) =
k(x(ij), x) for events where a particle hops within the system. Again inspired by
the detailed balance case we define the particle densities of the reservoirs as

di =
eβµi

1 + eβµi

1 2 n

dd1 n

Figure 3.3: A visualization of an exclusion process.

Finding the stationary distribution in this case is possible, but certainly not trivial.
We refer to [25] for more details. We can say something about the current though.
For this we use the fluctuation theorem discussed in Section 2.10.1. For any specific
ω we can write, using (3.13)

S(ω) = βTµ1J1(ω) + βTµNJN (ω)

where the current Ji(ω) is the net number of particles per unit of time that has
gone into the system through site i. Note that the sum of these two currents gives
the change of particle number in the system per unit of time: J1(ω) + JN (ω) =
[n(xT ) − n(x0)]/T . Therefore:

lim
T →∞

[J1(ω) + JN (ω)] = 0

In the limit of large T we therefore just use J = J1 = −JN . The fluctuation
theorem (2.21) can then be reformulated as

lim
T →∞

1
T

log
(

P (J(ω) = j)
P (J(ω) = −j)

)

= βj(µ1 − µN )
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The local detailed balance assumption on which the fluctuation theorem is based
thus predicts what is the most probable direction of the particle current. Not
surprisingly the most probable direction of the current is towards the lower
chemical potential. The fluctuation theorem asserts that the reverse current is
exponentially less probable.

Example 3: Let us return to the introductory example from the beginning of this
chapter. More precisely: Ω consists of 4 chemical states , labelled by x = 1, . . . , 4
and lying on a ring, i.e. 5 ≡ 1. These states correspond to: 1 ≡ X , 2 ≡ XA,
3 ≡ XAB and 4 ≡ XC . We can see that k(x, y) only differs from zero for |y−x| = 1.
Let us denote by U(x) the energy of the molecule when it is in chemical state x,
and µi and Ni are the chemical potentials and particle numbers of the reactant
particles in the solvent, where i = A,B,C. These reactant particles are seen
as the reservoirs of our catalyst molecule. As we imagine the reservoirs to be
in equilibrium, their chemical potentials are fixed. The entropy change in the
environment for a transition x → y can thus be written as

σ(x, y) = −β[U(y) − U(x)] − β
∑

i

µi∆Ni

where ∆Ni is the change in particles of species i. For example, if the catalyst
molecule makes a transition X → XA, we get as entropy flux to the environment:

log
k(1, 2)
k(2, 1)

= σ(1, 2) = −β[U(2) − U(1)] + βµA

It is the chemical potentials of the ‘reservoirs’ that drive the system from
equilibrium. To show this, we take as trajectory one reaction cycle X → XA →
XAB → XC → X . We can compute the entropy flux into the environment during
this cycle:

4
∑

i=1

σ(i, i+ 1) = β[µA + µB − µC ]

For an equilibrium dynamics this entropy flux should be equal to zero (see (2.15)).
Whenever µC 6= µA + µB, the probability that the catalyst covers the reaction
cycle in one direction is not equal to the probability for the other direction. In
fact, when µC < µA + µB the reaction cycle will on average go in the direction as
in Fig. 3.1.





Chapter 4

Diffusions

Langevin dynamics (diffusions) are well-known and widely used as a combination
of Hamiltonian dynamics and stochastic noise. Mathematically they are more
difficult to define than Markov jump processes, but their physical meaning is much
more clear, as the dynamics are expressed in terms of measurable quantities as
forces and positions, or electric fields and currents. One distinguishes in diffusions
between the underdamped (inertial) regime and the overdamped regime. In the
latter accelerations are ignored due to high friction. In this chapter we briefly
introduce diffusions, treating both the underdamped and the overdamped case. For
the interested reader, we suggest [18, 58, 78, 81].

4.1 The Langevin equation

For didactic purposes we start with the simplest case of one test-particle in one
dimension. The state space is here the phase space, meaning the space of the
possible positions and velocities of the particle. Pure Hamiltonian dynamics would
give two equations of motion:

dxt = vtdt

mdvt = Ft(xt)dt (4.1)

which correspond to a particle that experiences a deterministic force Ft. Note that
m is the mass of the particle, xt its position at time t and vt its velocity. Now we
put the particle in a heat bath (imagine a glass of water) at inverse temperature β.
The particles of the heat bath will start colliding with our test-particle. Because

49



50 DIFFUSIONS

we do not know all the exact movements of these particles we model the effect
of these collisions as a random force on the test-particle. The modified equations
then look like this:

dxt = vtdt

mdvt = Ft(xt)dt−mγvtdt+
√

2DdBt (4.2)

and are called the Langevin equations. The term −mγvt is the frictional force that
the test-particle feels, with γ the friction coefficient. Indeed, when the particle has
a velocity, then it has more head-on collisions than from behind, with a net effect
equal to −mγvt. This friction force is an average effect of the heat bath. That is
why still another term is added, namely

√
2DdBt, with D the diffusion coefficient.

This should model the random kicks the particle receives. Bt is what is called a
Wiener process. It is a random variable with the property Bt −Bs ∼ N (0, t− s),
meaning that it has independent increments with a Gaussian distribution with
mean zero and variance t − s. This is the reason that dBt is usually called a
standard Gaussian white noise. The random variable ξt = dBt

dt is often used here,
but mathematically ill-defined. It also has mean zero, but has the property that
〈ξsξt〉 = δ(t− s). This means that we have approximated the physical process of
collisions with particles of the bath, as a succession of infinitely many, infinitely
big kicks. As a consequence, dvt is not really well-defined. Still the equations (4.2)
are mathematically well-defined if one integrates them with respect to time. This
is not done here because the Langevin equations do have a clear physical meaning
in this form (4.2).

An important remark for things to follow is that we interpret dvt in the Langevin
equation as vt+dt − vt, and dxt analogously. This is called the Itô-interpretation.
It is also true that the inverse temperature β of the heat bath has not yet entered
the description. We come back to this at the end of this chapter, when we discuss
the local detailed balance assumption.

4.2 The Fokker-Planck equation and stationarity

We sample the initial positions and velocities (at time zero) from an initial
probability density µ0(x, v). One can then derive (see Appendix B) from the
Langevin equation an evolution equation for the densities at later times, which is
called the Fokker-Planck equation:

∂µt

∂t
= −v ∂µt

∂x
− ∂

∂v

[

(
Ft

m
− γv)µt

]

+
D
m2

∂2µt

∂v2
(4.3)
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Just as in the case of Markov jump processes, this evolution equation is
deterministic, and we can rewrite it in the form of a continuity equation:

∂µt

∂t
+ ∇ · jµt

= 0 (4.4)

with a probability current defined by

jµt
=
(

vµt, (
Ft

m
− γv)µt − D

m2

∂µt

∂v

)

(4.5)

When the force is time-independent, we assume as always that there is a stationary
distribution ρ, (which solves the Fokker-Planck equation with left-hand side zero).
Unfortunately, it is often impossible to just solve the Fokker-Planck equation.

In the special case however that we have F (x) = − ∂U(x)
∂x , then the solution is

immediately found to be

ρ(x, v) =
1
Z
e−β[U(x)+ mv2

2 ]

where β = mγ
D . Indeed, in this special case the particle is in equilibrium with

the surrounding fluid at inverse temperature β and has the well-known Gibbs
distribution, giving the probability of a state (x, v) as the exponential of minus β
times the energy of the state. There is one difference with the Markov jump case,
namely that the probability current in equilibrium is not zero here:

jρ =
(

vρ,− 1
m

∂U

∂x
ρ

)

On the other hand, this is equal to the current one would have in a purely
Hamiltonian (deterministic) dynamics, so one could say that in equilibrium, the
diffusive part of the current is zero.

4.3 Trajectories

The position and velocity of the particle evolve according to the Langevin equation,
and thus follow a trajectory ω through phase-space: ω = (xt, vt)0≤t≤T . One can
compute the probability of such a path. We give a heuristic derivation of this, for
a mathematically rigorous treatment one should consult [65].
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Given the initial position and velocity of the particle, the trajectory ω is completely
determined by the increments of the Wiener process. Let us consider the case
that xt and vt are given, and compute the probability of having (xt+dt, vt+dt) an
infinitesimal time later. We know from the Langevin equation (4.2) that

dBt =
1√
2D

[mdvt − Ft(xt)dt+mγvtdt]

And the fact that dBt = Bt+dt −Bt ∼ N (0, dt) means that we have a probability
density P given by:

dP (vt+dt, xt+dt|xt, vt) = P (vt+dt, xt+dt|xt, vt)dxtdvt

=
1
N
δ(xt+dt − xt − vtdt)e−L(xt,vt,dvt)dxtdvt (4.6)

where L is given by

L(xt, vt, dvt) =
1

4Ddt [mdvt − Ft(xt)dt+mγvtdt]2

=
dt

4D [m
dvt

dt
− Ft(xt) +mγvt]2

Note that N =
√

4πDdt
m is a normalization constant. Furthermore we know that

xt+dt = xt + vtdt, which is why a delta function is inserted. From now on, we
restrict the space of all trajectories ω to those trajectories which satisfy this
constraint. This means that the delta function is no longer necessary. Let us
now divide the interval [0, T ] into n intervals of length ∆t (so n∆t = T ). We
should take ∆t small enough, so that (4.6) can be used. (We take the limit of
∆t → 0). Define ti = i∆t for i = 0, . . . , n, then the probability density of ω is just
the product of the probability densities of all the steps vti

→ vti+1 , because the
increments of a Wiener process are mutually independent:

Pµ0(ω) =
µ0(x0, v0)

Nn
exp

{

− 1
4D

n−1
∑

i=0

∆t[m
vti+1 − vti

∆t
− Ft(xti

) +mγvti
]2
}

which we denote in the limit of ∆t → 0 by

Pµ0(ω) =
µ0(x0, v0)

N exp

{

− 1
4D

∫ T

0

dt[mv̇t − Ft(xt) +mγvt]2
}
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where N is a normalization constant, and µ0(x0, v0) is the probability distribution
from which we sampled x0 and v0. The integral and v̇t in the exponent are just
notation, because they are not really well-defined (like ‘Riemann integrals’ and
‘derivatives’) as a consequence of the properties of the Wiener process. Again,
we do not go into the full mathematical details here (for that, see [65]). A more
important quantity for the purpose of this thesis arises if we compare the path-
probabilities of different dynamics to each other, by considering the action of the
process with respect to a reference process. For this reference we define a new
Langevin dynamics:

dxt = vtdt

mdvt = −mγvtdt+
√

2DdBt (4.7)

Note that it is the same as before, only we have taken the force F to be zero. We
denote the path-probability measure of this process by dP0. Then we have that

e−A(ω) =
dPµ0

dP0
µ0

(ω) = exp

{

1
4D

∫ T

0

dt[2mv̇t + 2mγvt − Ft(xt)]Ft(xt)

}

(4.8)

This is the Girsanov-formula for our one-dimensional diffusion process. This
quantity is well-defined, as the term in the exponent with v̇t, actually a notation
for

∫ T

0

dtv̇tFt(xt) = lim
n→∞

n−1
∑

i=0

(vti+1 − vti
)Fti

(xti
) (4.9)

is mathematically well-defined. However, because of the properties of the Wiener
process we can’t treat this ‘integral’ with the normal (Riemann) rules of integration,
and have entered the domain of stochastic integrals. The integral as defined in (4.9)
is called a ‘stochastic integral in the Itô interpretation,’ or just an ‘Itô integral.’ We
explain more on these stochastic integrals at the end of this section. We conclude
for now by saying that, like in the previous chapters, we use this path-probability
density to define expectation values for observables. If one defines the time-evolved
probability density as µt(x, v) = 〈δ(xt − x)δ(vt − v)〉µ0

, then one can prove that
its evolution equation is exactly the Fokker-Planck equation, see Appendix B.
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4.4 Overdamped diffusions

In many physical cases (e.g. molecular motors) the system is submerged in a highly
viscous environment. This means that the friction coefficient γ is very big. If on
top of that the mass of the system is very small, one enters the overdamped region,
in which the system after each random kick relaxes quickly to the local expected
velocity, determined by the force F and the friction. Because of this, one is not so
much interested in the changes of the velocity anymore, just in the positions.

Mathematically one takes the limit of γ → ∞ and m → 0, while keeping χ = 1
mγ

constant and finite. This limit is not trivial [94, 99, 104], but the result is that one
can ignore the term mdvt in the Langevin equation (4.2). If one then replaces in
(4.2) the term mγvtdt by mγdxt, one is left with the single equation

dxt = χFt(xt)dt+
√

2DdBt (4.10)

with D = χ2D. We call this the overdamped Langevin equation. To distinguish
the previous Langevin equation from this one, we call from now on (4.2) the
underdamped Langevin equation. The corresponding Fokker-Planck equation for
probability distributions is

∂µt

∂t
+

∂

∂x
jµt

= 0 with jµt
= χFtµt −D

∂µt

∂x
(4.11)

which defines the probability current. This equation is in the literature often called
the Smoluchowski equation, and the high-friction limit the Smoluchowski limit. In
the special case that F (x) = − ∂U(x)

∂x , we can easily find the stationary distribution
ρ:

ρ(x) =
1
Z
e−βU(x)

with β = χ
D . Just as in the underdamped case, this corresponds to equilibrium.

Moreover, in this case the stationary probability current jρ is actually zero.

Let us also provide a simple example of a nonequilibrium dynamics: suppose the
particle moves on a circle of length 1. We take the force F (x) = f a constant.
This can’t be written as the derivative of a potential. One can solve the stationary
Fokker-Planck equation, though: the stationary distribution is just the uniform
distribution ρ(x) = 1. The stationary current is jρ = χf , which is a constant but
is not zero.
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4.5 Overdamped diffusions in more dimensions

To be more general, let us work in a d-dimensional space, and let xt be a d-
dimensional vector, representing the position of a single particle. Then the most
general set of d overdamped Langevin equations, one for each component of xt, is

dxi
t =

∑

j

[χij(xt)F
j
t (xt)dt+

∂Dij

∂xj
(xt)dt+

√

2D(xt)ijdB
j
t ] (4.12)

In this equation Ft still represents a force, D and χ have become d× d symmetric
matrices both depending on the position xt, and there are d Wiener processes
dBj

t . The term with the derivatives of D is a result of the fact that a non-constant
diffusion coefficient gives an extra net force on the particle [101]. We also stress
that we make no difference between indices that are placed as superscripts or as
subscripts, i.e. xi = xi. To reduce notation, we schematically write these Langevin
equations in a matrix-form:

dxt = χ(xt)F (xt)dt+ ∇ ·D(xt)dt+
√

2D(xt)dBt (4.13)

In such a notation, χF is to be interpreted as the matrix χ acting on the vector
F . The corresponding Fokker-Planck equation is then

∂µt

∂t
+ ∇ · jµt

= 0 with jµt
= χFtµt −D∇µt (4.14)

The path-probability density is found in the same way as for underdamped
diffusions:

Pµ0(ω) =
µ0(x0)

N exp

{

−1
4

∫ T

0

dt[ẋt − χFt − ∇ ·D] ·D−1[ẋt − χFt − ∇ ·D]

}

where a dot · denotes a scalar product of vectors. Again it is mathematically
safer to look at the Radon-Nikodym derivative of this process with respect to a
reference. Let us take as a reference (4.13) with the force F put to zero. We
denote the corresponding path-probability by P0 and get

e−A(ω) =
dPµ0

dP0
µ0

(ω) = exp

{

1
4

∫ T

0

dt[2ẋt − 2∇ ·D − χFt] ·D−1χFt

}

(4.15)

This formula is the Girsanov-formula for overdamped diffusions where, like in
the underdamped case, we still have stochastic integrals in our formula, meaning
integrals which contain ẋ.
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4.6 Stochastic integrals

In this section we shortly review some technical aspects of stochastic integration.
For more information, see [43, 58].

Itô integral Let us denote by q the configuration of the system. For underdamped
diffusions this is (x, v), and for overdamped diffusions this is x. In (4.9) and (4.15)
one encounters integrals of the form

∫ T

0 dtq̇k
t gt(qt), usually written as

∫ T

0 dqk
t gt(qt),

with gt some function of the configuration and qk an arbitrary component of q.
This is actually just notation for the following: divide the interval [0, T ] into n
intervals of length ∆t (so n∆t = T ) and define ti = i∆t for i = 0, . . . n, then for
any function gt(q)

∫ T

0

dqk
t gt(qt) = lim

n→∞

n−1
∑

i=0

(qk
ti+1

− qk
ti

)gt(qti
) (4.16)

Because of the special properties of Wiener processes, an integral defined as in
(4.16) can not be treated as a Riemann integral. For example, for a Riemann
integral, it does not matter where the function gt is evaluated in each time interval,
for stochastic integrals like (4.16) it does. From the way we defined the Langevin
equation it is natural that gt is evaluated at the beginning of each interval. A
stochastic integral with this property is called an Itô integral.

To compute what the integration rules are for Itô integrals, note the following: the
increments of the Wiener processBt+∆t−Bt have a Gaussian distribution with zero
mean and variance ∆t. From this, one can prove that the quantity (Bt+∆t −Bt)2

has a mean ∆t and a variance of order (∆t)2. Therefore, one can safely write
(Bt+∆t−Bt)2 = ∆t+o(∆t). Analogously: (qk

ti+1
−qk

ti
)(qj

ti+1
−qj

ti
) = 2Dkj∆t+o(∆t),

for any k, j = 1, . . . , d (Using D instead of D for underdamped diffusions).

We compute here what the actual rules for integration are for Itô integrals. Take
an arbitrary function g(q) not explicitly dependent on time. A Taylor-expansion
gives:

g(qti+1) = g(qti
) +

∑

j

(qj
ti+1

− qj
ti

) · ∂

∂qj
g(qti

)

+
1
2

∑

j,k

(qj
ti+1

− qj
ti

)(qk
ti+1

− qk
ti

)
∂2

∂qj∂qk
g(qti

) + o(∆t)
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≈ g(qti
) + (qti+1 − qti

) · ∇g(qti
) + (D∇) · ∇g(qti

)∆t+ o(∆t)

As a consequence

∫ T

0

dqt · ∇g(qt) = lim
n→∞

n−1
∑

i=0

(qti+1 − qti
) · ∇gt(qti

)

= lim
n→∞

n−1
∑

i=0

[g(qti+1 ) − g(qti
) − (D∇) · ∇g(qti

)∆t+ o(∆t)]

= g(qT ) − g(q0) −
∫ T

0

dt(D∇) · ∇g(qt)

The integral over time on the right-hand side is a normal Riemann integral.
Similarly one proves that for explicitly time-dependent functions gt(q) one gets

∫ T

0

[dqt · ∇gt(qt) + dt
∂g

∂t
(qt)] = gt(qT ) − gt(q0) −

∫ T

0

dt(D∇) · ∇gt(qt)(4.17)

Stratonovitch integral Another stochastic integral that is useful is the Stratonovitch
integral, denoted and defined by

∫ T

0

dqk
t ◦ gt(qt) = lim

n→∞

n−1
∑

i=0

(qk
ti+1

− qk
ti

)gt(
qti

+ qti+1

2
) (4.18)

A nice property of the Stratonovitch integral is that it is antisymmetric with
respect to time reversal, if q only contains positions, not velocities (q = x). When
velocities are involved one also has to reverse the signs of the velocities, and the
Stratonovitch integral may not be time-antisymmetric in this case. One can easily
prove that for any function g

∫ T

0

dqk
t ◦ gt(qt) =

∫ T

0

dqk
t gt(qt) +

∫ T

0

dt(D∇)kgt(qt) (4.19)

so that the Stratonovitch integral actually has the normal integration rules:

∫ T

0

[dqt ◦ ∇gt(qt) + dt
∂gt

∂t
(qt)] = gt(qT ) − gt(q0) (4.20)
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Work From mechanics we know that work should be equal to the integral over
a path of force times displacement. But in diffusion systems this definition does
not completely specify work, as one has to choose which stochastic integral to use.
However, we also know that the work should be antisymmetric under time-reversal.
Because of this, it can be seen that the work performed by a force ft(x) during ω
is defined with a Stratonovitch integral:

∫ T

0

dxt ◦ ft(xt) =
∑

k

∫ T

0

dxk
t ◦ fk

t (xt) (4.21)

where xt denotes a position, not a velocity.

4.7 Local detailed balance

Let us see what restrictions the local detailed balance assumption (Section 2.7)
puts on our models.

Overdamped diffusions Let us consider general overdamped diffusions (4.13).
One can then compute the quantity S(ω) (as defined in (2.12)) in the following
way. The reference process, which is defined through (4.13) but with F put to zero,
is a pure diffusion, which is an equilibrium process with the uniform distribution
as equilibrium distribution. Actually in unbounded state spaces this distribution
is not normalizable, so technically we do not have an equilibrium process. In any
case we still have the important property that

dP0
x0

dP0
xT
θ

(ω) = 1

For the original process we can thus write

S(ω) = log
dPx0

dP0
x0

(ω) − log
dPxT

θ

dP0
xT
θ

(ω) = A(θω) −A(ω)

which after a short computation, using (4.15) and the definition of the Stratonovitch
integral, becomes

S(ω) =
∫ T

0

dxt ◦D−1(xt)χ(xt)Ft(xt)

By the local detailed balance assumption this should be equal to the entropy flux
into the environment. Let us consider the case where the environment consists of
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one heat bath at inverse temperature β. As an addition we write the force Ft as
the sum of a conservative part −∇U with U representing the energy of the system,
and a nonconservative part ft. Then we see that local detailed balance dictates
that χ = βD, because only in this case we have

S(ω) = −β[U(xT ) − U(x0) −
∫ T

0

dxt ◦ ft(xt)] (4.22)

where in the brackets we have change of energy minus work done on the system
(see (4.21)). This relation between mobility and the diffusion coefficient is called
the Einstein relation. It is commonly used in Langevin dynamics, but here we see
it as a consequence of the local detailed balance assumption.

Underdamped diffusions Let us return to the one-dimensional underdamped
case (4.2). To compute S(ω) we should take into account that the velocities
change sign under time-reversal:

S(ω) =
mγ

D

∫ T

0

dtvtFt(xt)

We can apply the same argument as for overdamped diffusions, and we see that
local detailed balance dictates that D = mγ

β , which is again called the Einstein
relation.
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“Recent developments in non equilibrium statistical physics have convinced us
that times are ripe for a review of the vast subject concerning the fluctuations of
systems described by statistical mechanics. This issue is important even beyond
the ‘traditional’ applications of statistical mechanics, e.g. in a wide range of
disciplines ranging from the study of small biological systems to turbulence, from
climate studies to granular media etc. Moreover, the improved resolution in real
experiments and the computational capability reached in numerical simulations
has led to an increased ability to unveil the detailed nature of fluctuations, posing
new questions and challenges to the theorists.”

Umberto Marini Bettolo Marconi, Andrea Puglisi, Lamberto Rondoni and
Angelo Vulpiani, in their introduction to Fluctuation-Dissipation: Response

Theory in Statistical Physics (2008), [76]



Chapter 5

Response

In this part of the thesis, we investigate how a system responds to a perturbation,
namely a small change in its energy. The central object that summarizes this is
the response function. The goal is to relate this response function to correlation
functions in the unperturbed process. In equilibrium systems this has already been
done and the resulting relation is called the fluctuation-dissipation theorem. Out
of equilibrium one needs to modify this relation. Extra terms appear that have to
do with traffic, as defined in previous chapters. In this chapter we describe the
general framework; in the next chapters more explicit models are examined. The
research in this chapter was summarized earlier in [3].

5.1 Introduction

The fluctuation-dissipation theorem is a standard chapter in statistical mechanics
[59, 76, 95]. In Chapter 2.10.4 we already explained that a small change in an
equilibrium system that changes the Hamiltonian H0 → H = H0 − hV from
time zero on, changes expectation values of observables Q(xt) at any time t. This
change, up to linear order in h, is called the ‘response’ and is given by

∂

∂h
〈Q(xt)〉h

ρ0

∣

∣

∣

∣

h=0

= β 〈Q(xt)[V (xt) − V (x0)]〉0
ρ (5.1)

where the superscript h means that the average is taken in the perturbed
system, and the superscript 0 stands for the unperturbed system, which is here
an equilibrium system. This equality (5.1) is called the fluctuation-dissipation
theorem. Actually it is usually stated in a different but equivalent form. In this
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different form the parameter h is time-dependent: h = ht, where ht = 0 for t < 0.
The time-dependence of ht is something that is provided ‘externally,’ i.e. it is
deterministic, it is controlled by the experimentalist. As an example, think of
an Ising spin system, where the perturbation is a time-dependent magnetic field.
The response is now the (functional) derivative of the expectation value of Q(xt)
with respect to hs with s < t. The fluctuation-dissipation theorem for equilibrium
systems then states that

δ

δhs
〈Q(xt)〉h

ρ0

∣

∣

∣

∣

h=0

= β
∂

∂s
〈Q(xt)V (xs)〉0

ρ0 (5.2)

We will derive this form of the fluctuation-dissipation theorem as a special case of
the more general formula later on.

An early example of this theorem is present in Einstein’s treatment of Brownian
motion, where the diffusion constant, expressed as a velocity auto-correlation
function, is found to be proportional to the mobility [33]. We will come back
to this in the following chapters. Other famous examples include the Johnson-
Nyquist formula for electronic white noise [55, 84] and the Onsager reciprocity for
linear response coefficients [85, 86]. The fluctuation-dissipation theorem is useful
because it gives a relation between two quantities in essentially different processes.
One can e.g. determine the response of a system without actually perturbing it.

In this part of the thesis, we discuss and explain the results obtained in [2, 3, 4].
This research investigates linear response in systems out of equilibrium. So far,
approaches deriving a fluctuation-dissipation relation (FDR) for systems out of
equilibrium have not found a physical unification and do not appear as textbook
material. One reason may be that previous work has not been seen to identify a
sufficiently general structure with a clear corresponding statistical thermodynamic
interpretation.

Aiming to provide a simple and general approach to FDR’s, in [3] we have put
forward a FDR for nonequilibrium regimes in a framework that may represent
a unifying scheme for previous formulations. This is discussed in the remainder
of this chapter. The application of this theory to Markov jump processes and
overdamped diffusions was investigated in [4], and the application to underdamped
diffusions in [2], and is explained in the next chapters. Additional work on
fluctuation-dissipation relations for Markov jump processes was also reported in
[75], but we do not discuss this here.
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5.2 Linear Response

The unperturbed systems we consider are driven from equilibrium, but with a
time-independent (time-homogeneous) dynamics. This dynamics can be far from
equilibrium. We denote the energy of the system in a configuration x by U(x). As
a perturbation the energy is changed by the addition of a potential: U → U−htV ,
where the time-dependent function ht is the amplitude of the perturbation. We
assume that it is bounded: |ht| < h < ∞, with h a small number, and ht =
0 for t < 0. We also assume that it is a continuous differentiable function of
time. Furthermore, if the configuration of the system includes velocities, we always
assume that energies and potentials that we use are symmetric under the sign-
reversal of those velocities. With the notation of Section (2.5): e.g. V (x) = V (πx).

We want to compute the influence of this perturbation on expectation values of
observables Q(x). We restrict ourselves to a regime where a small perturbation
only has small consequences, which excludes for example phase-transitions. This
regime allows us to make an expansion of expectation values in orders of the
parameter h, which we do up to the first, linear, order:

〈Q(xt)〉h
µ0

= 〈Q(xt)〉0
µ0

+
∫ t

0

dshsRQV (t, s) + o(h) (5.3)

which defines the response function RQV , which actually also depends on the initial
distribution µ0:

RQV (t, s) =
δ

δhs
〈Q(xt)〉h

µ0

∣

∣

∣

∣

h=0

(5.4)

Applying the framework explained in Chapter 2: we use the action to rewrite
expectation values of observables in the perturbed dynamics into expectation
values in the unperturbed dynamics. Henceforth we denote by Ph the path-
probability density of the perturbed process and by P0 that of the unperturbed
one:

〈Q(xt)〉h
µ0

=

〈

Ph
µ0

P0
µ0

(ω)Q(xt)

〉0

µ0

=
〈

e−A(ω)Q(xt)
〉0

µ0

The averages are over all paths in the interval [0, t]. Because ht < h is small, the
action is also small, and we can expand the exponential up to linear order in h:

〈Q(xt)〉h
µ0

= 〈Q(xt)〉0
µ0

− 〈A(ω)Q(xt)〉0
µ0

+ o(h)
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Up to now this is only mathematics. Physics comes in when we split the action in
its time-antisymmetric and time-symmetric parts (see Section 2.9):

Sex(ω) = A(θω) −A(ω)

Tex(ω) = A(θω) +A(ω)

where Sex(ω) can, by the local detailed balance assumption, be interpreted as the
excess entropy flux into the environment during the process ω. Excess is meant as
excess of the perturbed process with respect to the unperturbed process. Tex(ω)
is called the (excess) traffic. With this in mind we get

〈Q(xt)〉h
µ0

= 〈Q(xt)〉0
µ0

+
1
2

〈Sex(ω)Q(xt)〉0
µ0

− 1
2

〈Tex(ω)Q(xt)〉0
µ0

+ o(h)(5.5)

We have thus written the change in the expectation value of Q as the sum of the
correlation functions of Q with entropy and traffic. This is equivalent to writing
that the response function (5.4) equals

RQV (t, s) =
1
2

δ

δhs
〈Sex(ω)Q(xt)〉0

µ0

∣

∣

∣

∣

h=0

− 1
2

δ

δhs
〈Tex(ω)Q(xt)〉0

µ0

∣

∣

∣

∣

h=0

(5.6)

This constitutes our most general but also our most vague result: the response
function is the sum of two terms. One of the terms is expressed using the entropy
flux into the environment, which is in principle known and measurable. The other
term is up to here only mathematically defined and needs more investigation.
Before we do that, we first discuss some general properties of the response function.

5.3 General properties of the response function

5.3.1 Relaxation

We assume that the unperturbed dynamics is time-homogeneous. Then, as we
assume in this thesis, the probability distribution of states relaxes to the stationary
distribution, meaning that

〈Q(xt)〉0
µ0

→ 〈Q(xt)〉0
ρ for t → ∞

Suppose now that the perturbation we added to the system, is removed again after
a time t1, i.e. ht = 0 for t > t1. Then logically the system relaxes again to the
stationary regime:

〈Q(xt)〉h
µ0

→ 〈Q(xt)〉0
ρ for t → ∞
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Using (5.3), this gives

∫ t1

0

dshsRQV (t, s) → 0 for t → ∞

As this is true for any ht, we can safely say that RQV (t, s) → 0 for t → ∞.
However, throughout this text, we make a stronger assumption, namely that

∫ ∞

s

dt|R(t, s)| < ∞ (5.7)

for any s. The reason for this assumption is that the excess heat dissipation
remains finite, see Section 5.4.3.

5.3.2 Causality

Physically, the response function should be zero whenever s > t. This is a
consequence of causality, because the expectation value of an observable at one
time can not be influenced by a perturbation at a later time. What we want
to show here, is that causality is already embedded in our framework, and not
something we have to put in afterwards by hand. In the discussion after (2.4) we
argued that to take the expectation value of Q(xt), we only need to average over
paths in the interval [0, t]. The perturbed dynamics that govern the probability
of this path, and thus also the action A(ω), can logically only depend on hs with
0 ≤ s ≤ t. So the perturbed expectation value of Q(xt) is independent of hs with
s > t. This is indeed causality. In (5.5) causality gives us that for s > t:

δ

δhs
〈Sex(ω)Q(xt)〉0

µ0

∣

∣

∣

∣

h=0

=
δ

δhs
〈Tex(ω)Q(xt)〉0

µ0

∣

∣

∣

∣

h=0

(5.8)

5.3.3 A constant perturbation

For experiments and simulations, it is often more convenient to work with a
constant perturbation. This means that hs = h for s ≥ 0 and is equal to zero
for s < 0. In this case one will not directly measure the response function, but
rather the time-integral of it. This is because (5.3) reduces in this case to:

〈Q(xt)〉h
µ0

= 〈Q(xt)〉0
µ0

+ h

∫ t

0

dsRQV (t, s) + o(h)
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and the response is then rather defined as

∂

∂h
〈Q(xt)〉h

µ0

∣

∣

∣

∣

h=0

=
∫ t

0

dsRQV (t, s)

This integrated response is sometimes called a generalized susceptibility, as a
generalization of the susceptibility defined in thermodynamics.

5.3.4 Response in the frequency domain

Apart form a constant perturbation, a periodic perturbation is also often
convenient in experimental settings, and response functions are often measured
in the frequency domain (using Fourier transforms). Let us consider therefore a
perturbation with an amplitude ht = h0 cos(kt). We also restrict ourselves to the
case that the unperturbed system before the perturbation was stationary:

〈Q(xt)〉h
ρ = 〈Q(x)〉0

ρ + h0

∫ t

0

ds cos(ks)RQV (t− s) + o(h0) (5.9)

Up to now we have always taken t = 0 as the moment that the perturbation was
turned on. If we change this time to t = −T , then it only changes the lower limit
of the integral in (5.9) from 0 to −T . We suppose that the perturbation was taken
a long time ago, so we can effectively take −T → −∞. Our assumption (5.7)
ensures that this makes sense. The upper limit of the integral (5.9) can also be
changed to +∞, as RQV (t− s) = 0 for s > t due to causality. This naturally leads
us to rewriting (5.9) in terms of Fourier transforms:

∫ +∞

−∞
ds cos(ks)RQV (t− s) =

∫ +∞

−∞
ds
eiks + e−iks

2
RQV (t− s)

=
1
2

[

R̃QV (k)e−ikt + R̃QV (−k)eikt
]

where the Fourier transform of the response function is defined as R̃QV (k) =
∫ +∞

−∞ dtRQV (t)eikt. Using properties of Fourier transforms, and the fact that
RQV (t) is a real-valued function, we arrive at

〈Q(xt)〉h
ρ = 〈Q(x)〉0

ρ + h0Re(R̃QV (k)e−ikt) + o(h0)

where Re(z) is the real part of a complex number z. So for these kinds of
perturbations, what is actually measured is the Fourier transform of the response
function.
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Using complex analysis, one can prove [78] that R̃QV (k) is a continuous bounded
function, as a consequence of the assumption (5.7).

5.4 The case of one heat bath

The result (5.5) is a very general, but also a very vague result. To get more physical
results we can of course investigate explicit examples, which we do in the next
chapters. Before doing this however, we write down a more explicit form for the
response function by utilizing the fact that entropy is a known physical quantity.
To do this we restrict ourselves to systems in contact with an environment at a
single temperature. This means the system can be driven away from equilibrium
by a nonconservative force or by particle reservoirs at different chemical potentials.
Throughout the rest of this chapter and the next, we keep this assumption. In the
example of underdamped diffusions we will come back to the case of heat baths at
different temperatures.

Entropy, work and heat: In the case that the environment of the system
is described by a single temperature, we can write the entropy flux into the
environment as

S(ω) = βQ(ω) = β[−∆E +W (ω)]

with Q the heat flow into the environment, ∆E the change of energy of the system,
and W the work done on the system. The excess entropy flux is the extra entropy
flux created by the addition of the potential −htV , and is thus equal to

Sex(ω) = βQex(ω) = β[htV (xt) − h0V (x0) −
∫ t

0

ds
∂hs

∂s
V (xs)] (5.10)

where the last term is the work due to the added potential −htV . We give a short
argument to see why this is work: divide the time interval [0, t] into n segments of
length ∆t, and define ti = i∆t for i = 1, . . . , n. We then have that

htV (xt) − h0V (x0) =
n
∑

i=1

[hti
V (xti

) − hti−1V (xti
)]

+
n
∑

i=1

[hti−1V (xti
) − hti−1V (xti−1 )] (5.11)

The left-hand side of this equation is a change of energy, and can thus be split into
work and heat. In our discussion in Section 1.2 we defined heat as the work due
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to (stochastic) forces we do not detect, and can not be externally controlled. If
we apply this definition here, we can see that the second term on the right-hand
side exists due to changes in the configuration, which are stochastic and can’t be
controlled. The first term is due to changes in the parameter ht, which is controlled
externally. Therefore the first term in (5.11) is interpreted as work and the second
as heat (see also [19]). Taking the limit of n → ∞ for the work-term, we get
exactly the last term in (5.10). Note that we can’t write the heat in terms of a
partial derivative of V with respect to x, because that derivative usually does not
exist, or even makes sense (e.g. for Markov jump processes).

Response function With this knowledge we can rewrite the correlation of the
entropy flux with the observable as follows:

〈Sex(ω)Q(xt)〉0
µ0

= β[ht 〈V (xt)Q(xt)〉0
µ0

− h0 〈V (x0)Q(xt)〉0
µ0

−
∫ t

0

ds
∂hs

∂s
〈V (xs)Q(xt)〉0

µ0
]

= β

∫ t

0

dshs
∂

∂s
〈V (xs)Q(xt)〉0

µ0
(5.12)

To write down the response function (5.4), it is convenient to define the functional
derivative of the traffic:

τ(ω, s) =
∂

∂hs
Tex(ω)

∣

∣

∣

∣

h=0

(5.13)

With this notation and using (5.12) the response function (5.4) becomes:

RQV (t, s) =
β

2
∂

∂s
〈V (xs)Q(xt)〉0

µ0
− 1

2
〈τ(ω, s)Q(xt)〉0

µ0
(5.14)

This is the most general formula for Markovian systems out of equilibrium, but
in contact with only one heat bath at inverse temperature β. We see that the
first term on the right-hand side coincides formally with one half of the response
function for equilibrium systems. It is of course the second term that is different for
nonequilibrium systems with respect to equilibrium. For a constant perturbation
ht = h, we get

∫ t

0

dsRQV (t, s) =
β

2
〈[V (xt) − V (x0)]Q(xt)〉0

µ0
− 1

2

∫ T

0

ds 〈τ(ω, s)Q(xt)〉0
µ0
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5.4.1 Causality and Stationarity

For the case of one heat bath, we can combine (5.14) with (5.8) to find for t > s:

β
∂

∂t
〈V (xt)Q(xs)〉0

µ0
= 〈τ(ω, t)Q(xs)〉0

µ0
(5.15)

We can use this causality relation to rewrite (5.14) for t > s:

RQV (t, s) =
β

2

[

∂

∂s
〈V (xs)Q(xt)〉0

µ0
− ∂

∂t
〈V (xt)Q(xs)〉0

µ0

]

+
1
2

[

〈τ(ω, t)Q(xs)〉0
µ0

− 〈τ(ω, s)Q(xt)〉0
µ0

]

(5.16)

Consider now the case that the system was in the stationary state when
the perturbation was added, meaning µ0 = ρ is the stationary distribution.
Stationarity of the process means that it is time-translation invariant. As a
consequence, the response function can be written as RQV (t, s) = RQV (t − s).
Moreover, correlation functions computed in the stationary regime satisfy

〈V (xs)Q(xt)〉ρ = 〈V (x0)Q(xt−s)〉ρ

This means that in this case (5.16) simplifies to

RQV (t, s) =
β

2
∂

∂s

[

〈V (xs)Q(xt)〉0
ρ + 〈V (xt)Q(xs)〉0

ρ

]

+
1
2

[

〈τ(ω, t)Q(xs)〉0
ρ − 〈τ(ω, s)Q(xt)〉0

ρ

]

(5.17)

valid for t > s.

5.4.2 Equilibrium

We prove here the fluctuation-dissipation relation for equilibrium systems. A
system in equilibrium is necessarily in contact with only one heat bath, so (5.14)
applies here. A system in equilibrium is also time-reversible. The time-reversal
operator is defined as θω = (πxt−s)0≤s≤t, where π reverses the sign of velocities.
Time-reversibility means that the expectation values of observables are equal to
the expectation values of their time-reversed twins, e.g:

〈V (xs)Q(xt)〉0
ρ = 〈V (xt)Q(πxs)〉0

ρ
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where we used the assumption that V (x) = V (πx). From the definition of τ(ω, s)
(see (5.13)), it also follows that τ(θω, s) = τ(ω, t− s), so that for t > s:

〈τ(ω, s)Q(xt)〉0
ρ = 〈τ(ω, t− s)Q(πx0)〉0

ρ = 〈τ(ω, t)Q(πxs)〉0
ρ

which by the causality relation (5.15) equals

〈τ(ω, t)Q(πxs)〉0
ρ = β

∂

∂t
〈V (xt)Q(πxs)〉0

ρ = −β ∂
∂s

〈V (x0)Q(xt−s)〉0
ρ

Substituting this equality in (5.16) we arrive at

RQV (t, s) = β
∂

∂s
〈V (xs)Q(xt)〉0

ρ for t > s

which is exactly the fluctuation-dissipation theorem in equilibrium. Note that for
a constant perturbation ht = h the response becomes

∫ t

0

dsRQV (t, s) = β 〈[V (xt) − V (x0)]Q(xt)〉0
ρ

as in (5.1).

5.4.3 Dissipation

In equilibrium it is known that the response function is closely related to the energy
dissipation of the system into the environment [78]. This is already seen in the fact
that the response function is then expressed through the fluctuation-dissipation
theorem as a correlation functional between the observable and entropy flux. In
systems driven out of equilibrium things get more complicated: even when the
system is not perturbed there is already a heat dissipation. This is called the
‘housekeeping’ heat that is needed to maintain the (unperturbed) nonequilibrium
stationary state. Perturbing the system then gives additional heat. We see here
that the prediction in [88] that the usual equilibrium relation between response
and dissipation is preserved when taking into account only the excess heating and
ignoring the housekeeping heat, is indeed true in the following sense.

For a system in contact with only one heat bath, the entropy flux into the
environment is equal to β times the heat dissipated into the environment. For
each trajectory ω, this heat can be split in the heat of the unperturbed process
and the excess heat of the perturbed process with respect to the unperturbed
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process. In (5.10) we already wrote down explicitly the excess heat. We assume
a perturbation of the form ht = h0 cos(kt), like we did in Section (5.3.4), and
compute the excess heat over one period of the perturbation [0, T = 2π

k ] in the
perturbed system:

〈Qex(ω)〉h
ρ = hT 〈V (xT )〉h

ρ − h0 〈V (x0)〉h
ρ −

∫ T

0

dt
∂ht

∂t
〈V (xt)〉h

ρ

=
∫ T

0

dtht
∂

∂t
〈V (xt)〉h

ρ

We can write the expectation of V using the response function as in (5.10):

〈V (xt)〉h
ρ = 〈V (x)〉0

ρ +
h0

2

[

R̃V V (k)e−ikt + R̃V V (−k)eikt
]

Substituting this, and the explicit expression of ht into the expression of the heat,
gives us

〈Qex(ω)〉h
ρ =

ikh2
0

2

∫ T

0

dt cos(kt)
[

−R̃V V (k)e−ikt + R̃V V (−k)eikt
]

+ o(h2
0)

=
ikh2

0T

4

[

R̃V V (−k) − R̃V V (k)
]

+ o(h2
0)

= πh2
0Im[R̃V V (k)] + o(h2

0)

We see that the excess dissipated heat can be expressed through the imaginary
part of the Fourier transform of the response function. For systems that are
(unperturbed) in equilibrium, there is no housekeeping heat, so the excess heat
is then total dissipated heat. Although the excess dissipated heat only specifies
the imaginary part, the Kramers-Kronig relations in complex analysis connect the
real and imaginary parts of complex functions to each other [78]. This means that
when one of them is known, the other can be computed from it.

Let us conclude here by noting that the imaginary part of the Fourier transform
is equal to the Fourier transform of the time-antisymmetric part of the response
function (5.14):

r(t− s) =
1
2

[RV V (t, s) −RV V (s, t)]

= β
∂

∂s
〈V (xs)V (xt)〉0

ρ +
1
2

[

〈τ(ω, t)V (xs)〉0
ρ − 〈τ(ω, s)V (xt)〉0

ρ

]
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which is the same as (5.17) for Q = V , but (5.17) is only valid for t > s. For t > s,
we have that r(t − s) = RV V (t − s), while for t < s the response function is zero.
The antisymmetric part of the response function therefore contains all information
of the whole response function.



Chapter 6

Markov jump processes and

overdamped diffusions

In this chapter the general framework outlined in the previous chapter is applied to
the cases of Markov jump processes and overdamped diffusions. These two classes
of models share a common property, simplifying the fluctuation-dissipation relation,
as we shall see in (6.7). For a few explicit examples, simulations have been done
to visualize the terms in the fluctuation-dissipation relations. The work explained
here was written down in [4].

6.1 An explicit formula

In this chapter we only consider systems in contact with one heat bath, so that
we can use formulae like (5.14) and (5.16). The advantage of considering specific
models is that we can get more explicit results. To do this, we need to compute the
traffic, i.e. the time-symmetric part of the action for our models. More precisely,
we need to compute the functional derivative of traffic, as defined in (5.13)

6.1.1 Overdamped diffusions

Consider the case of general overdamped diffusions in d dimensions (4.13). Adding
the potential −htV (xt) in Langevin equations is straightforward. The perturbed
Langevin equation becomes (we are still working in the Itô convention):

dxt = χ(xt)[F (xt) + ht∇V (xt)]dt+ ∇ ·D(xt)dt+
√

2D(xt)dBt

75
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Remember that the local detailed balance assumption here implies that χ = βD.
In the same way as we derived (4.15), we can here derive the action that describes
the relative probability of paths of the perturbed process with respect to the
unperturbed process:

A(ω) = − log
dPh

dP0
(ω)

= −β

2

∫ t

0

dxshs∇V +
β

2

∫ t

0

dsht∇V · [∇ ·D + χF +
1
2
htχ∇V ]

The time-antisymmetric part of the action is given by a Stratonovitch integral:

Sex(ω) = A(θω) −A(ω) = β

∫ t

0

dxs ◦ hs∇V

as a consistency check, let us rewrite this using (4.20):

∫ t

0

dxs ◦ hs∇V = htV (xt) − h0V (x0) −
∫ t

0

ds
∂hs

∂s
V (xs)

which is exactly (5.10). More importantly, we can compute explicitly the time-
symmetric part of the action:

Tex(ω) = A(θω) +A(ω) = β

∫ t

0

dshs[∇ · (D∇) + χF∇ +
1
2
hs(∇V )χ∇]V

so that the functional derivative with respect to hs becomes:

τ(ω, s) = β
∂

∂hs
Tex(ω)

∣

∣

∣

∣

h=0

= [∇ · (D(xs)∇) + χ(xs)F (xs)∇]V (xs) (6.1)

and the fluctuation-dissipation relation:

RQV (t, s) =
β

2
∂

∂s
〈V (xs)Q(xt)〉0

µ0
(6.2)

−β

2
〈[∇ · (D(xs)∇V (xs)) + χ(xs)F (xs)∇V (xs)]Q(xt)〉0

µ0
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6.1.2 Markov jump processes

For Markov jump processes, it is more ambiguous to define what ‘adding a
potential’ means. Starting from a general Markov jump process with transition
rates k(x, y), the local detailed balance assumption asserts that (see (3.10)):

k(x, y)
k(y, x)

= e−β[U(y)−U(x)−W (x,y)]

where U is the energy of the system, andW (x, y) is the work needed for a jump x →
y. Adding a potential −htV changes the transition rates to new time-dependent
rates kt(x, y) which, again by the local detailed balance assumption, have to satisfy

kt(x, y)
kt(y, x)

= e−β[U(y)−U(x)−W (x,y)−htV (y)+htV (x)]

Still, this does not completely specify the perturbation. There are many
possibilities. The most common in literature however is the following one, which
we use throughout this chapter:

kt(x, y) = k(x, y)e
βht

2 [V (y)−V (x)]

For the treatment of fluctuation-dissipation relations for more general perturba-
tions, see [26, 75, 92]. From (3.7) we arrive straightforwardly at

A(ω) = − log
dPh

dP0
(ω)

= −β

2

∑

s≤t

hs[V (xs) − V (xs− )]

+
∫ t

0

ds
∑

y

k(xs, y)[e
βht

2 [V (xs)−V (x
s− )] − 1]

The time-antisymmetric part of the action is here

Sex(ω) = β
∑

s≤t

hs[V (xs) − V (xs− )]
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one can check that this is consistent with (5.10). The traffic is the time-symmetric
part of the action:

Tex(ω) = A(θω) +A(ω) = 2
∫ t

0

ds
∑

y

k(xs, y)[e
βht

2 [V (y)−V (xs)] − 1]

and its functional derivative:

τ(ω, s) =
∂

∂hs
Tex(ω)

∣

∣

∣

∣

h=0

= β
∑

y

k(xs, y)[V (y) − V (xs)] (6.3)

The fluctuation-dissipation relation then becomes

RQV (t, s) =
β

2
∂

∂s
〈V (xs)Q(xt)〉0

µ0

−β

2

〈

∑

y

k(xs, y)[V (y) − V (xs)]Q(xt)

〉0

µ0

(6.4)

6.1.3 A general formula

An important property of both Markov jump processes and overdamped diffusions,
is that the functional derivative of traffic is a state function, see (6.1) and (6.3),
i.e. τ(ω, s) = τ(xs). With this in mind we use the equality (5.15):

β
∂

∂s
〈V (xs)Q(xt)〉0

µ0
= 〈τ(xs)Q(xt)〉0

µ0
(6.5)

which is true for any s > t, Q and µ0. We use the (backward) generator of the
unperturbed Markov process, which is defined (see Appendix A) as follows: there
exists an operator L such that for any state function f and any initial distribution
µ0:

d

dt
〈f(xt)〉0

µ0
= 〈Lf(xt)〉0

µ0

This L is called the backward generator of the (unperturbed) Markov process. If
we use this generator and take Q = 1 in (6.5) then we get:

〈τ(xs)〉0
µ0

= β 〈LV (xs)〉0
µ0
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and because this is true for any s and any µ0, we actually have that

τ(xs) = βLV (xs) (6.6)

Comparing (6.1) and (6.3) to (A.8) and (A.11) we can check that this is indeed
the case. This expression also gives an interpretation of τ(x). Using the definition
of the generator L, we see that

τ(x) = βLV (x) = β
d

dt
〈V (xt)〉0

x

∣

∣

∣

t=0

where the superscript x means that the initial configuration is fixed at x. Thus
τ(x) is the instantaneous expected change in the potential V when started at the
state x.

The fluctuation-dissipation relation becomes :

RQV (t, s) =
β

2
∂

∂s
〈V (xs)Q(xt)〉0

µ0
− β

2
〈LV (xs)Q(xt)〉0

µ0
(6.7)

which is the most general formulation when restricted to Markov jump processes
and overdamped diffusions. These are large and useful classes of models. Moreover,
notice that the result is true for any observable Q(xt), any potential V and any
initial distribution µ0. The result is thus true in three nonequilibrium situations:

1. The case in which there are nonconservative forces.

2. The case in which there are different particle reservoirs at the same
temperature but with different chemical potentials.

3. The case in which the system has an equilibrium dynamics, but has not yet
relaxed to equilibrium.

Of course combinations of these nonequilibrium conditions are also possible. In
this sense the result (6.7) is both very general, and explicit in terms of the generator
of the process. The downside is that experimentally, this generator is not always
known. On the other hand, in the next section we show some examples where this
formula leads to (in principle) measurable results.

6.2 Examples

In this section we give three physical examples to clarify the structure of the
fluctuation-dissipation relations. For two of these examples, simulations have been
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made by Marco Baiesi, to provide some visualization and a check of the results
[4]. For simulations it is often more convenient to use a constant perturbation:
hs = h, s ≥ 0. As discussed in Section 5.3.3, this gives an integrated version of the
fluctuation-dissipation relation. For this section, it is convenient to introduce the
following notation:

• The generalized susceptibility:

χ(t) = lim
h→0

1
h

[

〈Q(xt)〉h
µ0

− 〈Q(xt)〉0
µ0

]

If extended to t ↑ ∞, χ(t) gives the change in nonequilibrium stationary
expectation when adding a small potential.

• The correlation function, originally coming from the entropic term in (6.7):

C(t) = 〈Q(xt)V (xt)〉0
µ0

− 〈Q(xt)V (x0)〉0
µ0

• The term coming from the traffic term in (6.7), (extra with respect to
equilibrium):

K(t) = −
∫ t

0

ds 〈LV (xs)Q(xt)〉0
µ0

representing an integrated correlation function.

• The average of C and K:

CNE(t) =
1
2

[C(t) +K(t)]

The fluctuation-dissipation relation is in this notation expressed by

χ(t) = βCNE(t) (6.8)

6.2.1 Driven Kawasaki dynamics

As a first example we consider an exclusion process as a model of ionic transport
through a narrow channel. The model we use is very similar to the exclusion
process described as example 2 in Section 3.8, differing only by the addition of an
interaction potential. We repeat quickly: the model is described by a collection of
n sites, labelled by i = 1, . . . , n, each holding either one particle (xi = 1) or none
(xi = 0). A configuration x is thus an array of ones and zeros. In the bulk of this
system no particles are created or annihilated, only jumping to neighbouring sites
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is allowed (Kawasaki dynamics). At the edges i = 1, n particles can move in or out
from reservoirs with density d1 and dn, respectively. To this a nearest neighbour
interaction is added, with energy U(x) = −∑n

i=1 x
ixi+1. Moreover, we can add

an “electric” field E promoting particle jumps to the right.

We have to construct transition rates for particles hopping to neighbouring sites
and rates for creation and annihilation at the edges. For example, consider the case
that a particle enters into site i = 1 from the reservoir. Denote the configuration
before that jump x, and after the jump y, where y = x except that x1 = 0 while
y1 = 1. Using the local detailed balance assumption, we know that

k(x, y)
k(y, x)

= eβµ1e− β
2 [U(y)−U(x)] =

d1

1 − d1
e− β

2 [U(y)−U(x)]

This does not specify the rates fully of course. For simulational purposes we
therefore define the rate for a particle entering at i = 1 as

k(x, y) = d1ψ(x, y) exp
{

−β

2
[U(y) − U(x)]

}

, ψ(x, y) = ψ(y, x)

where for the moment ψ(x, y) is an arbitrary function. Then of course, a particle
leaving gives

k(y, x) = (1 − d1)ψ(x, y) exp
{

β

2
[U(y) − U(x)]

}

and similar for particles entering and leaving at site n. In the bulk of the system
particles can hop, e.g. to the right. Let x and y denote configurations which differ
by the fact that a particle at site i has hopped to the right: xi = 1, xi+1 = 0 and
yi = 0, yi+1 = 1. Then local detailed balance gives

k(x, y)
k(x, y)

= exp {−β[U(y) − U(x) − E]}

Where E is an electric field promoting hops to the right. We therefore take the
hopping rates to be:

k(x, y) = ψ(x, y) exp
{

−β

2
[U(y) − U(x) − E]

}

, ψ(x, y) = ψ(y, x)

and similarly for jumps to the left. For simulational purposes we have specified
ψ(x, y) by an additional condition, namely that k(x, y) + k(y, x) = 1 for all x, y.

The system is driven from equilibrium by:
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i) setting different reservoir densities d1 6= dn, or

ii) setting a nonzero electric field E > 0 in the bulk.

We choose the total number of particles N (t) =
∑n

i=1 x
i as observable. We also

introduce a perturbation V (s) equal to N (s). This particular perturbation is
equivalent to changing the chemical potential of both reservoirs with a common
shift: µi → µi + h:

kh(x, y) = k(x, y)e− βh
2 [N (y)−N (x)]

Transition rates for the perturbed process are thus multiplied by a factor eβh/2 if
a particle enters the system, and by e−βh/2 when a particle leaves; transitions in
the bulk are left unchanged.

In this case the traffic term is

LN (x) =
∑

y

k(x, y)[N (y) − N (x)] = J (x)

which is a current. This current represents the expected change of N per unit
time, i.e., it is the rate of change in the number of particles from the two possible
transitions at the boundary sites. Thus, for x → y the transition modifying x1,
and for x → z the transition modifying xn, we have

J (x)=[N (y) − N (x)]k(x, y) + [N (z) − N (x)]k(x, z)

We have numerically verified that χ,C,K as defined earlier, are all equal to each
other under equilibrium conditions. While C = K to excellent precision, the shape
of χ depends weakly on h, and is found to converge to C only for h sufficiently
small. In fact, one can pretend exact matching only in the limit h → 0, but
h = 0.01 turns out to be sufficiently small to achieve a good convergence.

A representative example for the nonequilibrium case i) is shown in Fig. 6.1(a).
One can see that each of the functions C(t) and K(t) is a poor approximation of
the response, while the agreement between CNE(t) and χ(t)/β is excellent.

In Fig. 6.1(b) we show an example of nonequilibrium condition ii). Again, only
CNE(t) matches χ(t)/β. Curiously, a comparison of this example with the
previous one reveals that C can be either larger or smaller than K, even for two
nonequilibrium conditions that look pretty similar, in the sense that they yield a
current in the same direction for a relatively simple system.
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Figure 6.1: Plot of the quantities involved in Eq. (6.8), for (a) case i) (E = 0) with
n = 10, β = 1, h = −0.01, and reservoir density unbalance d1 = 0.9, dn = 0.1,
and (b) for case ii) (d1 = dn = 0.5) with n = 10, β = 1, h = −0.01, E = 3.
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Figure 6.2: Response and fluctuations of the overdamped particle in a tilted
periodic potential, as discussed in the text, with inverse temperature β = 0.2,
mobility ν = 1 and perturbation h = 0.02. (a) Steady state regime, with initial
distribution equal to the stationary one, and force f = 0.9. (b) Transient regime,
with initial position x0 = 0 and force f = 0.
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6.2.2 Diffusion on the circle

Consider the overdamped Langevin equation (4.10) for a particle position xt ∈ S1

(on a circle) with a force F (x) = f −U ′(x). Here the prime denotes differentiation
with respect to space. The constant force f drives the particle around the circle
and out of equilibrium. To this equation a perturbation is added:

dxt = ν[f − U ′(xt) + htV
′(xt)]dt+

√
2DdBt (6.9)

we renamed the mobility ν to avoid confusion with the integrated response χ(t).
The diffusion constant D and the mobility ν are related by the Einstein relation
ν = βD, with β the inverse temperature (local detailed balance).

This example has been recently experimentally realized as reported in [45], for
testing the results of [15, 16], see also [8, 97]. Moreover, its nonequilibrium
stationary distribution ρ is known analytically, see [71].

Here we show the result of a simple simulation of the overdamped particle studied
in the experiment, with a potential V (x) = sin(x), and also U(x) = Q(x) = V (x),
and a constant force f . The functional derivative of the traffic τ(x) = βLV (x)
of a particle at position x can be computed by applying the generator of the
overdamped dynamics

L = (f − U ′)
d

dx
+

1
β

d2

dx2

to the potential V (x), which gives τ(x) = β[f − cos(x)] cos(x) − sin(x). We have
measured the correlations C(t) and K(t) as well as responses χ(t) for small h.

Fig. 6.2(a) shows that for strong stationary nonequilibrium f ≫ 0 there is a large
difference between the integrated correlation function of the traffic and that of
the entropy production. However, their average CNE(t) agrees very well with the
response χ(t), as it should. It is also important to remember that our approach
works for non-stationary regimes as well. In Fig. 6.2(b) we show an example of a
particle starting at time t = 0 from a non-stationary initial distribution µ(x) = δx,0

(i.e. its position is x0 = 0), but for the rest not forced outside equilibrium, f = 0,
to emphasize the transient character of this situation. Again, we can see that the
response is well estimated by CNE(t).

In the next chapter we treat the inertial version of this model.
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6.2.3 A generalized Einstein relation

Consider the overdamped Langevin equation in R
d (4.13) but with constant ν =

βD:

dxi
t = νij [F j(xt) + hδjk]dt+

√
2D

ij
dBj

t (6.10)

with repeated indices j = 1, . . . d summed over. The F includes all forces and h
is the small constant perturbation. Note that this means that the perturbation
potential is V (x) = xk. With such a potential the fluctuation-dissipation relation
connects mobility and diffusion which are actually defined as follows. The true
mobility M (in contrast to ν) is defined as the response

M ik = lim
t→∞

d

dh

〈

ẋi
t

〉h

ρ

∣

∣

∣

∣

h=0

= lim
t→∞

1
t

∫ t

0

d

dh

〈

ẋi
t

〉h

ρ

∣

∣

∣

∣

h=0

(6.11)

while the real diffusion matrix (in contrast to D) is given by

Dik = lim
t→∞

1
2t

∫ t

0

ds

∫ t

0

dr
〈

(ẋi
s −

〈

ẋi
〉

ρ
)(ẋk

r −
〈

ẋk
〉

ρ
)
〉0

ρ

As (6.11) is a response function, we can easily compute it within our framework.
Note that LV (x) = νkjF j(x):

d

dh

〈

ẋi
t

〉h

ρ

∣

∣

∣

∣

h=0

=
β

2

〈

[xk
t − xk

0 ]ẋi
t

〉0

ρ
− βνkj

2

∫ t

0

ds
〈

F j(xs)ẋi
t

〉0

ρ

We rewrite this response function by using the following equality, derived from
taking the average of the Langevin equation ((6.10) with h = 0):

〈

ẋi
〉0

ρ
=
〈

νijF j(x)
〉0

ρ

because the average of dBt gives zero. Using this equality we get

d

dh

〈

ẋi
t

〉h

ρ

∣

∣

∣

∣

h=0

=
β

2

∫ t

0

ds[
〈

ẋk
s ẋ

i
t

〉0

ρ
−
〈

ẋk
s

〉0

ρ

〈

ẋi
t

〉0

ρ
]

−βνkj

2

∫ t

0

ds
〈

F j(xs)(ẋi
r −

〈

ẋi
〉0

ρ
)
〉0

ρ
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Now all that is left is integrating this relation over t, dividing by t and taking the
limit for t → ∞ to arrive at

M ik = βDik − βνkj

2
lim

t→∞
1
t

∫ t

0

ds

∫ t

0

dr
〈

F j(xs)(ẋi
r −

〈

ẋi
〉0

ρ
)
〉0

ρ
(6.12)

Observe that in equilibrium (F derives from a potential), the second term in (6.12)
vanishes because the observable ẋt is anti-symmetric, and 〈ẋ〉eq

ρ = 0. Then, the
equilibrium fluctuation-dissipation relation holds with M = βD. Moreover, when
F = 0, (pure diffusion) these quantities can be explicitly calculated, and are found
to be equal to M ik = νik,Dik = Dik. We see that for pure diffusion the fluctuation-
dissipation theorem is equivalent to the Einstein relation. But even for equilibrium
systems, when F 6= 0 the fluctuation-dissipation theorem is not equivalent with
the Einstein relation, although there is still a simple relation between mobility and
diffusion.

Out of equilibrium, this simple relation is violated, as there is a correction, namely
the second term in (6.12)). Note that this is completely compatible with the
condition ν = βD, because that is actually a relation for the reservoir, which
is in thermal equilibrium at inverse temperature β. Similar results for a one-
dimensional overdamped diffusion were reported before in [8, 97].

6.3 Connection with effective temperature

A reason, not mentioned before, that the fluctuation-dissipation theorem in
equilibrium is so useful and powerful is that it specifies the temperature as a
universal parameter: regardless of what potential we use and what observable,
the relation between response and correlation function is always governed by that
same single parameter. In this sense it is not strange to wonder what remains of
this parameter out of equilibrium.

Therefore, even though the fluctuation-dissipation theorem is violated out of
equilibrium, one attempts to restore it by the introduction of an effective
temperature T eff, in the sense

Rµ
QV (t, s) =

1

kBT eff
d

ds
〈V (s)Q(t)〉0

µ (6.13)

Many studies have been devoted to the study of this prefactor, in what sense it
perhaps resembles a thermodynamic temperature-like quantity for some classes
of observables and over some timescales; we refer to [12, 17, 51, 60] for an entry
into the extensive literature. Clearly, whatever the purpose of the discussion, an
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exact expression of the response should help, especially when entirely in terms
of explicit correlation functions. The first calculations in this sense are in [14]
and they have been referred to as the “no field-method” [91]. In particular, for
purposes of simulation or numerical verification of (6.13) we do no longer need to
perform the perturbation by hand. In fact, now we can write the ratio T/T eff = X
entirely in terms of correlation functions

X = XQV (µ; t, s) =
1
2

[

1 − 〈LV (s)Q(t)〉0
µ

d
ds〈V (s)Q(t)〉0

µ

]

(6.14)

with numerator and denominator in (6.14) each having a specific physical meaning
in terms of entropy and traffic. An effective temperature is obtained as the ratio
between the traffic and the entropic term: if for some observables (V,Q) and over
some time-scales,

Y
d

ds
〈V (s)Q(t)〉0

µ = 〈LV (s)Q(t)〉0
µ

for some Y , then X = (1 − Y )/2. Equilibrium has X = 1 = −Y . In the case
where LV ≈ 0 as for a conserved quantity, then Y = 0 and T eff = 2T . Finally, X
and the effective temperature T eff get negative when the traffic term overwhelms
the entropic contribution.

One should understand that (6.13) represents a rather optimistic scenario.
Formula (6.13) mimics (5.2) by replacing a function depending a priori on the
observable, the potential, the initial distribution and on other parameters as
temperature and time, by just one parameter. Why should there be also out-
of-equilibrium a single parameter and a useful notion of temperature in its
usual thermodynamic understanding? Moreover, how would it depend on the
observables V and Q? (See [77] for a very recent discussion.) Answers to these
questions have been partially given but are often restricted within a context of
mean field systems or for small fluctuations, effectively dealing with calculations
as in Section 6.3.2, similar to calculations for scalar fields as in [21] and in [12].
In fact, the optimism in (6.13) is a sort of conservatism as it tries to return
to equilibrium-like formulae. We take a different attitude: the violation of the
equilibrium fluctuation-dissipation relation (FDR) is an opportunity to discover
new connections between response and the relevant newly emerging physical
quantities as traffic.

6.3.1 Explicit calculations for pure diffusions

In simple overdamped diffusion equations, one can explicitly calculate the
correlation functions, and see when the concept of effective temperature could
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make sense. Similar calculations have been done in [12, 21]. The simplest example
is Brownian motion in one dimension:

dxt = htdt+
√

2DdBt

where we have taken the potential V (x) equal to the position x. The generator
of the unperturbed dynamics is (see Appendix A) L = D∆, so that LV = 0 and
T eff = 2T cf. Virasoro’s example in [21]. In that last reference, what are called
“flat directions” can be associated to perturbations with LV = 0.

6.3.2 Explicit calculations for linear diffusions

Next, consider the following model for diffusions with a linear force (harmonic
potential). Fix parameters α,B ∈ R, D > 0 and look at the linear Langevin
dynamics for a global order parameter M ∈ R,

dM(t) = −αM(t)dt+ ht Bdt+
√

2DdB(t)

The ht, t > 0, is a small time-dependent field. The generator of such a dynamics
dynamics (on observables f) is (see Appendix A) Lhf(M) = [−αM+htB] f ′(M)+
Df ′′(M), using a prime to denote differentiation with respect to M . Such a
dynamics can arise as a Gaussian approximation to a relaxational dynamics of
the scalar magnetization M (no conservation laws and no spatial structure) valid
in high enough dimensions (above d = 4 for the standard Ising model). Then,
in a way, α = 0 corresponds to the critical (massless) dynamics and α > 0
is a paramagnetic dynamics (high temperature), see [12]. By taking D ↓ 0 we
exclude the diffusive aspects and we can think then of gradient relaxation in the
low temperature regime.

The equilibrium (reversible stationary density on R for perturbation B = 0) is

ρ(M) =
1
Z

exp
{

−αM
2

2D

}

with zero mean and variance 〈M2〉 = D/α. We now start from an initial
distribution µ0. If µ0 6= ρ then the system is not in equilibrium. We can compute
the response function by calculating the expectation value of M at time t in the
perturbed dynamics. We do that by deriving the following differential equation

d

dt
〈M(t)〉h

µ0
= 〈LhM(t)〉h

µ0
= −α〈M(t)〉h

µ0
+ htB
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the solution of which is

〈M(t)〉h
µ0

= 〈M(0)〉0
µ0
e−αt +B

∫ t

0

ds hs e
−α(t−s)

or

δ

δhs
〈M(t)〉h

µ0

∣

∣

h=0
= B e−α(t−s) (6.15)

which does in fact not depend on 〈M(0)〉0
µ0

(and thus also equals the equilibrium
result). In the same way, we use for s < t:

d

dt
〈M(t)M(s)〉0

µ0
= 〈M(s)L0M(t)〉0

µ0
= −α〈M(t)M(s)〉0

µ0

to arrive at

〈M(t)M(s)〉0
µ0

= 〈M2(s)〉0
µ0
e−αt

Using same strategy we can calculate the expectation of M2(s). Denoting M2
0 =

〈

M2(0)
〉0

µ0
, the correlation function for 0 < s < t is

〈M(s)M(t)〉0
µ0

= M2
0 e

−α(t+s) +
D

α

[

e−α(t−s) − e−α(t+s)
]

and hence

d

ds
〈M(s)M(t)〉0

µ0
= −αM2

0 e
−α(t+s) +D

[

e−α(t−s) + e−α(t+s)
]

If µ0 = ρ in the last expression (thus replacing M2
0 by D/α) we find

d

ds
〈M(s)M(t)〉0

ρ = D e−α(t−s)

which, in comparison with (6.15) specifies the equilibrium inverse temperature to
be equal to β = B/D.

The traffic term is obtained from LM = −αM , and thus

〈LM(s)M(t)〉0
µ0

= −αM2
0 e

−α(t+s) −D
[

e−α(t−s) − e−α(t+s)
]
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Clearly,

δ

δhs
〈M(t)〉h

µ0
(h = 0) =

B

2D
{ d
ds

〈M(s)M(t)〉0
µ0

− 〈LM(s)M(t)〉0
µ0

}

as it should.

For the issue of effective temperature we compute the ratio Y as

Y = Y (M0; s, t) =
−α〈M(s)M(t)〉0

µ0

d
ds〈M(s)M(t)〉0

µ0

=
D − αM2

0 −De2αs

D − αM2
0 +De2αs

Remark that Y is independent of t, as long as t > s. In that notation, the effective
inverse temperature is T eff = 2T/(1 −Y ). In equilibrium Y = −1 while Y = 1 for
D = 0 and M0 6= 0. If α = 0, then Y = 0 as in the pure diffusion case. For α > 0,
if we let s → ∞ while keeping t− s = u fixed, we get

lim
s↑+∞

Y (M0; s, s+ u) = −1 (6.16)

so that T eff = T . This case is referred to as the paramagnetic case, while T eff = 2T
for α = 0 is the critical quench, cf. [12].

6.3.3 Effective traffic

Let us try to see how the notion of effective temperature could be seen as a one-
parameter reduction of a general equilibrium-like FDR that is valid also outside
equilibrium but with an effective dynamics. The starting point is comparing the
equilibrium formula (5.2) with the more general non-equilibrium one (6.7). By
this we see that in equilibrium (5.2) is equivalent with

RQV (t, s)=−β〈(LV )(s)Q(t)〉0
ρ (6.17)

In other words, the fluctuation-dissipation theorem in equilibrium can also be
called a fluctuation-traffic theorem; the two terms on the right-hand side of (6.7)
are simply the same in equilibrium. Therefore, for the purpose of getting closer
to equilibrium response formulae one really has the choice to mimic either (5.2)
or rather (6.17). The first leads to the ambition of effective temperature (6.13),
the latter to the new notion of effective traffic. But the latter is also much richer.
In fact, a combination of (6.7) with (A.6) shows that the exact nonequilibrium
response formula (6.7) can indeed be written in the equilibrium form (6.17):

Rµ
QV (t, s) = − 〈Gµs

V (s)Q(t)〉0
µ (6.18)
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with a new effective traffic

GµV =
β

2µ
[L†(µV ) − V L†µ+ µLV ] (6.19)

Here L† is the forward generator, defined by (see Appendix A, (A.2)):

∫

dxg(x)Lf(x) =
∫

dxf(x)L†g(x) ∀f, g

where the integration has to be replaced by a sum for Markov jump processes. The
operator Gµ acting on V in (6.19) has the following exact property: it is itself a
generator but of a new dynamics for which µ is an equilibrium distribution (i.e.
〈f (Gµg)〉0

µ = 〈g (Gµf)〉0
µ for all f, g, see (A.5)). Thus, in (6.18) the generator

Gµs
is the instantaneous equilibrium generator with respect to the time-evolved

distribution µs.

We can rewrite Gµ in terms of the adjoint generator (see (A.4)), which is defined
using the stationary distribution of the process:

∫

dxρ(x)g(x)L∗f(x) =
∫

dxρ(x)f(x)Lg(x) ∀f, g

With this we get

GµV =
βρ

2µ
[L∗(

µ

ρ
V ) − V L∗(

µ

ρ
) +

µ

ρ
LV ] (6.20)

In the stationary nonequilibrium case, we have µs = ρ and (6.19) is

Gρ =
β

2
(L + L∗) (6.21)

replacing L in (6.17). For equilibrium dynamics L = L∗ (see Appendix A), and
(6.18) reduces to (6.17). In stationary nonequilibrium, if the perturbation V
is ‘time-direction independent’ in the precise sense that LV = L∗V , then the
nonequilibrium response reduces to the equilibrium formula (6.17) and X = 1.
See [82] for very related conjectures and observations.





Chapter 7

Underdamped diffusions

In this chapter we treat the case of underdamped diffusions, for which the formula
(6.7) is no longer correct. We can, however, still calculate the response function
and express it in terms of correlation functions of observable quantities. For several
explicit examples the response is calculated and simulated. This chapter describes
work reported in [2].

7.1 Model

In this chapter we consider an extension of the one-dimensional underdamped
diffusions explained in Section 4.1. There we considered the dynamics of just one
particle. Now we consider k particles in d dimensions. This means that the state
of the system is now given by (x, v) = (x1, x2, . . . , xn; v1, v2, . . . , vn) ∈ R

2n of
positions and momenta, with n = kd. These particles are subject to mechanical
forces: a potential U(x) taking care of the coupling and pinning of the positions
(the pinning is also thought to confine the positions to some finite volume), and a
nonconservative forcing fi(x). Each particle is connected to its own heat bath at
an inverse temperature βi. This gives the following set of 2n Langevin equations:

dxi
t = vi

t dt

midv
i
t = [fi(x) − ∂U

∂xi
(xt) −miγiv

i
t]dt+

√

2Di dBi(t) (7.1)

Again, we make no distinction between upper or lower indices: xi = xi. To avoid
confusion, we always use i, j, k to denote the components of the vectors, and s, t

93
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to denote times. For the simple underdamped diffusions in (4.1), we found by
the local detailed balance assumption the Einstein relation between diffusion and
friction coefficient. Let us investigate what it gives here. For this we write down
the path-probability density for paths ω = (xt, vt)0≤t≤T . In the same way as
explained in Section 4.3 we find, formally:

Px0,v0 (ω) =
1
N exp

{

−
∑

i

1
4Di

∫ T

0

dt[miv̇
i
t − Fi(xt) +miγiv

i
t]

2

}

(7.2)

with Fi = fi − ∂U
∂xi

, and N a normalization factor. The entropy flux into the
environment is then

S(ω) =
dPx0,v0

dPxT ,vT
θ

(ω) = −
∑

i

miγi

Di

∫ T

0

dtvi[miv̇
i
t − Fi(xt)] (7.3)

Note that the quantity

miv̇i − Fi = −miγivi +
√

2Di
dBi

dt

is the (stochastic) force on particle i originating from the i-th heat bath. The
integral over time of this force times the velocity of the particle thus gives the heat
flux from the i-th reservoir to the system. As a consequence S(ω) is the entropy
flux into the environment if and only if Di = miγi

βi
for all i. Note that the system is

driven out of equilibrium by the nonconservative force, but also by the difference
of the temperatures of the heat baths βi.

At time zero, the probability density of the system being in state (x, v) is denoted
as always by µ0(x, v). The Fokker-Planck equation determining the time-evolution
of this probability in this case is

d

dt
µt + ∇ · Jµt

= 0 (7.4)

for ∇ = (∇x,∇v) and for the probability current Jµ = (Jx
µ , J

v
µ) with

(Jx
µ)i = miviµ, (Jv

µ)i = (fi − ∂U

∂xi
)µ− γi vi µ−Di

∂µ

∂vi
(7.5)

7.2 Perturbation

The perturbation is a potential V (x) added to the unperturbed Hamiltonian

Ho =
∑

i
miv2

i

2 + U(x) → Ho − hs V (x) with small time-dependent amplitude



RESULT 95

hs, s ≥ 0. We compare the path-probabilities of the perturbed versus the
unperturbed process, using the action. By (7.2) we find

dPh
x0,v0

dP0
x0,v0

(ω) = e−A(ω) = exp
{

Sex(ω) − Tex(ω)
2

}

where the action is split in its time-antisymmetric and symmetric parts. The
time-antisymmetric part is:

Sex(ω) =
n
∑

i=1

βi

∫ t

0

hs
∂V

∂xi
(xs) vi

s ds (7.6)

Note the following: if all temperatures are the same, βi = β, then Sex(ω) =
β
∫ t

0 hs
∂V
∂s (xs)ds, which is consistent with (5.10). The time-symmetric part of the

action gives:

T (ω) =
∑

i

1
Di

∫ t

0

hs
∂V

∂xi
(xs)

[

{fi(xs) − ∂U

∂xi
(xs)}ds−midv

i
s

]

+ o(h)

(7.7)

The last stochastic integral can be interpreted in the Itô or Stratonovitch sense,
this does not matter in this case, see (4.19). However, the stochastic integral is the
reason that we can’t write the functional derivative of traffic as a state function.
Indeed, dvi contains information about two consecutive states, not one.

7.3 Result

The model that we use in this chapter is in contact with more than one heat
bath, possibly at different temperatures. Therefore we can’t use the formulae
derived in Section 5.4. We therefore fall back on the more general formula (5.6).
We consider general observables Q(xt, vt) which we simply denote by Q(t). The
immediate application of (7.6) and (7.7) to (4.19) gives

δ

δhs
〈Q(t)〉h

µ

∣

∣

h=0
=

n
∑

i=1

βi

2
〈 ∂V
∂xi

(xs) vi
s Q(t)〉µ0

−1
2

n
∑

i=1

1
Di

〈 ∂V
∂xi

(xs) [fi(xs) − ∂U

∂xi
(xs) −miv̇

i
s]Q(t)〉µ0
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However, because of the singular nature of the white noise, v̇ is not a good
observable. We therefore rewrite that part of the correlation function. We take
the stochastic integral in the Itô sense, which is easiest here. This means that we
have to interpret the correlation function containing v̇i as follows:

〈

∂V

∂xi
(xs) v̇i

sQ(t)
〉

µ0

= lim
ǫ→0

1
ǫ

{

〈

∂V

∂xi
(xs)[vi

s+ǫ − vi
s]Q(t)

〉

µ0

}

We rewrite this inspired by the product rule for derivatives to

lim
ǫ→0

1
ǫ

{

〈

[
∂V

∂xi
(xs+ǫ)vi

s+ǫ − ∂V

∂xi
(xs)vi

s]Q(t)
〉

µ0

}

− lim
ǫ→0

1
ǫ

{

〈

[
∂V

∂xi
(xs+ǫ) − ∂V

∂xi
(xs)]vi

s+ǫQ(t)
〉

µ0

}

Finally taking the limit, we obtain a useful form:

〈

∂V

∂xi
(xs) v̇i

sQ(t)
〉

µ0

=
d

ds
〈 ∂V
∂xi

(x(s)) vi
s Q(t)〉µ (7.8)

−
∑

j

〈 ∂2V

∂xj∂xi
(xs) vj

s v
i
s Q(t)〉µ

With this the response function becomes

δ

δhs
〈Q(t)〉h

µ0

∣

∣

h=0
=

1
2

n
∑

i=1

βi〈
∂V

∂xi
(xs) vi

s Q(t)〉µ (7.9)

−1
2

∑

i

1
Di

〈 ∂V
∂xi

(xs) [fi(xs) − ∂U

∂xi
(xs)]Q(t)〉µ0

+
1
2
d

ds

∑

i

mi

Di
〈 ∂V
∂xi

(xs) vi
s Q(t)〉µ0

−1
2

∑

i,j

mi

Di
〈 ∂2V

∂xj∂xi
(xs) vj

s v
i
s Q(t)〉µ0

This may be a complicated formula, but we now have expressed the response
function in terms of correlation functions of observables which are in principle
measurable.
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7.4 Examples

The result (7.9) is a complicated formula. This is why we have investigated it in
several physically interesting examples. For two of these examples, simulations
have been provided by Marco Baiesi [2].

We remind that a regime out of equilibrium can be created in (7.1) by letting
the inverse temperatures βi differ from one another. Another way of going out
of equilibrium is to introduce nonconservative forces {fi}, like external fields that
are rotational. A final possibility that we can consider is to start from an initial
condition that is not stationary, and thus to observe the response in a transient
regime. All of these possibilities are covered in the following examples. As in the
previous chapter, numerical results are better presented with integrated responses.
We use slightly different definitions than in Section 6.2:

• The integrated response, also called generalized susceptibility:

χ(t) =
∫ t

0

dsRQV (t, s) = lim
h→0

〈Q(t)〉h
µ0

− 〈Q(t)〉0
µ0

h

• The correlation with entropy:

C(t) =
1
h

〈S(ω)Q(t)〉µ0

• The correlation with traffic:

K(t) =
〈

∂

∂h
T (ω)|h=0 Q(t)

〉

µ0

• The average

Cne(t) =
C(t) +K(t)

2

Contrary to the examples in the last chapter, here we have embedded βi’s in the
definitions of the correlation functions. The integrated response relation is thus
χ(t) = Cne(t). We choose for simplicity particles with mass equal to one in all the
examples.

7.4.1 Langevin particle in a periodic potential

Recently there have been experiments testing the response of an overdamped
particle (high viscosity limit) in a periodic potential [45]. In the previous chapter,
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section 6.2.2, we have discussed simulations of that system. Here we look for
the changes in an underdamped set-up, allowing e.g. for the particle to have a
considerable mass and to obey a noisy Hamiltonian dynamics.

We consider here a system consisting of one particle in one dimension: its position
is xt ∈ S1 (on a circle) and the velocity is vt ∈ R. Then, the equations (7.1)
simplify to

dxt = vtdt

dvt = F (t)dt− γvtdt−ht g(t)dt+
√

2DdBt (7.10)

where we abbreviate

F (t) = f − dU

dx
(xt) (deterministic force)

g(t) = −dV

dx
(xt) (perturbing force)

The nonconservative force f is the driving and is taken constant over the circle,
thus effectively tilting the conservative potential. This drives the system out of
equilibrium. As there is only one particle, there is only one heat bath.

At time s = 0 the unperturbed system is taken to be in the stationary
nonequilibrium ρ corresponding to (7.4), and then for s > 0 a constant small
h is turned on. Hence, the integrated correlations are

C(t) = = −β
∫ t

0

ds 〈vsg(s)Q(t)〉0
ρ = β [〈V (t)Q(t)〉0

µ0
− 〈V (0)Q(t)〉0

µ0
]

K(t) = =
1
D

{
∫ t

0

ds 〈F (s)g(s)Q(t)〉0
ρ −

∫ t

0

〈dv(s)g(s)Q(t)〉0
ρ

}

(7.11)

Note that we left dvs in the definition of K(t). This can of course be rewritten
as explained in Section 7.3. However, in simulations one discretizes time, and dvs

is known at every time-step. It can therefore be used as an observable here. We
take V (x) = U(x) = cos(2πx) like in the previous chapter, and again also Q = U .

In Fig. 7.1 we visualize the various terms of the fluctuation-dissipation relation, for
three scenarios with different viscosity, increasing from left to right. The response
is well reproduced by Cne(t), even if we perform a numerical integration with
dt = 10−3. Oscillations in the response are visible for small viscosity; at higher
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Figure 7.1: Integrated correlation functions of the entropic term C(t), of the traffic
term K(t), and their average Cne(t) giving the response in nonequilibrium, and
the integrated response χ(t) calculated directly with h = 0.01. Panels are for
simulations with various friction coefficients: γ = 0.2 (left), γ = 1 (center), and
γ = 5 (right). Other parameters: T = 1/β = 0.2, f = 0.9.

0 2 4 6 8-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8
t

χ(t)
C

ne
(t)

C(t)
K(t)

0 2 4 6 8 10

f = 0 f = 0.3 f = 0.6

Figure 7.2: As in figure 7.1, but with fixed γ = 0.2 and varying force f , from left
to right: f = 0 (equilibrium), f = 0.3, and f = 0.6 (case f = 0.9 is in the previous
figure).
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friction there is a monotonous drift towards a new stationary state (right panel in
Fig. 7.1). The inertial regime is less sensitive to the perturbation, as χ(t) displays
only a small wiggling: a high entropy production is almost compensated by a high
traffic. For the high viscosity regime, with this setting (f . 1) the traffic term
is close to zero compared with the entropic term, and their combination yields
Cne ≈ C/2.

In Fig. 7.2 we can follow the response as a function of the driving f , with f = 0 for
equilibrium. For f 6= 0 the entropic term C(t) can be quite different from Cne(t).
In equilibrium all the terms coincide, as expected.

7.4.2 A generalized Einstein relation

Let us consider the underdamped version of the example in the last chapter,
Section 6.2.3. For this we take the general Markov dynamics (7.1), with the
following simplifications: we take V (x) = xj for an arbitrary j, and for the
observable we take Q = vk for a k which can be different from j. We also take
the field ht = h to be constant. In this case the response function is related to the
mobility of the system, i.e. the way in which the average velocity changes under a
constant added force. We fix a large time u and define the time-averaged mobility
by:

Xjk =
1
u

∫ u

0

dt
∂

∂h

〈

vk
t

〉h

µ0

∣

∣

∣

∣

h=0

starting from µ0 at time zero. We wish to connect this to the velocity fluctuations
in the unperturbed (but driven) system:

Djk =
1

2u

〈

[xj
u − xj

0][xk
u − xk

0 ]
〉0

µ0

=
1
2u

∫ u

0

dt

∫ u

0

ds
〈

vj
sv

k
t

〉0

µ0

We try to be more general here than in the last chapter: we do not take the limit
u ↑ +∞. In equilibrium, when µ0 is the Maxwell-distribution and with f and
U equal to zero and all the temperatures are equal (βi = β), one can compute
that Xjk = 1

γj
δj,k and Djk = 1

βγj
δj,k. Indeed, also in the underdamped case,

the Einstein relation coincides with the fluctuation-dissipation relation for pure
diffusion. For general equilibrium systems we still have Xjk = βDjk. This is no
longer true out of equilibrium. With (7.9) we can give the explicit modification.
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We substitute V = xj and Q = vk into the integrated version of (7.9) for constant
h to obtain

∂

∂h

〈

vk
t

〉h

µ0

∣

∣

∣

∣

h=0

=
1
2
βj

∫ t

0

ds
〈

vj
sv

k
t

〉

µ0

− 1
2Dj

∫ t

0

ds

〈

[fj(xs) − ∂U

∂xj
(xs)]vk

t

〉

µ0

+
1

2Dj

∫ t

0

ds
∂

∂s

〈

vs
jv

k
t

〉

µ0

The integrand of the full right-hand side is zero for s > t due to causality, so we
can as well integrate s from 0 up to u > t. Integrating then t gives us

Xjk = βjDjk − 1
2uDj

∫ u

0

dt

∫ u

0

ds

〈

[fj(xs) − ∂U

∂xj
(xs)]vk

t

〉

µ0

+
1

2uDj

∫ u

0

dt
〈

[vj
t − vj

0]vk
t

〉

µ0

This relation reduces to the familiar Einstein relation if the unperturbed system
is in equilibrium. Furthermore very formally when the overdamped limit is taken,
i.e. we neglect changes in momenta, then the last term in the relation drops and
we recover the relation found in (6.12).

7.4.3 Coupled oscillators

We now consider coupled one-dimensional oscillators at different temperatures Ti

in the stationary or in a transient regime. This means that each index i represents
a particle which can move in one dimension. In (7.1) we then set a conservative
potential U that is the sum U =

∑n
i=0 ϕ(xi+1 − xi) of local couplings between the

oscillators i and i+1, with ϕ(x) = 1
2x

2 + 1
4x

4. Boundary conditions are imposed by
keeping x0 = xn+1 = 0. For simplicity we take all Di = D. A basic perturbation is
given by switching on an external field on the j-th particle V (x) = −Exj . Taking
the velocity Q = vk at site k to be the observable, the variable excess in entropy
flux (7.6) reduces to

Sex(ω) = −βjE

t
∫

0

ds vj
s hs
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while the traffic equals

T (ω) = −E

D

t
∫

0

ds

[

v̇j
s +

∂U

∂vj
(xs)

]

hs

From (7.9) we have

δ

δhs

〈

vk
t

〉h

ρ

∣

∣

∣

h=0
= −βjE

〈

vj
sv

k
t

〉0

ρ
− E

2D
d

ds

〈

vj
sv

k
t

〉0

ρ

− E

2D

〈

∂U

∂xj
(xs) vk

t

〉0

ρ

(7.12)

This last relation is still valid for all times s, t and is automatically equal to zero
for s > t (causality). Remembering that βj = γj

D = 1/Tj we can rearrange formula
(7.12) for the situation where s < t (like we did in (5.16)):

d

dhs

〈

vk
t

〉h

ρ
= −E

(

βj + βk

2

)

〈

vj
sv

k
t

〉0

ρ

− E

2D

(

〈

∂U

∂xj
(xs) vk

t

〉0

ρ

+
〈

vj
s

∂U

∂xk
xt

〉

ρ

)

Note that the right-hand side now shows a formal space-time symmetry for
exchanging j ↔ k, s ↔ t. In equilibrium the symmetry is true on spatial level
alone, j ↔ k, because time-symmetry is automatic. That is then an instance of
Onsager reciprocity [85, 86].

Choosing constant h = 0.03, in Fig. 7.3(a) we show the response in a system
with n = 11 oscillators, with a linear gradient of temperature Ti = i/10 = 1/βi,
perturbation applied on site j = 1 and response tested at central site k = 6. In
Fig. 7.3(b) instead we have constant temperatures Ti = 0.2, but we start from a
state out of equilibrium, by choosing p1(0) = 10 and the other momenta equal to
zero.
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Figure 7.3: Visualization of the fluctuation-response relation χ(t) = Cne(t), for
n = 11 coupled oscillators, with parameters, D = 0.01, h = 0.03, and (a) Ti = i/10,
(b) Ti = 0.2 and transient regime as described in the text.





Chapter 8

Conclusions and literature

To conclude this part of the thesis we give an overview of previous formulations
of nonequilibrium fluctuation dissipation relations, and present our conclusions of
our own work.

8.1 Overview of previous formulations

The literature on (extensions of) the fluctuation-dissipation theorem is vast, and we
can’t list all possible and even essential contributions. The equilibrium formulation
spans all of the previous century, while nonequilibrium versions started to appear
since the 1970’s and very much continue up to now. Early works include [1, 102]
and also [23, 47], where we see a discussion within the theory of stochastic
dynamics. In contrast to [47, 48] our unperturbed process is time-homogeneous.
Coming to more recent times, violations of the equilibrium relation have been
most often discussed in transient regimes (equilibrium dynamics but not relaxed
to equilibrium). For example, in the context of ageing phenomena [17, 51],
much thought has been given to making sense of an effective temperature as was
discussed in Section 6.3.

However, recently much new work has been also directed to find generic extensions
of the fluctuation-dissipation theorem to nonequilibrium steady states and to
discussions of the dissipative elements in relaxations to nonequilibrium. There
is for example the line starting from Sasa et al [49, 50, 82, 88] which treats
nonequilibrium heat effects. In particular [49] might also be useful in real
experiments because the response function is there directly connected with the
energy dissipation, which we also discussed in Section 5.4.3. We do not know yet
how to relate that to the new ideas surrounding the traffic term in our work.
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For other recent extensions of the FDR, we refer to [6, 8, 40, 97, 98]. We have
also mentioned in [2, 4] (but not in this thesis) how our approach is related to the
co-moving frame interpretation of Chetrite, Gawȩdzki et al [15, 16, 45]. There
the equilibrium fluctuation-dissipation relation is recovered for systems out-of-
equilibrium by going to a description in a co-moving frame. One disadvantage of
this approach, and of the approaches in the previous references, is that one keeps
the stationary density ρ (or its logarithm) as an observable in the correlation
functions. In our approach the largely unknown distribution only enters in the
statistical averaging. On the other hand, the other approaches come with a new
and still interesting interpretation (e.g. response in the time-reversed dynamics in
[6] and co-moving frame in [15, 16]).

A first generalized fluctuation-dissipation relation giving a response formula in
our sense appears in Section 2 of [21] (Kurchan et al). It treats an overdamped
Langevin dynamics for a variable y(t), used for soft spin models, and the resulting
equation (2.10) in [21] is exactly our formula (5.16) for Q = V equal to y, where
(6.6) can be used. Another treatment for systems of Ising spins is done in [63, 64]
(Lippiello et al), there the response is also investigated to higher orders in h.
A more general treatment for jump processes is offered in [26] (Diezemann), in
particular its equations (16)-(17), see also [75]. In contrast, we have emphasized
the interpretation via entropy and traffic in nonequilibrium fluctuation theory
(more is to come on the meaning of traffic in the next part of this thesis). In fact,
that interpretation is exactly what makes a systematic generalization possible at
all. The only study in which we recognize some of the ideas related to the traffic
term is in [93] (Ruelle), in the context of dynamical systems.

8.2 Conclusions

We have studied linear response relations under general nonequilibrium conditions
(stationary and not). From physical constraints on the probability of trajectories,
we have obtained in Chapter 5 a general fluctuation-dissipation relation for the
response of a driven system to the addition of a potential. Most generally in
formula (5.6), and more specifically for systems in contact with an environment
at one specific temperature in (5.14). Our scheme lifts the nonequilibrium FDR
beyond formal first order perturbation theory applied to a specific dynamics, by
identifying in general physical terms the statistical quantities that determine the
response: entropy and traffic.

Chapter 6 has dealt with jump processes and with overdamped diffusions, which
is the usual set-up for discussions on the violation of the fluctuation-dissipation
theorem and for the possible emergence of an effective temperature. The general
fluctuation-dissipation relation for these classes of models is (6.7). As in this
relation the correlations with entropy and with traffic are expressed in terms of
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explicit averages, they constitute a formula ready to use in a general context. For
example, estimates of these correlations can be obtained with usual averaging in
simulations, without any need to know further details or approximations of the
stationary density of states. On the theoretical side, several previous approaches
can be recovered or extended within the our scheme. In many cases these results
have been discussed in specific model dynamics or for specific observables. It is
interesting that there is a unifying approach wı̀th statistical interpretation behind
this very broad variety of previous results.

In Chapter 7, we have applied our scheme to underdamped diffusions, resulting in
(7.9). It is seen that the correlation with entropy involves dissipation over different
reservoirs, each one with its own equilibrium temperature. The correlation with
traffic is again written in terms of observable quantities.

Generally, we like to stress the emergence of traffic, as an important player out
of equilibrium, complementary to the entropy flux. In equilibrium entropy and
traffic give the same contribution to the response function. Out of equilibrium,
they detach and the response needs to be evaluated in terms of correlation
functions with both entropy and traffic. So far traffic is in general not understood
operationally for real experiments, but in the previous chapters it has been
expressed as a statistical average and correlation function of theoretically known
forces. The fluctuation-dissipation relations we derived also give observational
significance to the notion of traffic, which so far has mostly appeared as a
theoretical concept in fluctuation theories (see also the next part of this thesis).

In the ongoing research it will be interesting to consider more general and other
models, e.g even non-Markovian systems. Also within the models we considered,
more general types of perturbation are possible and interesting. For example,
what will happen if the perturbation is not of the potential type but actually
changes the nonequilibrium part of the dynamics? Think of changing one of the
temperatures of several heat baths, or adding an extra nonconservative forcing.
In all these cases our results will have to be modified, of course, but we believe
that the general method and framework we use is applicable to this wider set of
questions. Specifically, the concepts of entropy and traffic will remain major actors
in nonequilibrium systems.





Part III

Dynamical fluctuations
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“Large deviations estimates have proved to be the crucial tool required to handle
many questions in statistics, engineering, statistical mechanics, and applied
probability.”

Amir Dembo and Ofer Zeitouni, in their preface to Large Deviations Techniques
and Applications (1998), [24]



Chapter 9

Large deviations in statistical

mechanics

In 1910, Einstein proposed to invert the equation on Boltzmann’s gravestone, to
express probabilities of fluctuations in terms of entropy:

W = exp{S/kB}

Such a formula shows that the probability of a fluctuation (a deviation of the
macrostates from their equilibrium values) is exponentially small and the entropy
is the function that governs this exponential behaviour (rate function). This idea
is generalized in the application of large deviation theory to statistical mechanics.
This theory mathematically deals with the exponential decay of probabilities of large
deviations in stochastic processes, as a correction to the law of large numbers. It is
very useful and forms a natural mathematical formalism for statistical mechanics,
because thermodynamic potentials as entropy and free energy naturally emerge as
rate functions. This chapter forms a brief introduction for the next chapters.

9.1 Introductory example: a discrete ideal gas

Consider a discrete ideal gas [37]. We mean by this a system consisting of N
independent particles, labelled by i = 1, . . . , N . The energy ωi of each particle is
a stochastic variable, drawn from the set {Ek|k = 1, . . . ,m}. The probability that
particle i has an energy ωi = Ek is ρk, where ρ = (ρ1, . . . , ρm) is a probability
vector, i.e.

∑

k ρk = 1. The total state of the system is given by ω = (ω1, . . . , ωN ).
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Because the particles are assumed to be independent, the probability of the whole
state ω is then

Prob(ω) =
N
∏

i=1

Prob(ωi) =
N
∏

i=1

[

m
∑

k=1

δωi,Ek
ρk

]

As a first step towards a more macroscopic description of such a system, we are not
interested in the exact energy of each particle, but rather in how many particles
have a certain energy. We define therefore the fraction of particles that have an
energy Ek:

pω(k) =
1
N

N
∑

i=1

δωi,Ek
(9.1)

where δ is the Kronecker delta. We call this fraction the empirical occupation of
Ek. The empirical occupation vector for the collection of energies is

pω = [pω(1), . . . , pω(m)]

Note that this (macrostate) is a stochastic variable, and at the same time defines
a probability distribution, because

∑

k pω(k) = 1.

The law of large numbers By the law of large numbers, we expect this empirical
occupation vector to resemble ρ = (ρ1, . . . , ρm) when the particle number N is very
large. More precisely, we define the space of probability vectors

X = {µ = (µ1, . . . , µm) ∈ [0, 1]m|
m
∑

k=1

µk = 1}

The collection of possible empirical occupation vectors for N particles form a
subspace of X , which we denote by ΛN . The metric we consider on X is

d(µ, ν) =
∑

k

(µk − νk)2 µ, ν ∈ Ω

Then the law of large numbers dictates that for any positive ǫ ∈ R

lim
N→∞

Prob(d(pω , ρ) < ǫ) = 1

However, for finite N , fluctuations/deviations from this expected behaviour are
always possible. If we want to know more about these fluctuations, we have to go
beyond the law of large numbers.
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Central limit theorem If we want to go beyond the law of large numbers, we
could use the central limit theorem. Formally, the central limit theorem then says
that in a distributional sense

Prob(
Npω −Nρ√

N
∼ z) → 1

N exp{−
m
∑

k=1

z2
k

2ρk
} (9.2)

for z ∈ R
m and N a normalization factor. To derive (9.2) is not trivial and we will

not elaborate on this, because it is not very important for our purposes. We do
stress that for large N this theorem only says something about the probabilities of
events for which pω − ρ is of the order of 1/

√
N). We call these small fluctuations.

To know more, we have to consider the probabilities of large fluctuations.

Beyond the central limit theorem In a simple system as this, it is not difficult
to compute the probabilities of arbitrary fluctuations. Let us therefore take an
arbitrary µ ∈ ΛN . This µ can be totally different from ρ and is therefore called a
(large) fluctuation. Elementary combinatorics give us

Prob(pω = µ) =
N !

(Nµ1)! · . . . · (Nµm)!
ρµ1

1 · . . . · ρµm
m

For systems with large N this expression as such is not very convenient. We
therefore use Stirling’s approximation for large N to derive the following:

1
N

log Prob(pω = µ) ≈ −
m
∑

k=1

µk log
(

µk

ρk

)

(9.3)

The approximation becomes exact in the limit of N → ∞. For this reason, we
write the probabilities in the following form:

Prob(pω = µ) ≈ e−NI(µ)

where I(µ) =
∑m

k=1 µk log µk

ρk
is minus the relative entropy between the probability

vectors µ and ρ. One can easily prove that I(µ) ≥ 0 in general. Moreover, it is
only zero for µ = ρ.

Even though we have made an approximation, this result still gives more
information than the law of large numbers and even more than the central limit
theorem: it tells us that the probability that the empirical occupation vector
to be equal to some µ 6= ρ is exponentially small in the number of particles
(only when µ = ρ there is no exponential decay, in accordance with the law of
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large numbers). At least, this is the dominant behaviour for large N . It is not
very surprising that there is an exponential behaviour in the number of particles,
because all particles are independent. However, also in many systems which do
have interactions, this exponential behaviour is observed. This may not come as
a surprise if we realize that many interactions are short-ranged, and parts of the
system that are sufficiently far apart are still approximately independent.

Such an exponential behaviour as in (9.3) is an instance of a large deviation
principle. As it turns out large deviation theory forms a natural framework
in which statistical mechanics can be embedded. It incorporates in a natural
way many key features, as the framework of thermodynamic potentials and the
variational principles that characterize equilibrium.

In this chapter we introduce the reader into some aspects of the theory of large
deviations, by using the example introduced above. The introduction that follows
here is based on [37, 100], and for more explanation we therefore refer to those texts.
For a thorough treatment of the mathematical theory, we refer to [24], while for the
embedding of the theory of statistical mechanics in the large deviation formalism
we refer to [35, 36, 61, 100].

9.2 The large deviation principle

In the example above, we defined the empirical occupation vector pω, and
computed approximately its probability distribution for large N . Let us try to
be mathematically more precise. We consider the probability that the empirical
occupation vector is close to some given probability vector µ ∈ X . We thus take
an arbitrary (small) positive ǫ ∈ R and consider the probability P (d(pω, µ) < ǫ).
Writing BN(µ, ǫ) = {ν ∈ ΛN |d(µ, ν) < ǫ}, this probability becomes

P (d(pω, µ) < ǫ) =
∑

ν∈BN (µ,ǫ)

P (pω = ν)

Although it is not trivial, one can prove [37] that this probability satisfies a large
deviation principle, stated here in a simplified way:

− lim
N→∞

1
N

logP (d(pω, µ) < ǫ) =
m
∑

k=1

µk log
(

µk

ρk

)

+O(ǫ) = I(µ) +O(ǫ)

As this can be done for arbitrary small ǫ, one often denotes this by

− lim
N→∞

1
N

logP (pω = µ) = I(µ) (9.4)
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The functional I is here the relative entropy between the probability vectors µ
and ρ. Generally, in large deviation theory, I is called the rate function, as it
quantifies the rate of exponential decay, or fluctuation functional., as it quantifies
the probability of a fluctuation (deviation from the typical value).

To define the large deviation principle in general, one needs to go into many
mathematical details [24]. This is not our goal. For our purposes, a definition as
in (9.4) is enough. Moreover, we do not concern ourselves in this text with proving
the large deviation principle. We do assume that, for the systems considered in
the next chapters, those proofs can be done (in a physically uninteresting way).
Instead we usually just assume the large deviation principle to hold, and refer to
e.g. [24, 27] for full mathematical proofs.

Following [36, 100], we denote

P (pω = µ) ≍ e−NI(µ)

to express a large deviation principle as in (9.4).

We state here some properties of rate functions, without giving proofs, (for proofs
we refer again to [100, 24]):

• For some µ ∈ X , the limit in (9.4) may not exist, because the probability
density decays to zero faster than exponentially (super-exponentially) in N .
In that case the rate function is set to +∞.

• In some cases I(µ) = 0 for some µ, meaning that the probability density
decays slower than exponentially (sub-exponentially). In the example, this
only happens when µ = ρ. In the systems we consider in the next chapters,
we assume that the rate function only has one global minimum where I is
zero. Actually this is equivalent with the assumption that there is a unique
stationary state of the system.

• Rate functions are positive: I(µ) ≥ 0. If they were not, the corresponding
probabilities would diverge instead of decay.

9.3 The contraction principle

Suppose we are given a new random variable, defined through a continuous
function of the old one: qω = h(pω). As we will see in the following, such a
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function can be many-to-one. A heuristic argument gives the rate function for q
in terms of the rate function for p. Through the large deviation principle we write

p(qω = ν) ≍
∫

µ:h(µ)=ν

dµe−NI(µ)

Laplace’s saddle-point approximation gives an exact expression for the following
limit:

− lim
N→∞

1
N

log
∫

µ:h(µ)=ν

dµe−NI(µ) = inf
µ:h(µ)=ν

I(µ)

One concludes that

p(qω = ν) ≍ exp{−N inf
µ:h(µ)=ν

I(µ)}

defining the rate function for qω as Iq(ν) = infµ:h(µ)=ν I(µ). This way of computing
one rate function as the infimum of another is called a contraction.

Let us consider the following case. In absence of information about our system, we
assume that the probabilities of all the energy levels of the particles are the same,
i.e. ρk = 1/m. The rate function I(µ) then becomes I(µ) = logm+

∑

k µk logµk.
Up to some constants this is minus the Shannon entropy of the probability vector
µ. Consider the probability that the total energy per particle (average energy) is
equal to a value E, giving the following contraction:

I(E) = inf
µ:
∑

k
µkEk=E

I(µ)

We can find such an infimum by using Euler-Lagrange equations with Lagrange
multipliers to ensure the restrictions. We get k equations of the form:

0 =
∂

∂µk
[logm+

∑

k

µk logµk + β(
∑

k

µkEk − E) + γ(
∑

k

µk − 1)]

where γ makes sure that µ sums to one and β makes sure that the average energy
is E. The solution of these equations is then a µ of the form

µk =
1
Z
e−βEk

where Z is a normalization constant, and β is determined by
∑

k µkEk = E. This
is the same form as the probability distribution of the canonical ensemble! It arises
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here as the most probable probability vector given an average energy E. The rate
function becomes

I(E) = logm− βE − logZ

One can check that dI
dE = β. If we return to the idea that entropy and probability

are related by S = kB logP , then the rate function I should represent minus the
entropy per particle, divided by kB . As a result dS/N = kBβdE. Indeed, the
Lagrange multiplier β is nothing but the inverse temperature associated to this
system. We also see that − 1

β logZ is the free energy of the system.

In this example, we clearly see that the ensemble theory of equilibrium statistical
mechanics naturally appears in large deviation theory, at least for this example.
The entropy plays the role of rate function, and the canonical ensemble is found
through a contraction principle as the most probable probability vector given an
average energy E.

9.4 The Gärtner-Ellis theorem

Let us take an arbitrary vector M ∈ R
m. We denote the scalar product between

such a vector and the probability vector µ by M · µ =
∑

k Mkµk. The scaled
cumulant generating function λ(M) for our example is defined by

λ(M) = lim
N→∞

1
N

log
〈

eNM·pω
〉

According to the Gärtner-Ellis theorem [34, 44], if λ(M) exists and is differentiable
for all M , then P (pω = µ) satisfies a large deviation principle with a rate function
given by

I(µ) = sup
M∈Rm

[M · µ− λ(M)]

This defines the rate function as the Legendre-Fenchel transform of λ. The relation
can also be inverted: λ(M) = supµ∈X [M ·µ−I(µ)]. We will not prove this theorem
here, but heuristically, one can argue that

〈

eNM·pω
〉

≍
∫

dµeN [M·µ−I(µ)]

Similar as before, the saddle-point approximation of Laplace tells us that

〈

eNM·pω
〉

≍ exp{N sup
µ∈X

[M · µ− I(µ)]}
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The Gärtner-Ellis theorem can help for explicit calculations of rate functions, as it
is sometimes easier to calculate the generating function λ. Vice versa, sometimes it
is easier to compute a rate function to get information about a generating function.

As an illustrative example, we assume again that ρk = 1/m. Consider the following
generating function:

λ(Ek) = lim
N→∞

1
N

log
〈

e−Nβ
∑

k
Ekµk

〉

As we already know the rate function I(µ) in this case, we can compute the
generating function by

λ(Ek) = sup
µ

[−β
∑

k

Ekµk − I(µ)]

We find that the canonical distribution µk = 1
Z e

−βEk solves this variational
problem. As a consequence, the generating function λ(Ek) = logZ. Remember
that we interpret the rate function I(µ) as the entropy per particle S/(NkB), and
− 1

β logZ is the free energy F . The Gärtner-Ellis theorem thus relates these two
by the Legendre transform, schematically:

F = sup
µ

[〈E〉µ − TS(µ)]

9.5 Typical behaviour and small fluctuations

The large deviation theory incorporates the law of large numbers and the central
limit theorem in the following sense.

Law of large numbers Suppose that the rate function I(µ) has a unique global
minimum at µ = ρ. First of all, we can show that this minimum should satisfy
I(ρ) = 0. This follows from the fact that λ(0) = 0:

0 = λ(0) = sup
µ

[−I(µ)] = −I(ρ)

Secondly we see that for any (measurable) set B ⊂ X :

P (pω ∈ B) ≍ e−N infµ∈B I(µ)

This tells us that P (pω ∈ B) → 0 whenever ρ /∈ B, and P (pω ∈ B) → 1 whenever
ρ ∈ B. This is the law of large numbers, with ρ the typical value to which pω

converges.
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Central limit theorem Given again a rate function I(µ) with a unique global
minimum at ρ. Suppose that the rate function is twice differentiable at ρ. We
define ‘small fluctuations’ as values µ close enough to ρ so that we can approximate
the rate function by

I(µ) ≈ 1
2

∑

k,l

∂2I

∂µk∂µl

∣

∣

∣

∣

µ=ρ

(µk − ρk)(µl − ρl)

In this approximation, the probability density has the form of a Gaussian for large
N :

P (pω = µ) ≈ exp{−N

2

∑

k,l

∂2I

∂µk∂µl

∣

∣

∣

∣

µ=ρ

(µk − ρk)(µl − ρl)}

Which is (a form of) the central limit theorem. For this reason fluctuations in
this regime are also called small fluctuations, Gaussian fluctuations or normal
fluctuations.

For our specific example, where I(µ) =
∑

k µk log µk

ρk
we have that

∂2I

∂µk∂µl

∣

∣

∣

∣

µ=ρ

= δk,l
1
ρk

so that for small fluctuations

P (pω = µ) ≈ exp{−N

2

∑

k

(µk − ρk)2

ρk
}

which coincides with (9.2) as expected.

9.6 Out of equilibrium

Because large deviation theory gives such a natural framework for equilibrium
statistical mechanics, it is a natural candidate to give an extension to nonequilib-
rium. As we said in the introduction, stochastic processes are an important tool
in nonequilibrium statistical mechanics.

The (mathematical) large deviation theory for Markov processes was thoroughly
founded by Donsker and Varadhan in [27, 28, 29, 30]. In the context of physics,
Onsager and Machlup [87] already used the large deviation approach in the 1950’s
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to examine relaxation to equilibrium in linear diffusion systems. A more general
treatment of this problem, with a different emphasis, was done by Freidlin and
Wentzell [41, 103]

In more recent years advances have been made in what is called static fluctuation
theory [5, 6]. This is set in nonequilibrium stationary dynamics, and one imagines
the system to be initially in the stationary regime a long time ago (at time −∞,
the distribution of states was the stationary distribution). The probability is
then considered that the distribution at time zero is equal to some other given
distribution (a fluctuation).

In this thesis we discuss dynamical fluctuation theory, in which time-integrated ob-
servables are considered, with time as the large parameter. This is mathematically
not a very big step: it boils down to renaming the particle number N to the time
T . For example: consider the vector ω = (ω1, . . . , ωN ) from the example above.
It describes the energies of the different particles. We could also see it as the
consecutive energies of one particle through time, so that ω becomes a trajectory
like we have used throughout this text. The empirical occupation vector pω then
gives us the fractions of time that the particle has spent in each energy state.
The only mathematical difference is that we work with continuous time. This
corresponds to measurements that are made continuously. We clarify this in the
next chapters. Apart from having a different interpretation, this switch to time
as a large parameter also allows us to consider small systems, without having to
make some hydrodynamic approximations.

In [70, 71, 72, 96] we have reported the application of dynamical fluctuation theory
on various classes of models. The major goal in this line of research is similar
to that of fluctuation-dissipation relations: to find out what thermodynamic
quantities govern the rate functions of the large deviations. Again, entropy and
traffic turn out to be the basic ingredients for constructing this out-of-equilibrium
theory.

We restrict ourselves in the next two chapters to the work reported in [70, 71] in
which respectively Markov jump processes and overdamped diffusions are treated.
However, the overall strategy in all models we have considered is the same: one
starts by correctly defining the observables (the time integrated occupations and
currents, as is explained there). Then, the rate functions (fluctuation functionals)
are computed for the joint probability of occupations and currents, which can
be done explicitly. The rate functions for occupations or currents alone can
then be computed by the contraction principle, which is unfortunately not always
possible. Throughout this calculation the physical aspect is most important: we
keep track of the influence of entropy and traffic on the rate functions. We also
show that the large deviation theory provides a way of defining thermodynamic
potentials, although these potentials do not directly correspond to the ones defined
in equilibrium thermodynamics. When only small deviations from the stationary
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behaviour are considered, the rate functions are approximated to a quadratic
dependence on the fluctuations (the regime where the central limit theorem
applies). When the dynamics is also close to equilibrium, known variational
principles such as the minimum entropy production principle are recovered.





Chapter 10

Driven overdamped diffusions

We apply the theory of large deviations to time integrated observables in general
overdamped diffusion processes. These observables are empirical occupation
densities and empirical currents. Central is the joint rate function for occupations
and currents and the role of entropy and traffic in it. This chapter represents work
reported in [71].

10.1 Model

We quickly recapitulate the equations describing overdamped diffusion, which we
discussed in Section 4.5.

10.1.1 Overdamped diffusions

General overdamped diffusions in d dimensions are governed by the Langevin
equation (4.12), interpreted in the Itô way:

dxi
t =

∑

j

[χij(xt)F j(xt)dt+
∂Dij

∂xj
(xt)dt+

√

2D(xt)ijdB
j
t ] (10.1)

where xi denotes a spatial component of the position x. In the shorter
vector/matrix notation this gives:

dxt = χ(xt)[f(xt) − ∇U(xt)]dt+ ∇ ·D(xt)dt+
√

2D(xt)dBt (10.2)

123
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In this equation we have explicitly written the energy U of the system, giving a
conservative forcing, while ft represents a nonconservative force (i.e. the driving).
Furthermore D and χ are d×d symmetric matrices both depending on the position
xt, and there are d Wiener processes dBj

t . We restrict ourselves to the case that
the system is in contact with one heat bath at a temperature β. Remember that
the local detailed balance condition implies χ = βD.

We restrict ourselves to two types of boundary conditions:
(1) periodic—the particle moves on the unit torus [0, 1)d and the fields U , f , and
χ are smooth functions on the torus;
(2) decay at infinity—the potential U grows fast enough at infinity so that the
particle is essentially confined to a bounded region, i.e., the density and its
derivative vanish at infinity.

Under either of the above boundary conditions we can simply ignore boundary
terms when performing integrations by parts. The particles are essentially confined
in their configuration space.
The probability density µt evolves according to the Fokker-Planck equation (4.14):

∂µt

∂t
+ ∇ · jµt

= 0, jµ = χµ (F − ∇U) −D∇µ (10.3)

The stationary condition reads ∇ · jρ = 0.

This class of models is still quite large. It is illustrative to consider a simple
example of these dynamics: a particle moving on a circle (one dimension). The
advantage here is that we can explicitly calculate the stationary distribution.

10.1.2 Diffusion on a circle

We consider a particle undergoing an overdamped motion on the circle with unit
length:

dxt = χ(xt)
[

f(xt) − U ′(xt)
]

dt+D′(xt)dt+
√

2D(xt) dBt (10.4)

The prime as superscript is a shorthand notation for the spatial derivative.

The corresponding Fokker-Planck equation for the time-dependent probability
density µt is

∂µt(x)
∂t

+ j′
µt

(x) = 0, jµ = χµ(f − U ′) −Dµ′ (10.5)
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The stationary density ρ solves the stationary equation j′
ρ = 0, i.e.,

χρ(f − U ′) −Dρ′ = jρ (10.6)

is a constant. For f = 0, equation (10.6) has the solution

ρ(x) =
1
Z
e−βU(x), Z =

∫ 1

0

e−βUdx (10.7)

and the corresponding stationary current is jρ = 0; this is a detailed balanced
dynamics with ρ the equilibrium density.
When adding a nongradient driving force,

∫ 1

0
fdx 6= 0, (10.6) can still be solved;

the stationary density obtains the form

ρ(x) =
1
Z

∫ 1

0

eβW (y,x)

D(y)
dy, Z =

∫ 1

0

∫ 1

0

eβW (y,x)

D(y)
dydx (10.8)

where

W (y, x) = U(y) − U(x) +

{
∫ x

y f dz for y ≤ x
∫ 1

y
f dz +

∫ x

0
fdz for y > x

(10.9)

is the work performed by the applied forces along the positively oriented path
y → x. In this model the stationary current can be computed by dividing the
stationary equation (10.6) by ρχ and by integration over the circle:

jρ =
W

∫ 1

0 (ρχ)−1dx
(10.10)

where W =
∫ 1

0 fdx is the work carried over a completed cycle. The non-zero
value of this stationary current indicates that time-reversibility is broken. In the
simplest nonequilibrium setting when U = 0 and f, χ > 0 are some constants, the
steady state has the uniform density ρ(x) = 1 and the current is jρ = χf .

10.2 Entropy and traffic

Before going on to defining the observables for which we want to describe large
deviation principles, let us first discuss the basic ingredients that play a role in
the rate functions: entropy and traffic.
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To properly define them, we need to define a reference process. We take this
process to be (see 4.7):

dxt = ∇ ·D(xt)dt+
√

2D(xt)dBt

i.e. the overdamped diffusion (10.2) with the force f − ∇U put to zero. The
action that describes the probabilities of trajectories ω = (xt)0≤t≤T of the original
process with respect to the reference process is given by (4.15):

e−A(ω) =
dPµ0

dP0
µ0

(ω) (10.11)

= exp

{

1
4

∫ T

0

dt[2ẋt + 2∇ ·D − χ(f − ∇U)] ·D−1χ(f − ∇U)

}

10.2.1 Entropy

The entropy flux into the environment is equal to the time-antisymmetric part of
the action (by local detailed balance, see (4.22)):

S(ω) = A(θω) −A(ω) = β

∫

dxt ◦ (f(xt) − ∇U(xt))

= β

∫

dxt ◦ f(xt) − β[U(xT ) − U(x0)] (10.12)

which is equal to the work done by the nonconservative force (see (4.21)) minus
the change of energy of the system. It is useful for later calculations to compute
the average of the entropy flux, started from some initial distribution µ0. For that
we need to compute the average of the Stratonovitch integral. We rewrite the
Stratonovitch integral to an Itô integral using (4.19):

∫ T

0

dxt ◦ f(xt) =
∫ T

0

dxtf(xt) +
∫ T

0

dt[D(xt)∇] · f(xt)

Using the Langevin equation, the average of the Itô integral
〈

∫ T

0
dxtf(xt)

〉

µ0

gives:

∫ T

0

〈

f(xt) ·
(

χ(xt)[f(xt) − ∇U(xt)]dt+ ∇ ·D(xt)dt+
√

2D(xt)dBt

)〉

µ0

=
∫ T

0

dt
〈

f(xt)
(

χ(xt)[f(xt) − ∇U(xt)] + ∇ ·D(xt)
)〉

µ0
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In the last step we used that the average over the term with dBt drops, because
dBt = Bt+dt −Bt is independent of xt and has average zero. Then, by definition
of the time-evolved distribution µt we get

〈

∫ T

0

dxt ◦ f(xt)

〉

µ0

=
∫ T

0

dt

∫

dxµt

(

f · χ[f − ∇U ] + ∇ · [Df ]
)

which can be rewritten succinctly, using partial integration, as

〈

∫ T

0

dxt ◦ f(xt)

〉

µ0

=
∫ T

0

∫

dxdtf · jµt
(10.13)

where jµt
is the probability current as in (10.3). The average entropy flux, starting

from a density µ0 is thus equal to

〈S(ω)〉µ0
=
∫ T

0

dt

[
∫

dxf · jµt
− d

dt

∫

dxU(x)µt(x)
]

(10.14)

In Section 2.8 we also discussed the average entropy. There we defined the entropy
of the system through the Shannon (or Gibbs) entropy:

s(µ) = −
∫

dxµ(x) log µ(x)

The total average change of entropy (entropy production) in the world, given the
initial distribution µ0 is then, see (2.18):

〈Sµ0 (ω)〉µ0
=
∫ T

0

dtσ(µt) (10.15)

where the instantaneous entropy production rate σ(µ) is easily computed to be

σ(µ) =
∫

jµ · (µD)−1jµ dx (10.16)

It is very important to note that, although computed through the action relative
to a reference process, the average entropies computed here do not depend on that
reference process (as long as the reference process is an equilibrium process).
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10.2.2 Traffic

The traffic is defined as the time-symmetric part of the action (10.11):

T (ω) = A(θω) +A(ω) (10.17)

=
β2

2

∫ T

0

dt(f − ∇U) ·D(f − ∇U) + β

∫ T

0

dt∇ · [D(f − ∇U)]

The average value of the traffic, given an initial distribution µ0 is then equal to

〈T (ω)〉µ0
=
∫ T

0

dtτ(µt)

with the instantaneous ‘traffic rate’ given by

τ(µ) =
β2

2

∫

dxµ(f − ∇U) ·D(f − ∇U) + β

∫

dxµ∇ · [D(f − ∇U)] (10.18)

The traffic, in contrast to entropy, is very much dependent on the choice of the
reference process. It is interesting to note that for overdamped diffusions, the
entropy rate and traffic rate are closely related. To see this, note that the entropy
production rate for the reference process, can be found by simply putting f − ∇U
to zero in the explicit formula (10.16):

σ0(µ) =
∫

dx
(∇µ) ·D(∇µ)

µ

One can then check directly that

τ(µ) =
σ(µ) − σ0(µ)

2
(10.19)

In following sections we often compare the traffic rates of different dynamics
(determined by different forces). This equality then tells us that these traffic
differences can be replaced by entropy differences. Hence, relation (10.19) brings
about a simplification in the structure of fluctuations that is characteristic and
restricted to diffusions. See for example the next chapter, where there is no relation
like (10.19). We believe that this also indicates that a more general nonequilibrium
theory should reach beyond the Langevin or diffusion approximation.
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10.3 Observables

Here we define the observables for which we want to compute the rate functions.

A basic and time-symmetric dynamical observable is the empirical distribution of
the occupation times. It is defined as the fraction of time spent in a subset A of
the state space Ω over a fixed time interval T :

pω(A) =
1
T

∫ T

0

χA(xt) dt

where χA(x) is the indicator function giving a value 1 if x ∈ A and zero otherwise.
Note that this resembles the definition of the empirical occupation vector (9.1)
in the example explained in the last chapter. The difference is that the particle
number N is replaced by the duration time T and the state space is continuous.

Having this in mind we formally write the empirical occupation density p:

pω(x) =
1
T

∫ T

0

δ(xt − x) dt (10.20)

This is a path-dependent observable as it varies over the paths ω = (xt)0≤t≤T .
Note that it is normalized (i.e. integration over state space gives one). It is also a
useful observable, because we can write time-integrated state-functions g in terms
of this empirical density:

1
T

∫ T

0

dtg(xt) dt =
∫

dxpω(x)g(x)

Because we always assume that there exists a unique stationary distribution, we
have ergodicity:

∫

dxpω(x)g(x) → 〈g〉ρ

almost surely for T → ∞ for any state function g (this means that the probability
to have a path ω for which this convergence holds is equal to one). We conclude
that for large times pω → ρ almost surely.

The time-antisymmetric observable of special relevance is the empirical current.
We define the total time-averaged current in a set A ⊂ Ω as

Jω(A) =
1
T

∫ T

0

dxt ◦ χA(xt)
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where the circle denotes a Stratonovitch stochastic integral, and χA is again an
indicator function. This observable is the sum of all displacements the particle
makes when in a subset A of Ω and thus represents the time-integrated particle
current (per unit of time). As usual, there can be an ambiguity in choosing the
type of stochastic integral. The Stratonovitch integral is there to assure that the
observable is time-antisymmetric. The current density is then formally defined as

Jω(x) =
1
T

∫ T

0

dxt ◦ δ(xt − x) (10.21)

It depends again on the (random) path ω and it measures the time-averaged current
while in x. As for the empirical occupations, this observable is useful because
quantities like work and the entropy flux can be written in terms of it: for an
arbitrary state function g we get

1
T

∫ T

0

dxt ◦ g(xt) =
∫

dxJω(x)g(x)

In the same way as for occupations and with (10.13) we see that Jω → jρ for
T → ∞ almost surely.

10.4 Fluctuations of occupations and currents

We already argued that the empirical densities of occupations and currents will, in
the large time limit, converge almost surely to the stationary densities ρ and jρ. In
this section we compute the rate functions (fluctuation functionals) for deviations
from these typical values. This amounts to computing the probabilities that the
empirical observables pω, Jω are close to some given but arbitrary density µ and
current j.

10.4.1 Definitions and restrictions

To be able to compute the probabilities of the empirical observables, we have to
define the distance d between pω and µ and between Jω and j. With such a
definition, probabilities like P (d(pω, µ) < ǫ) for some small number ǫ > 0 should
be computed. Actually proving that the large deviation principle holds, i.e.

− lim
T →∞

1
T

logP (d(pω , µ) < ǫ) = I(µ) +O(ǫ) (10.22)
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and under what restrictions, is not trivial. In this text we do not concern
ourselves with this. For mathematical details, see [24, 27, 28, 29, 30]. Instead, we
assume that the large deviation principle holds, and concentrate on computing the
rate functions using heuristic arguments. We begin by introducing the following
simplified notation for (10.22):

− lim
T →∞

1
T

logP (pω = µ) = I(µ) or P (pω = µ) ≍ e−T I(µ)

Similarly as for the occupations the probability of deviations for the currents are
defined. However, the natural starting point is the joint probability for currents
and occupations:

P (pω = µ, Jω = j) ≍ e−T I(µ,j)

as both I(µ) and I(j) can be obtained in principle from the joint fluctuations by
the contraction principle.

A first observation that we can make, is that I(ρ, jρ) = 0, i.e. the stationary
density and current have a probability that does not decay to zero. Moreover, the
stationary regime is characterized by

I(ρ, jρ) = inf
µ,j

I(µ, j)

A second observation is that I(µ, j) = ∞ = I(j) whenever j is not stationary, i.e.
for ∇ · j 6= 0. Indeed, for any smooth bounded function Y one has

∫

Y ∇ · Jω dx = − 1
T

∫ T

0

∇Y (xt) ◦ dxt = − 1
T

[Y (xT ) − Y (x0)] → 0

for T → ∞. Hence, in a distributional sense, ∇ · Jω → 0 for T → ∞ along any
particle trajectory, which proves the above statement. That is why from now on
we always assume that ∇ · j = 0, unless otherwise specified.

10.4.2 Computation of the fluctuation functional

The probability of the fluctuations can be written as

P (pω = µ, Jω = j) =
∫

dP (ω)χ[pω = µ, Jω = j]
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where χ is again an indicator function, giving one when its argument is satisfied
and zero otherwise. We have omitted initial conditions in the notation, as they
are not important in the long-time limit. (To be more rigorous, one has to define
a neighbourhood of µ and j using the distance defined on the function space.
The indicator function then gives one when the empirical densities are in that
neighbourhood.) To compute the rate function we exploit the knowledge we have
of Radon-Nikodym derivatives. For this we define a new dynamics, by changing
the force f in (10.2) to a new force g. We take this g such that the density µ and
the current j become typical, i.e:

j = χ[g − ∇U ]µ−D∇µ

This explicitly defines g. With this new dynamics we write:

P (pω = µ, Jω = j) =
∫

dPg(ω)
dPf

dPg
(ω)χ[pω = µ, Jω = j] (10.23)

where we now have added subscripts f and g to denote respectively the old and
the new dynamics. The Radon-Nikodym derivative can be written in terms of the
entropy production and traffic:

log
dPf

dPg
(ω) = Sf (ω) − Sg(ω) + Tg(ω) − Tf (ω)

which are defined in (10.12) and (10.17). Again the quantities with a subscript
g are defined in the dynamics with f replaced by g. The excess entropy can be
rewritten in terms of the empirical current:

Sf (ω) − Sg(ω) = β

∫

dxt ◦ [f(xt) − g(xt)] = βT

∫

dxJω(x)[f(x) − g(x)]

The excess traffic can be rewritten in terms of the empirical occupations:

Tg(ω) − Tf (ω) = βT [τg(pω) − τf (pω)]

where τg is given by (10.18), but with f replaced by g. We see that the entropy
production in both dynamics only depends on the path ω through the empirical
current, and the traffic in both dynamics only depends on the empirical occupation
density. When we substitute this in (10.23) we see that the indicator function
allows us to replace the empirical observables by the density µ and the current j.
We thus get

P (pω = µ, Jω = j) = e−T I(µ,j)

∫

dPg(ω)χ[pω = µ, Jω = j] (10.24)
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where the functional I(µ, j) is given by

I(µ, j) =
1
2
τf (µ) − 1

2
τg(µ) +

β

2

∫

dxj · (g − f) (10.25)

This functional is exactly the rate function, because the last factor in (10.24) goes
to one in the limit of large times, which is a consequence of the fact that µ and j
are the typical (stationary) values in the dynamics determined by g.

Let us examine this joint rate function I(µ, j). It is the sum of an excess
instantaneous traffic rate given the density µ alone, and an excess work (or,
equivalently, entropy flux) given stationary current j alone. The excess is an
excess of the original dynamics with respect to the dynamics in which µ and j are
typical. If we use (10.19), we can rewrite the functional in terms of the entropy
production rate:

I(µ, j) =
1
4
σf (µ) − 1

4
σg(µ) +

β

2

∫

dxj · (g − f) (10.26)

Furthermore, using the explicit expressions of the traffic/entropy and the force g
we can rewrite the fluctuation functional in the following explicitly positive form:

I(µ, j) =
1
4
σf (µ) − 1

4
σg(µ) +

β

2

∫

dxj · (µD)−1(j − jµ)

=
1
4

∫

(j − jµ) · (µD)−1(j − jµ) dx (10.27)

(On the assumption ∇ · j = 0; remember that I(µ, j) = ∞ otherwise.) This
last formula resembles the Gaussian-like expressions for the current distribution,
typical for hydrodynamic fluctuations of the diffusion-type. Such expressions are
omnipresent in the works of e.g. [7, 9]. Although the quadratic integrand in
(10.27) resembles the (generalized Onsager-Machlup) Lagrangian for macroscopic
fluctuations in the hydrodynamic limit, we have no spatial/temporal rescaling here.
We have started from a mesoscopic system as described by a diffusion equation and
the only large parameter is the time span T . The difference between our work and
other work on dynamical large deviations becomes visible from the formula (10.25)
and (10.27). Our approach has nothing to do with hydrodynamic rescaling or with
macrostatistics. It concerns the thermodynamic interpretation of the fluctuation
functional I(µ, j) for our mesoscopic system: how it is shaped from quantities
like traffic, work and entropy production, and providing full account of the steady
dynamical fluctuations in both the time-symmetric and the time-antisymmetric
sectors.
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10.5 A notion of thermodynamic potentials

In equilibrium systems it is useful to consider thermodynamic potentials (like free
energy), as they have a clear physical meaning and characterize equilibrium via
variational principles. Moreover, to go from one potential to another, Legendre
transforms are used. Fluctuation functionals also bring with them variational
principles. First of all, and mainly, minimizing them characterizes stationarity.
In (10.25) we gave an explicit expression for the rate function of occupations and
currents. Let us analyze this from the viewpoint of thermodynamic potentials
and Legendre transforms. First of all, the first two terms in (10.25) constitute an
excess traffic, or equivalently excess entropy production (10.19). Let us consider
the traffic in a dynamics governed by an arbitrary force h:

τh(µ) =
β2

2

∫

dxµ(h − ∇U) ·D(h− ∇U) + β

∫

dxµ∇ · [D(h− ∇U)]

This can be seen as a potential for the currents in the sense that the functional
derivative of it with respect to the force, gives

δτh

δh(x)
= βjh

µ(x) (10.28)

where jh
µ is the probability current in a dynamics with a force h, see (10.3). It is

then natural to examine the Legendre transform of τh:

G(µ, j) = sup
h

[

β

∫

h · jdx− τh(µ)
]

We find the supremum by using Euler-Lagrange equations:

j = jh
µ

so that h = g is exactly the force needed to make the current j typical, together
with µ:

G(µ, j) = β

∫

g · jdx− τg(µ)

On the other hand, if we take the functional derivative of G, we get:

δG

δj(x)
= βg(x) (10.29)
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where g is again the force that makes µ and j typical. So G is a potential for the
forces, just like τ was a potential for the currents, and by Legendre transforms we
can switch between the two.

We can easily rewrite I(µ, j) in terms of G and τ :

I(µ, j) =
1
2

[

G(µ, j) + τf (µ) − β

∫

dxf · j
]

(10.30)

Note that τ0(µ) = 0, so that 1
2G(µ, j) is exactly equal to the fluctuation functional

in the case that f = 0. In other words:

If (µ, j) = I0(µ, j) +
1
2

[

τf (µ) −
∫

dxf · j
]

This is nice, because the left-hand side is a fluctuation functional for a
nonequilibrium dynamics, while on the right-hand side, the first term is a
fluctuation functional in an equilibrium dynamics. The rest is thus ‘the correction
to equilibrium.’

We can still rewrite (10.30) in the form

4If (µ, j) = sup
f

{

2β
∫

dxf · j − σf (µ)
}

− 2β
∫

dxf · j + σf (µ) (10.31)

fully in terms of entropic quantities, due to (10.19). A similar structure, cf.
(10.28) and (10.29), has been established already before in the framework of jump
processes, see [69] and also the next chapter.

10.6 Contractions

Now that we have a fluctuation functional for both symmetric and antisymmetric
variables, we can compute the statistics of empirical averages of arbitrary physical
quantities. In particular, we can try to find the fluctuation functionals for density
I(µ) and for current I(j) separately. To start we look at the fluctuations of the
occupation density.
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10.6.1 Occupation statistics

As I(µ) = infj I(µ, j), we have to compute the minimizing current j for any given
density µ. Since the minimization is constrained via the stationary condition
∇ · j = 0, we get the Euler-Lagrange equation from (10.27)

j = χµ
[

f − ∇ · (U + V )
]

−D∇µ (10.32)

where V is a Lagrange multiplier (function of x). Not surprisingly, we see that
the minimizer is the stationary current for a modified dynamics that makes µ
stationary. This modified dynamics is achieved here by adding to the imposed
potential U an extra potential V . We therefore call the minimizing current in
(10.32) jV

µ , and the fluctuation functional becomes:

I(µ) =
1
4

∫

(jV
µ − jµ) · (µD)−1(jV

µ − jµ) dx (10.33)

For some explicit examples of solutions to (10.32), see further down, in equations
(10.37) and (10.46).

The fluctuation functional I(µ) obtains other equivalent forms by substituting
g = f − ∇V into (10.25):

I(µ) =
τ(µ) − τV (µ)

2
=
σ(µ) − σV (µ)

4
(10.34)

where the second equality follows again from (10.19). In this way we have
recognized the excess traffic (or here also: the excess entropy production) as
governing the large time statistics of the occupation times. Excess is here excess
of the original with respect to the modified process in which µ is typical. The
fluctuation functional I(µ) thus exactly equals one quarter of a difference in
entropy production rates when having density µ, these rates being computed
respectively for the original dynamics and for a modified dynamics that makes
µ stationary.

In formulæ (10.33) and (10.34) the potential V has to be determined from µ by
solving the inverse stationary problem (10.32). We discuss two examples in which
this can be done explicitly: the equilibrium case and the example of diffusion on
the circle.

Equilibrium dynamics Let us see what can be said in general for equilibrium
diffusions. If f = 0 then equation (10.32) has the solution V = −β−1 logµ, and
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the corresponding current jV
µ and the entropy production σV (µ) are both zero. As

a result,

I(µ) =
σ(µ)

4
(10.35)

This exact relation between the equilibrium dynamical fluctuations and the entropy
production is solely true for diffusion processes. In contrast, for jump processes (see
the next chapter) σ(µ) gives only the leading term in an expansion of I(µ) around
the equilibrium density ρ ∝ e−βU , and the relation (10.35) obtains corrections
when beyond small fluctuations; see [68] for details.

Diffusion on the circle For the one-dimensional example of Section 10.1.2 the
inverse stationary problem (10.32) allows for an explicit solution. The current jV

µ

is immediately read off the formula (10.10),

jV
µ =

βW
∫ 1

0
(µD)−1dx

, W =
∫ 1

0

f dx (10.36)

and the potential V obtains the form

V (x) = −U(x) − 1
β

logµ(x) +
∫ x

0

(

f − jV
µ

βµD

)

dy (10.37)

which is a nonlocal functional of the given density µ. The fluctuation functional
is explicitly given as

4I(µ) = σ(µ) − W
2

∫ 1

0
(µD)−1dx

(10.38)

for µ 6= 0.
Observe that if µ = 0 on some open set A then the rate function equals I(µ) =
σ(µ)/4. (That follows also from the equilibrium form (10.35) below as the circle
gets effectively cut and the dynamics mimics a detailed balance one.) The infimum
of I(µ) over all densities µ that vanish on A then gives the escape rate from the
complement Ac = [0, 1) \A.
As a simple example, assume that U = 0 and let f and D be some constants. In
this case the entropy production (10.16) reads

σ(µ) = β2Df2 +D

∫ 1

0

µ′2

µ
dx (10.39)
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To compute the escape rate from Ac (or, entrance rate to A) we must take the
infimum of (10.39) over all µ that vanish on A. Setting A = (0, δ) for some 0 <
δ < 1, that infimum is reached for the density µ∗(x) = 2

1−δ sin2(π(x−δ)
1−δ ), x ∈ [δ, 1],

and the escape rate is

inf
µ|A=0

I(µ) = I(µ∗) =
π2D

(1 − δ)2
+
β2Df2

4
(10.40)

Even in equilibrium (f = 0) the result is meaningful as it relates the diffusion
constant to an escape rate. In the context of dynamical systems, the analysis of
the escape rates and of their link to linear transport coefficients was initiated by
Dorfman and Gaspard, see [31, 32] and references therein.

10.6.2 Current statistics

The contraction to the current j is also possible. However, up to special examples,
there is no explicit solution to the associated variational problem and for general
models one has to resort to a perturbative or numerical analysis. In fact, often
the calculation starting from the generating function of the current appears more
practical than to do the contraction starting from I(µ, j), see e.g. [25]. Through
the Gärtner-Ellis theorem the generating function is related to the fluctuation
functional via a Legendre transform.

However, we can check in general a fluctuation theorem for currents: notice that

I(µ,−j) − I(µ, j) =
1
2

∫

dxj(µD)−1jµ =
β

2

∫

dxj · f

This remains true even when the contraction to currents alone is made. We thus
have that

P (Jω = j)
P (Jω = −j) ≍ exp

{

βT

2

∫

dxj · f
}

We see that currents that have on average the same direction as the forcing, are
exponentially more probable than their reversed currents.

For explicit computations of the current rate function we restrict us here to giving
the result for a constant drift on the circle.
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Constantly driven diffusion on the circle We take U = 0 and f, χ constants. In
this case, from (10.27) the joined fluctuation functional reads:

I(µ, j) =
1

4D

∫

1
µ

(j − βDfµ−Dµ′)2 dx (10.41)

and for all j, the infimum over µ is reached at the uniform distribution, so that

I(j) =
(j − βDf)2

4D
(10.42)

and hence we see that here the current fluctuations are Gaussian.

10.7 Small fluctuations and entropy principles

Considering small fluctuations (for which a quadratic approximation is valid) can
simplify the fluctuation functionals mathematically. It is also experimentally
a more accessible regime, as the fluctuations are more probable than large
fluctuations. The fluctuation functionals can be expanded in both the occupation
densities and currents around their typical values and the strictly positive
quadratic form obtained in the leading order describes normal (Gaussian)
fluctuations. From a physical point of view, the structure of these normal
fluctuations have been first analyzed by Onsager and Machlup, [87], for the case
of relaxation to equilibrium. Here we show a natural extension of the original
Onsager-Machlup formalism to nonequilibrium systems by starting from the above
fluctuation theory.

We look here at the Gaussian approximation in a dynamics far from equilibrium.
Later we will also make the driving f small, to be close to equilibrium.
As is clear from (10.27), current and occupations are coupled. It is because of this
coupling that contractions of I(µ, j) to I(µ) and to I(j) become rather complicated.
Even for small fluctuations this coupling remains: take µ = ρ(1 + ǫµ1) and j =
jρ + ǫj1, with ǫ a small parameter. Because j − jµ is then O(ǫ), the fluctuation
functional is O(ǫ2):

I(µ, j) =
ǫ2

4

∫

dx
[

j1 · (ρD)−1j1 + µ2
1jρ · (ρD)−1jρ

+∇µ1 · ρD∇µ1 − 2µ1j1 · (ρD)−1jρ

]

+ o(ǫ2) (10.43)

The last term in the integrand gives the coupling between occupation and current
fluctuations. It is proportional to the stationary current, which is non-zero away
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from equilibrium. It is only when we take a dynamics close to equilibrium, i.e.
f = ǫf1, that the fluctuations decouple. In this approximation we have that
jρ = O(ǫ), and thus, near equilibrium,

I(µ, j) =
ǫ2

4

∫

dx
[

j1 · (ρD)−1j1 + ∇µ1 · ρD∇µ1

]

+ o(ǫ2) (10.44)

with, to leading order, a complete decoupling between the time-symmetric
(occupations) and the time-antisymmetric (current) sectors.

Occupations When close to equilibrium, the computation of I(µ) by contraction
is easy: we see from (10.44) that the second term on its right-hand side is just
I(µ).
In the same approximation of small fluctuations and close-to-equilibrium, the
entropy production becomes:

σ(µ) =
∫

dx
[

jρ · (ρD)−1jρ + ǫ2∇µ1 · ρD∇µ1

]

+ o(ǫ2) (10.45)

and thus we get

I(µ) =
σ(µ) − σ(ρ)

4
+ o(ǫ2) (10.46)

This reveals to be a special case of a general result, [68], according to which the
entropy production governs the occupational statistics in the linear irreversible
regime. It provides a fluctuation-based explanation for the minimum entropy
production principle introduced by Prigogine to characterize stationarity via an
(approximate) variational principle, [89]: the stationary state has a minimal
entropy production, which is not necessarily zero because the system is out of
equilibrium.

Currents For currents we have an analogue of the minimum entropy production
principle. The starting point is again (10.44) from which we extract the current
fluctuations:

I(j) =
1
4

∫

(j − jρ) · (ρD)−1(j − jρ) dx+ o(ǫ2)

=
1
4

[

D(jρ) + D(j) − 2S(j)
]

+ o(ǫ2) (10.47)
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with D(j) =
∫

j · (ρD)−1j dx sometimes called the Onsager dissipation function,
and S(j) = β

∫

f ·jdx is the entropy flux given a current j. In particular, this leads
to a variational characterization of the steady current jρ which can be written
as the following maximum entropy production principle: the jρ maximizes the
entropy flux S(j) under the two stationary constraints

(1) ∇ · j = 0, (2) D(j) = S(j) (10.48)

The second condition is indeed satisfied at j = jρ (note also that ρ can with no
harm in this order be replaced by the equilibrium density ρf=0 = e−βU/Z.) Such a
variational principle, known as a maximum entropy production principle, is often
used in applications and apparently even beyond the linear irreversible regime. As
is however clear from (10.47) from our dynamical fluctuation theory, the validity of
the maximum entropy principle is restricted to close-to-equilibrium. Beyond that
regime, we must refer to contractions from (10.27), (10.30) or even from (10.43)
for generally valid expressions with a general thermodynamic meaning.





Chapter 11

Markov jump processes

Here, the large deviation theory is applied to Markov jump processes, again with
empirical occupation and current densities as observables. The lines of reasoning
are the same as in the last chapter, and therefore the discussion in this chapter is
less detailed. For more details, we refer to [70].

11.1 Entropy and traffic

In this chapter we consider time-homogeneous Markov jump processes on a finite
state space Ω, determined by the transition rates k(x, y). We imagine the system
to be in contact with a single heat bath. The local detailed balance assumption
then restricts these rates (3.10):

k(x, y)
k(y, x)

= e−β[U(y)−U(x)−W (x,y)]

where U(x) is the energy of the system in state x and W (x, y) = −W (y, x) is the
work done on the system by a nonconservative force during the transition x → y.

Again the main ingredients for the dynamical fluctuation theory are the entropy
and traffic, which are defined through the path-probability density, relative with
respect to a reference process. As the reference process we take an equilibrium
process with rates k0(x, y) defined through

k(x, y) = k0(x, y)e
β
2 W (x,y) (11.1)

143
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One can check that the rates k0(x, y) are detailed balanced with equilibrium
distribution ρ(x) ∝ exp[−βU(x)]. The action of the original process with respect
to this reference process is given by (3.9):

−A(ω) = log
dP
dP0

(ω)

=
∫ T

0

dt[λ0(xt) − λ(xt)] +
∑

t≤T

log
(

k(xt− , xt)
k0(xt− , xt)

)

where the sum is over all jump times of the path, xt− is the state just before the
jump and λ(x) =

∑

y k(x, y). Using the relation between the original and the
reference process, this becomes

−A(ω) =
∫ T

0

dt
∑

y

k0(xt, y)[1 − e
β
2 W (xt,y)] +

β

2

∑

t≤T

W (xt− , xt) (11.2)

11.1.1 Entropy

The excess entropy flux (original system with respect to the reference) into the
environment during a trajectory ω = (xt)0≤t≤T is given by

Sex(ω) = A(θω) −A(ω) = β
∑

t≤T

W (xt− , xt)

For later purposes we would like to compute the average of the entropy production.
We prove that for any function of two states g(x, y) and for any initial condition
µ:

〈

∑

t≤T

g(xt− , xt)

〉

µ0

=
∫ T

0

dt
∑

x,y

µt(x)k(x, y)g(x, y) (11.3)

We do this by defining yet another set of rates k∗(x, y) = k(x, y) exp[h · g(x, y)],

with h ∈ R and using the identity 1 =
〈

dP∗

dP (ω)
〉

µ0

:

1 =

〈

exp







∫ T

0

dt
∑

y

k(xt, y)[1 − ehg(xt,y)] + h
∑

t≤T

g(xt− , xt)







〉

µ0
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Taking the derivative with respect to h in h = 0 of this equation gives us then

0 =

〈

−
∫ T

0

dt
∑

y

k(xt, y)g(xt, y) +
∑

t≤T

g(xt− , xt)

〉

µ0

which proves (11.3). The average of the excess entropy flux is thus

〈Sex(ω)〉µ0
=
∫ T

0

dt
∑

x,y

µt(x)k(x, y)W (x, y) =
1
2

∫ T

0

dt
∑

x,y

jµt
(x, y)W (x, y)

with jµ(x, y) = µ(x)k(x, y)−µt(y)k(y, x) the probability current. This entropy flux
is an excess with respect to the reference equilibrium process. For the equilibrium
process we have, because of detailed balance:

S0(ω) = log
ρ(xT )
ρ(x0)

= −β[U(xT ) − U(x0)]

The average of this can be written as

〈S0(ω)〉µ0
= −β

∫ T

0

∑

x

d

dt
µt(x)U(x) =

β

2

∫ T

0

∑

x,y

jµt
(x, y)[U(x) − U(y)]

In Section 2.8 we defined the entropy of the system through the Shannon (or Gibbs)
entropy:

s(µ) = −
∫

dxµ(x) log µ(x)

The total average change of entropy (entropy production) in the world, given the
initial distribution µ0 is then the sum of the entropy flux of the reference process
plus the excess entropy flux plus the entropy change of the system, see also (2.18):

〈Sµ0 (ω)〉µ0
= s(µT ) − s(µ0) + 〈[S0(ω) + Sex(ω)]〉µ0

=
∫ T

0

dtσ(µt) (11.4)

where the instantaneous entropy production rate σ(µ) is straightforwardly
computed to be

σ(µ) =
1
2

∑

x,y

jµ(x, y)[log µ(x) − logµ(y) + βU(x) − βU(y) +W (x, y)]

=
∑

x,y

µ(x)k(x, y) log
µ(x)k(x, y)
µ(y)k(y, x)
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11.1.2 Traffic

As for the entropy flux, we get the excess traffic from the action:

Tex(ω) = A(θω) +A(ω) = 2
∫ T

0

dt[λ(xt) − λ0(xt)] (11.5)

The average of this, starting from an initial distribution µ0, is

〈Tex〉µ0
= 2

∫ T

0

dt[τ(µt) − τ0(µt)]

with

τ(µ) =
∑

x

µ(x)λ(x) =
∑

x,y

µ(x)k(x, y) (11.6)

which is equal to the average number of jumps per unit of time for a system in a
distribution µ. We call it the activity of the system. Note that this activity can
be seen as the instantaneous traffic rate (only with a different reference than in
(11.5)).

11.2 Observables

Like in the last chapter our first observable is the empirical time-integrated
occupation density:

pω(x) =
1
T

∫ T

0

dtδxt,x

where δxt,x is the Kronecker delta, giving one when xt = x and zero otherwise.
Furthermore we define the empirical distribution that counts jumps:

Qω(x, y) =
1
T

∑

t≤T

δx
t− ,xδxt,y

Again, as for the case of diffusions, ergodicity leads us to the conclusion that in
the long time limit pω → ρ and Qω(x, y) → ρ(x)k(x, y) almost surely. From Qω

we can define the empirical current:

Jω(x, y) = Qω(x, y) −Qω(y, x)

which converges in the long time limit to jρ almost surely.
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11.3 Joint fluctuations of occupations and currents

The easiest starting point for deriving fluctuation functionals is the joint
fluctuations of the occupations and jumps:

P (pω = µ,Qω = q) ≍ e−T I(µ,q)

Again, one has to take care in correctly defining such a large deviation principle,
and prove when it is valid. We will not do this here. Instead we concern ourselves
with computing the rate functions. We refer to [24] for mathematical details.

The heuristic argument to compute the rate function I(µ, q) is essentially the same
as the one in the last chapter. We first define a new dynamics in which q and µ
are typical, i.e. we take a process with transition rates q(x, y)/µ(x). Then, we
compute the action for a path ω for the original process with respect to the new
one:

A(ω) =
∫ T

0

dt
∑

y

[k(xt, y) − q(xt, y)
µ(xt)

] +
∑

t≤T

log
q(xt− , xt)

µ(xt− )k(xt− , xt)

Using the definitions of our empirical observables, we rewrite this to

A(ω) = T
∑

x,y

{

pω(x)[k(x, y) − q(x, y)
µ(x)

] +Qω(x, y) log
q(x, y)

µ(x)k(x, y)

}

We then see that the probability of the fluctuation becomes

P (pω = µ,Qω = q) =
∫

dPq(ω)e−A(ω)χ[pω = µ,Qω = q]

And, similarly as for diffusions we can replace the empirical observables in the
action by µ and q, so that in the end the rate function becomes

I(µ, q) =
∑

x,y

{

µ(x)k(x, y) − q(x, y) + q(x, y) log
q(x, y)

µ(x)k(x, y)

}

(11.7)

However, we would like to find the rate function for the joint fluctuations of
occupations µ and currents j. By the contraction principle, we see that this rate
function is the infimum of I(µ, q) over all q for which q(x, y) − q(y, x) = j(x, y).
Note that for any path ω and any (bounded) state function Y , we have that

∑

x

Y (x)

[

∑

y

Jω(x, y)

]

=
Y (x0) − Y (xT )

T
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which goes to zero for the long time limit. Therefore we only consider fluctuations
for which

∑

y j(x, y) = 0. The q∗ that makes the infimum can be explicitly
computed. For that we compute the Euler-Lagrange equations:

q(x, y) = µ(x)k(x, y)e
βF (x,y)

2 (11.8)

where F (x, y) = −F (y, x) is a Lagrange multiplier, which makes sure that

j(x, y) = q(x, y) − q(y, x) = µ(x)k(x, y)e
βF (x,y)

2 − µ(y)k(y, x)e− βF (x,y)
2 (11.9)

This equation can be explicitly solved, giving the minimizer q∗:

q∗(x, y) =
j(x, y)

2
+

1
2

√

[j(x, y)]2 + 4µ(x)µ(y)k(x, y)k(y, x)

This can then be substituted into I(µ, q = q∗) to get I(µ, j). Going beyond the
mathematics, we compare (11.8) to the local detailed balance assumption which
says that

q(x, y)
q(y, x)

=
µ(x)
µ(y)

e−β[U(y)−U(x)−W (x,y)−F (x,y)]

This gives an interpretation to the Lagrange multiplier F : it is a modification of
the work W (x, y) originating from a nonconservative forcing. We therefore call F
a force. Moreover, the equation (11.9) tells us that this force makes the fluctuation
µ, j typical. This is the same kind of modification as we had in the last chapter.
There, to find the joint rate function of occupations and currents we also had to
introduce a new force which made the fluctuation typical. It is illustrative to write
I(µ, j) in terms of this F by substituting (11.8) into I(µ, q):

I(µ, j) =
∑

x,y

µ(x)k(x, y)[1 − e
β
2 F (x,y)] +

β

4

∑

x,y

j(x, y)F (x, y)

= τ(µ) − τF (µ) +
β

4

∑

x,y

j(x, y)F (x, y) (11.10)

In the last line we have written the excess activity of the system, excess meaning
the modified dynamics with respect to the original one. Similarly, the last term in
the rate function is an excess entropy flux, given a current j. This last expression
coincides physically with (10.25), and is as such the most general and physical
form of writing the rate function.
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We can also use the reference equilibrium process to rewrite the fluctuation
functional into a form even more clearly similar to (10.25):

I(µ, j) =
∑

x,y

µ(x)k0(x, y)[e
β
2 W (x,y) − e

β
2 G(x,y)]

+
β

4

∑

x,y

j(x, y)[G(x, y) −W (x, y)]

= τW (µ) − τG(µ) +
β

4

∑

x,y

j(x, y)[G(x, y) −W (x, y)]

where G = W +F is the nonconservative forcing in the modified dynamics, and we
have denote subscripts W and G to denote the traffic in the original and modified
dynamics.

11.4 A notion of thermodynamic potentials

Like in Section 10.5, we can use the traffic of a process to construct a potential.
The activity, as defined in (11.6), has the following property: define a dynamics
with rates kh(x, y) = k0(x, y) exp{ β

2h(x, y)}, where h(x, y) = −h(y, x). then the
function H(µ, h) = τh(µ) − τ0(µ) satisfies

δH(µ, h)
δh(x, y)

=
β

2
[µ(x)kh(x, y) − µ(y)kh(y, x)] =

β

2
jh

µ(x, y)

meaning that the activity (traffic) is a potential for the currents, like the traffic
was in the overdamped diffusion case. Analogous to that case we can define a
Legendre transform:

G(µ, j) = sup
h

[
β

4

∑

x,y

j(x, y)h(x, y) − H(µ, h)]

This is a potential for forces: the minimizer h is found to be the force G = W +F
that makes j = jG

µ typical, and

δG

δj(x, y)
=
β

2
G(x, y)
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The fluctuation functional I(µ, j) can then be written as

I(µ, j) = H(µ,W ) +G(µ, j) − β

4

∑

x,y

j(x, y)W (x, y)

Exactly like for the diffusion case (10.30). Again, G(µ, j) is equal to IW =0(µ, j),
i.e. the equilibrium fluctuation functional.

11.5 Contraction to occupations

To find the fluctuation functional for occupations alone, we make the contraction

I(µ) = inf
j
I(µ, j) or I(µ) = inf

q
I(µ, q)

The infimum has to be taken with the restriction that
∑

y[q(x, y) − q(y, x)] =
∑

y j(x, y) = 0. If we do the contraction using I(µ, q), we get Euler-Lagrange
equations of the following form:

q(x, y) = µ(x)k(x, y)e
β
2 [V (y)−V (x)]

0 =
∑

y

[

µ(x)k(x, y)e
β
2 [V (y)−V (x)] − µ(y)k(y, x)e

−β
2 [V (y)−V (x)]

]

where V is a Lagrange multiplier making sure that
∑

y[q(x, y) − q(y, x)] =
∑

y j(x, y) = 0. Although we can not solve this in general, we see that V is a
potential to be added to the dynamics that makes µ typical. This is analogous to
the overdamped diffusion case. Substituting this form of q in I(µ, q) we can write
I(µ) in terms of this potential:

I(µ) =
∑

x,y

{

µ(x)k(x, y) − µ(x)k(x, y)e
β
2 [V (y)−V (x)]

}

= τ(µ) − τV (µ) (11.11)

Indeed, the fluctuation functional for occupations alone is defined in terms of an
excess traffic, just as for the case of overdamped diffusions. In contrast to that
case, however, this excess is not equal to an excess of entropy production. It
seems therefore, that the excess traffic is a more general quantity than entropy to
characterize fluctuation functionals.
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11.6 Small fluctuations

Consider the regime of small fluctuations, i.e. where the quadratic approximation
of the fluctuation functionals is valid. We write µ(x) = ρ(x)[1 + ǫµ1(x)] and
j(x, y) = jρ(x, y) + ǫj1(x, y) with ǫ ∈ R a small number. Note that j1 has to
satisfy the constraint

∑

y j1(x, y) = 0. To write down I(µ, j) up to second order
in ǫ, we expand first (11.9), giving F (x, y) = ǫF1(x, y) + o(ǫ), with

F1(x, y) =
1

τρ(x, y)

[

j1(x, y) − 1
2
τρ(x, y)[µ1(x) − µ1(y)]

−1
2
jρ(x, y)[µ1(x) + µ1(y)]

]

where we have defined the symmetric counterpart of the current:

τµ(x, y) = µ(x)k(x, y) + µ(y)k(y, x)

which is the expected number of jumps between states x and y per unit of time,
when the system is in a distribution µ. This quantity is closely related to the
activity defined in (11.6), because

∑

x,y

τµ(x, y) = 2τ(µ)

The factor of two in this equality stems from the fact that every bond x, y is
counted twice in the sum. We therefore also call τµ(x, y) traffic (or activity). The
fluctuation functional I(µ, j) in terms of the added force F becomes

I(µ, j) =
β2ǫ2

8

∑

x,y

τρ(x, y)[F1(x, y)]2 + o(ǫ2)

and substituting the explicit form of F , we get schematically:

I(µ, j) =
β2ǫ2

8

∑

x,y

1
τρ

[j1 − τρ∇−µ1 − jρ∇+µ1]2(x, y) + o(ǫ2) (11.12)

with the notation ∇±µ1(x, y) = 1
2 [µ1(x)±µ1(y)]. In this quadratic approximation,

we see that the stationary traffic τρ plays the role of a variance.
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We can write (11.12) in the form

I(µ, j) =
β2ǫ2

4

∑

x,y

[ j2
1

2τρ
+
τρ

2
(∇−µ1)2 − jρj1

τρ
∇+µ1 +

j2
ρ

2τρ
(∇+µ1)2

]

(x, y)

+o(ǫ2) (11.13)

which demonstrates that there is an occupation-current coupling, which is
proportional to the stationary current. It is this coupling that makes contractions
to occupation densities or currents alone difficult.

The close-to-equilibrium regime Let us assume that the dynamics of the process
is close to equilibrium, meaning that the transition rates are of the form (11.1):

k(x, y) = k0(x, y)e
βǫ
2 W (x,y)

with k0(x, y) the equilibrium reference process. In such a dynamics, the stationary
current jρ = O(ǫ). In (11.13) we can therefore drop the terms containing the
stationary current to obtain

I(µ, j) =
β2ǫ2

4

∑

x,y

[ j2
1

2τρ
+
τρ

2
(∇−µ1)2

]

(x, y) + o(ǫ2) (11.14)

which gives us the same conclusions as for the case of overdamped diffusions: the
current and occupation fluctuations decouple in this close-to-equilibrium regime.
As a consequence a minimum entropy production principle can be derived for the
occupation fluctuations and a maximum entropy production principle for currents.

A question arises here especially for the occupation fluctuations, which was not
visible for overdamped diffusions: why does entropy production govern the close-
to-equilibrium regime? The occupation fluctuation functional is expressed as an
excess traffic. For overdamped diffusions this was equal to an excess entropy
production, but here it is not.

However, in the close-to-equilibrium regime, the excess traffic and excess entropy
production merge. We see this by inserting µ = ρ0[1 + ǫµ1] and k(x, y) =
k0(x, y)e

βǫ
2 W (x,y) into the definitions of traffic and entropy production. Note that

ρ0 is the equilibrium distribution for the rates k0. Using subscripts W to denote
that we work in the dynamics with W we get

σW (µ) =
ǫ2

2

∑

x,y

ρ0(x)k0(x, y)
[

µ1(x) − µ1(y) +W (x, y)
]2

+ o(ǫ2)



SMALL FLUCTUATIONS 153

τW (µ) =
∑

x,y

ρ0(x)k0(x, y)
[

1 + ǫµ1(x) +
ǫ

2
W (x, y)

+
ǫ2

4
[µ1(x) − µ1(y)]W (x, y) +

ǫ2

8
W (x, y)2

]

+ o(ǫ2)

Up to second order in ǫ, the excess entropy production and traffic with respect to
the equilibrium dynamics thus give the same:

σW (µ) − σ0(µ) = τW (µ) − τ0(µ) + o(ǫ2) (11.15)

The reason that entropy production principles appear close to equilibrium is thus
a result of two facts: The first is that the occupation and current fluctuations
decouple, so that the joint fluctuation functional becomes a sum of the functionals
for occupations and currents alone. Second, the traffic and entropy production
become indistinguishable, so that we do not need traffic do describe these physical
results.





Chapter 12

Conclusions

The questions and the methods covered in this part are not entirely original. They
have appeared in the mathematical literature in a systematic way since the theory
of large deviations was introduced in the framework of Markov processes, see the
references in Chapter 9 and especially in Section 9.6. The relevance to physics
and to statistical mechanics in particular is obvious, but the thermodynamic
interpretation of the resulting dynamical fluctuation functionals has not been
systematically investigated. A first study can be found in [69]. The research
discussed in this part and in [72, 96] has added to that. There have of course been
many other studies of dynamical fluctuation theory in the literature.

We mention in particular the works of Derrida and Bodineau, see [9, 25] and of
Bertini et al, e.g. in [5, 6]. With respect to diffusion processes, our approach
is especially similar to what one is doing for a macrostatistical theory where a
hydrodynamic limit is taken by rescaling of certain Markov jump processes. The
hydrodynamic fluctuations can then be viewed as a solution of some infinite-
dimensional diffusion process. Possible differences with the existing work are
first of all that the problems related to the diffusion-approximation or to a
hydrodynamic rescaling do not enter in our work. We just start from a finite-
dimensional diffusion process or a Markov jump process as such, and without
extra rescaling. In other words, we prefer to split the problem of hydrodynamical
scaling with possible diffusion approximation from the problem of studying the
dynamical fluctuations.

The emphasis of our work is on the distinction between the time-symmetric and
time-antisymmetric sector of the fluctuations. On the one hand the action of
relative path-probability densities is split in entropy flux and traffic. On the
other hand the observables are split into occupation density (time-symmetric)
and current (time-antisymmetric). It then comes as no surprise that the joint
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fluctuation functional I(µ, j) can be written as an excess traffic, and an excess
entropy flux, which constitutes a first main conclusion, expressed in (10.25) and
(11.10). The excess is an excess of the original process with respect to a modified
process (by adding a force to the dynamics) in which the fluctuations are typical.
Contractions to occupations or currents alone is hard to do.

Our second main result covers occupation fluctuations, see (10.34) and (11.11).
There one can see that the fluctuation functional can be expressed in terms of
only an excess traffic, and the modified dynamics is made by adding a potential.
Furthermore, we like to emphasize a structure in the joint fluctuations of density
and current which reminds of thermodynamic potentials, which can be found in
Sections 10.5 and 11.4.

Finally, for small fluctuations one can clearly see that the coupling between
occupation and current fluctuations only vanishes when close to equilibrium. In
that regime minimum and maximum entropy production principles emerge.

In [72] we have investigated dynamical fluctuations for semi-Markov jump
processes. These are an extension of Markov jump processes where the waiting
times are not exponentially distributed. In [96] we extended the analysis of
overdamped diffusion processes to time-dependent but periodic dynamics. In those
cases the general conclusions we have outlined do remain true.

However, it is clear that the story as presented in this part is far from finished.
First of all, we have not provided immediately applicable results. We have rather
begun to examine the general physical structure of dynamical fluctuations. To go
on, other models should be studied to see which structures remain in more general
settings. For example, one could see what happens for underdamped diffusions, as
we did for fluctuation-dissipation relations. Large deviations in this setting have
already been discussed in [10], where a quantity similar to our traffic plays a major
role.
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Conclusions and appendices
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“While working on my note, I realized that I had met these guys (=traffic) before,
when I had been trying to prove some of my conjectures on the driven lattice gas.
Those conjectures came mainly from my ‘intuition’ that was unfortunately based
on the equilibrium physics, and turned out to be wrong. Always it looked like
the ‘proof’ went OK, but at some stage I saw something went wrong because of
unwanted factors coming from waiting times. That was traffic, and (in those days)
I only regarded it as annoying noise. But your message probably is to make friends
with them. I will try.”

Hal Tasaki, Department of Physics, Gakushuin University, 171-8588, JAPAN, in
a recent e-mail conversation (September 2009)



Chapter 13

Overall conclusions

This chapter is devoted to some general conclusions of this text. For conclusions
about fluctuation-dissipation relations and dynamical fluctuations separately, we
refer to Chapters 8 and 12. Basically we have used the same method throughout this
text: on the level of stochastic trajectories we distinguish entropy and traffic, that
completely specify the probabilities of those trajectories. Quantities and physical
relations that are computed through averages over possible trajectories are thus
governed by both entropy and traffic. Entropy is a known quantity: it has an
operational definition. In this chapter we shortly discuss the status of the less-
known traffic and its possible interpretations.

13.1 Traffic for Markov jump processes and over-

damped diffusions

We have investigated both fluctuation dissipation-relations and dynamical fluctu-
ations for Markov jump processes and overdamped diffusions. This warrants a
comparison. Generally we have used the same strategy in both parts, namely
using a description in terms of stochastic trajectories and more importantly the
splitting of the action in a time-symmetric and time-antisymmetric part.

The time-antisymmetric part of the action is, under the local detailed balance
assumption, equal to the entropy flux into the environment. The restrictions
under which this works is that the parts of the environment connected to the
system, each are and remain in equilibrium. This entropy flux can therefore be
expressed in terms of the heat dissipation into that environment.
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The time-symmetric part of the action is called traffic. It is much more difficult to
give this quantity a general physical meaning than for entropy flux. One reason for
that, is that the concept only makes sense as an excess. This excess is a difference
of the same quantity in two dynamics. Our results for Markov jump processes and
overdamped diffusions do give us a tool to give more interpretation to traffic.

13.1.1 Traffic as an escape rate

We have seen that the rate function for the large deviations of the empirical
occupation density I(µ) can be expressed as an excess in traffic (a traffic rate
actually), see (10.34) and (11.11).

How can we interpret this rate function? For this, first consider the set of
distributions µ that vanish on a given subset A of the state space Ω. The
contraction principle then tells us that the infimum of I(µ) over this set gives
the probability of the particle not visiting this A. This infimum can thus be
considered an escape rate from the subset A. The rate function I(µ), and thus the
excess traffic can then be called a generalized escape rate from the distribution µ.

Another way of seeing this is by reversing our viewpoint. The original viewpoint is
that, given a distribution µ we look for a potential V that makes it typical. Then
we compute the excess traffic of the original with respect to this new dynamics with
the added potential. The reverse viewpoint is that we start from some dynamics
with a stationary density µ. We then add to the dynamics a potential −V . The
change in the instantaneous traffic rate then gives the rate function of µ in that new
dynamics, in which it is no longer stationary. The bigger the rate function (excess
traffic) the faster µ relaxes to the new stationary distribution, thus ‘escaping from
µ.’ An interesting observation follows from this reverse viewpoint: when a potential
is added to a stationary system, the positivity of the rate function tells us that the
traffic should increase. In what follows, we interpret traffic as activity, meaning
that adding a potential increases the activity of the system.

Also on the level of trajectories we can see this. For Markov jump processes we
wrote (11.5), which is a time-integral of the escape rates of the states the system
has visited. Moreover, overdamped diffusions can be recovered from Markov jump
processes when space and time are rescaled in a specific way (see Appendix C).
Therefore we still interpret the traffic in terms of ‘excess escape rates’ even on the
level of paths for overdamped diffusions.
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13.1.2 Traffic as activity

The excess traffic appearing in the rate function for the large deviations of the
empirical occupation density I(µ) is, for Markov jump processes, equal to

I(µ) = τ(µ) − τV (µ) =
∑

x,y

µ(x)k(x, y) −
∑

x,y

µ(x)k(x, y)e
β
2 [V (y)−V (x)]

This is an excess in the expected number of jumps per unit of time, when in the
distribution µ. In this sense, the traffic can be called an activity. Again, because
overdamped diffusions are recovered as a scaling limit of Markov jump processes,
we can still see the excess traffic as an excess activity for overdamped diffusion
processes.

When the fluctuation is small, i.e. µ is close to the stationary distribution, the
potential V that makes µ typical, is also small. if we write µ = ρ[1 + ǫµ1] and
V → ǫV , we get:

I(µ) = τ(µ) − τV (µ) = −βǫ2

2

∑

x,y

ρ(x)µ1(x)k(x, y)[V (y) − V (x)] (13.1)

= −βǫ2

2

∑

x

ρ(x)µ1(x)LV (x) (13.2)

and similarly for overdamped diffusions. Indeed, we recognize here the version of
traffic τ(x) = βLV (x) that appeared in the fluctuation-dissipation relations (6.6).

13.1.3 Unpopular traffic

When comparing the fluctuation-dissipation relation out of equilibrium, but for
one heat bath (5.14) with the equilibrium one (5.2), we see that the equilibrium
fluctuation-dissipation theorem can be rewritten:

RQV (t, s) = β
∂

∂s
〈V (xs)Q(xt)〉0

µ0
= − 〈τ(ω, s)Q(xt)〉0

µ0

The first equality is the usual one. In our framework we see that it is the correlation
between the observable and the excess entropy flux of the perturbed with respect
to the unperturbed process. The last equality states that we can also consider the
correlation with the excess traffic. In equilibrium these are the same!

Similarly, for dynamical fluctuations we have seen that close to equilibrium excess
entropy production and excess traffic are the same, see (11.15). This may
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explain why traffic has not appeared much earlier in statistical physics. Around
equilibrium one does not see it as an independent new quantity, and all attention
goes to its more popular brother entropy. This explains results as minimum and
maximum entropy production principles, (see Sections 10.7 and 11.6) and the
McLennan formula (Section 2.10).

Celebrated recent results concerning a far-from-equilibrium regime, like the
fluctuation-theorem and work relations (see Section 2.10), only make statements
about the time-antisymmetric part of the dynamics. Because of that entropy is
sufficient to describe the results, avoiding traffic completely.

It seems however, that for a full description of nonequilibrium systems, the time-
symmetric sector of the process described by the traffic is indispensable. This
constitutes a major message of this text: traffic should not be avoided, it should
be investigated.

13.2 Outlook

Fluctuation-dissipation relations In part II of this text we have outlined the
general strategy to derive fluctuation-dissipation relations out of equilibrium, as
well as given several explicit examples, ready to be tested experimentally. But of
course the study is not finished. Apart from applying the strategy to other models,
several related problems seem very interesting and can be investigated in the same
framework. We suggest some examples:

• The response of a system with respect to a perturbation other than a
potential. This could be for example an added nonconservative force, or
a change in the chemical potential of one of the particle reservoirs. This
should be perfectly doable within the framework outline in this text.

• Changes in temperature of the heat baths as perturbations. This is a very
interesting topic for applications in meteorology but also in nonequilibrium
calorimetry. However, such a perturbation can be tricky in our framework:
for example for diffusion processes: if the diffusion coefficient (which
depends usually on the temperature) is perturbed, then the path-probability
densities of the perturbed and unperturbed process are no longer absolutely
continuous with respect to each other.

• A step towards thermodynamics through quasistatic processes: suppose that
amplitude ht of the perturbation potential is not small, but changes very
slowly. So slowly that the system is always very close to the stationary
distribution of the dynamics at that moment. In such cases the response
relations we have derived can be used to write expressions for the excess
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heat, work and change of energy. The second law of thermodynamics for
example can be investigated in such processes.

• The use of our results in models of spin-glasses, where the notion of effective
temperature often is useful. As our approach gives the response explicitly
in terms of correlation functions for Markov jump processes, which often
model spin-glasses, it could be used to develop the knowledge of effective
temperatures.

Dynamical fluctuations In part III we have discussed dynamical fluctuations
of occupations and currents in overdamped diffusions and Markov jump processes.
Although some quite general conclusions were made in terms of entropy and traffic,
and this theory adds physical interpretation to traffic as escape rate and as a
‘thermodynamic’ potential, the story is far from finished. Some suggestions for
future work:

• An investigation of the connection between dynamical and static fluctuations,
how one theory can be derived from the other, can give a more systematic
understanding of large deviations in nonequilibrium statistical mechanics.

• Dynamical fluctuations in underdamped diffusion processes can give more
insight into the concept of traffic in these models. As is clear from Markov
jump processes and overdamped diffusions, dynamical fluctuation theory is
of great help here.

• It would be good to have some explicit results, i.e. some explicit rate
functions, which moreover relate to experimental accessible predictions.
Simulations could also help in visualizing the rate functions, at least for
simple systems.





Appendix A

The generator for Markov

processes

A.1 Different generators

Backward generator When the system evolves according to a Markov dynamics,
there exists an operator L acting on state functions f , such that

d

dt
〈f(xt)〉µ0

= 〈Lf(xt)〉µ0
∀f (A.1)

This is a differential equation with the following solution

〈f(xt)〉µ0
=
∫

dxµ0(x)(etLf)(x)

where the integral should be replaced by a sum when the configuration space is
discrete. In words, etL “pulls a function f back to the time of the initial measure.”
L is therefore often called the backward generator.

Forward generator There also exists a forward generator L†, defined in the
following way: for any pair of state functions f, g

∫

dxg(x)Lf(x) =
∫

dxf(x)L†g(x) (A.2)
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If we now consider the definition of the time-evolved distribution µt:

∫

dxµ0(x)(etLf)(x) = 〈f(xt)〉µ0
=
∫

dxµt(x)f(x)

we see that µt = etL†

µ0. So L† pushes the distribution µ0 forward in time, and is
therefore called the forward generator. The forward generator can be found from
the Master equation for Markov jump processes or the Fokker-Planck equation for
diffusions, because

∂µt

∂t
= L†µt (A.3)

Adjoint generator For time-independent dynamics, the adjoint generator L∗ is
defined with the help of the stationary distribution ρ: for any pair of state functions
f, g

∫

dxρ(x)g(x)L∗f(x) =
∫

dxρ(x)f(x)Lg(x) (A.4)

It is very important to realize that this adjoint generator depends on the stationary
distribution, and is therefore often not explicitly known in nonequilibrium systems.
This adjoint generator is related to the time-reversed dynamics.

To apply time-reversal, we must remember that there are possibly variables that
change sign under time-reversal, i.e. velocities. To simplify the analysis however,
we restrict ourselves here to the case that we have only time-symmetric variables
(Markov jump processes and overdamped diffusions).

The stationary distribution for the time-reversed dynamics (with path-probability
density P(θω)) is also ρ, and for any f, g:

〈g(x0)f(xt)〉ρ =
∫

dPρ(ω)g(x0)f(xt)

=
∫

dPρ(θω)g(xt)f(x0)

= 〈g(xt)f(x0)〉θ
ρ
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where the θ denotes that the average is taken in the time-reversed dynamics.
Writing the generator of the time-reversed dynamics as Lθ, we get

∫

dxρ(x)g(x)etLf(x) =
∫

dxρ(x)f(x)etLθ

g(x)

Because of the definition (A.4), we see that Lθ = L∗. More generally, one can
derive that Lθ = πL∗π in the case that the configuration of the system contains
velocities. In other words, up to some reversal of signs of velocities, the adjoint
generator is the generator of the time-reversed dynamics. This also means that an
equilibrium dynamics must satisfy L∗ = πLπ.

Here we also see that the equilibrium distribution can be defined as the distribution
that satisfies

∫

dxρ(x)f(x)Lg(x) =
∫

dxρ(x)g(x)πLπf(x) ∀f, g (A.5)

A.2 Correlation functions

With the definitions of generators, one can write correlation functions in several
different ways as follows, for s ≤ t

〈f(xt)g(xs)〉µ0
=

∫

dxµ0(x)esL(ge(t−s)Lf)(x)dx

=
∫

dxg(x)e(t−s)Lf(x)esL†

µ0(x)dx

=
∫

dxµs(x)g(x)e(t−s)Lf(x)dx

= 〈f(xt−s)g(x0)〉µs

One can see from this, that the time derivative of such a correlation function can
be quite complicated. For example, for s < t:

d

ds
〈f(xt)g(xs)〉µ0

= − 〈Lf(xt)g(xs)〉µ0
+
〈

f(xt)
g(xs)
µs(xs)

∂µs

∂s
(xs)

〉

µ0

= −
〈

f(xt)
L†(µsg)
µs

(xs)
〉

µ0

+
〈

f(xt)
g(xs)
µs(xs)

L†µs(xs)
〉

µ0



168 THE GENERATOR FOR MARKOV PROCESSES

d

dt
〈f(xt)g(xs)〉µ0

= 〈Lf(xt)g(xs)〉µ0
(A.6)

However, we see that in stationary averages, this simplifies to

d

ds
〈f(xt)g(xs)〉ρ = − 〈Lf(xt)g(xs)〉ρ = − d

dt
〈f(xt)g(xs)〉ρ

When the generator occurs in a stationary correlation function, one can replace it
by the adjoint generator in the following case, for s ≤ t:

〈Lf(xt)g(xs)〉ρ =
∫

dxρ(x)g(x)e(t−s)LLf(x)dx

=
∫

dxρ(x)g(x)Le(t−s)Lf(x)dx

=
∫

dxρ(x)L∗g(x)e(t−s)Lf(x)dx

= 〈f(xt)L∗g(xs)〉ρ

where we used in the second equality that L commutes with e(t−s)L. However, we
can not apply a similar procedure for 〈f(xt)Lg(xs)〉ρ, because L and L∗ do not
commute in general.

A.3 Generators for jump processes and diffusions

As additional information, we give here the generators for the main models used
in this thesis. The procedure to find them is straightforward. We start from the
evolution equation for the distribution µt, which is the Master equation for Markov
jump processes and the Fokker-Planck equation for diffusions, to find the forward
generator L†:

∂µt

∂t
= L†µt

After that we use (A.2) to find the backward generator, and (A.4) to find the
adjoint generator.
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A.3.1 Markov jump processes

The generators for a general Markov jump process with transition rates k(x, y)
are:

L†µ(x) =
∑

y

[µ(y)k(y, x) − µ(x)k(x, y)] (A.7)

Lf(x) =
∑

y

k(x, y)[f(y) − f(x)] (A.8)

L∗f(x) =
∑

y

ρ(y)k(y, x)
ρ(x)

[f(y) − f(x)] (A.9)

A.3.2 Overdamped diffusions in more dimensions

The generators for a general overdamped Langevin dynamics (4.13) are:

L†µ = −∇ · [χFµ−D∇µ] (A.10)

Lf = Fχ∇f + ∇ · (D∇f) (A.11)

L∗f = −Fχ∇f + ∇ · (D∇f) + 2
∇ρ
ρ
D∇f (A.12)

A.3.3 Underdamped diffusions

The generators for underdamped diffusions of the form (7.1) are:

L†µ =
∑

i

[

−vi
∂µ

∂xi
− ∂

∂vi
[(fi − ∂U

∂xi
−miγivi)µ] +Di

∂2µ

∂v2
i

]

(A.13)

Lg =
∑

i

[

vi
∂g

∂xi
+ (fi − ∂U

∂xi
−miγivi)

∂g

∂vi
+Di

∂2g

∂v2
i

]

(A.14)

L∗g =
∑

i

[

−vi
∂g

∂xi
− (fi − ∂U

∂xi
−miγivi)

∂g

∂vi
+Di

∂2g

∂v2
i

+ 2Di
1
ρ

∂ρ

∂vi

∂g

∂vi

]





Appendix B

A derivation of the

Fokker-Planck equation

Starting from a Langevin equation it is possible to derive the corresponding Fokker-
Planck equation. We show it here for an overdamped Langevin equation in one
dimension (4.10):

dxt = χF (xt)dt+
√

2DdBt

We do this by deriving the generator L of this process. For this, take an arbitrary
state function g, which is smooth. Take a small number ǫ ∈ R. We consider the
average

〈g(xt+ǫ)〉µ0
=
∫

R

dxµt(x)
∫

R

dyProb(xt+ǫ = x+ y|xt = x)g(x+ y)

where, for ǫ small enough we can write

Prob(xt+ǫ = x+ y|xt = x) =
1
N

exp
{

− 1
4Dǫ

[y − χF (x)ǫ]2
}

with the normalization N =
√

4πDǫ. We make a Taylor-expansion of g around x:
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∫

R

dyProb(xt+ǫ = x+ y|xt = x)g(x + y)

=
∞
∑

n=0

1
n!
∂ng

∂xn
(x)
∫

R

dy
1
N
e− 1

4Dǫ
[y−χF (x)ǫ]2

yn

In this way we have reduced the problem to calculating Gaussian integrals. We
find

∫

R

dyProb(xt+ǫ = x+ y|xt = x)g(x + y) = g(x) + ǫχF (x)
∂g

∂x
(x)

+ǫD
∂2g

∂x2
(x) + o(ǫ)

So that in the limit of ǫ → 0 we get

〈Lg(xt)〉µ0
= lim

ǫ→0

〈g(xt+ǫ)〉µ0
− 〈g(xt)〉µ0

ǫ

=
∫

R

dxµt(x)[χF (x)
∂g

∂x
(x) +D

∂2g

∂x2
(x)]

This gives us the backward generator L. The forward generator L† then defines
the Fokker-Planck equation. It is easily found by (A.2).

The generators and Fokker-Planck equations for other and more general diffusion
equations can be found by the same reasoning.



Appendix C

From Markov jump processes

to overdamped diffusions

It is possible to derive overdamped diffusions as a certain limit of Markov jump
processes. As an example, we consider the case of a single particle performing a
Markov jump process on a ring with N sites, labelled x = 0, ǫ, 2ǫ, . . . , Nǫ with
Nǫ = 1 ≡ 0. The particle can hop every time only one site to the left or to the
right, with rates k(x, x±ǫ). A Markov process is fully determined by its generator.
We therefore prove that the generator of this jump process converges in a certain
scaling for ǫ → 0 to the generator of a diffusion process. The generator of the
Markov jump process on a state function g gives:

Lǫg(x) =
∑

y=x±ǫ

k(x, x± ǫ)[g(x ± ǫ) − g(x)]

=
1
2

[k(x, x+ ǫ) + k(x, x− ǫ)][g(x + ǫ) + g(x− ǫ) − 2g(x)]

+
1
2

[k(x, x + ǫ) − k(x, x− ǫ)][g(x+ ǫ) − g(x− ǫ)]

We expand the transition rates in orders of ǫ and rescale them as follows with
ǫ → 0:

k(x, x+ ǫ) =
1
ǫ2

[k0(x) + ǫk1(x) + o(ǫ)]

for the rates for hopping to the right. This corresponds to a scaling of space (the
space between two sites is 1/ǫ) and of time (the escape rates of the process are
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multiplied by 1/ǫ2 so that the process goes faster and faster).

Furthermore, the local detailed balance condition tells us that

k(x, x+ ǫ)
k(x+ ǫ, x)

= exp {β[W (x, x + ǫ) + U(x) − U(x+ ǫ)]}

where W (x, x + ǫ) is the work of the nonconservative forcing when the particle
travels a distance ǫ to the right. We write it therefore as W (x, x+ǫ) = ǫf(x)+o(ǫ).
This allows us to express the rates for hopping to the left as:

k(x+ ǫ, x) = k(x, x+ ǫ) exp {−βǫf(x) + βǫU ′(x) + o(ǫ)}

=
1
ǫ2

[k0(x) + ǫ[k1(x) − βk0(x)f(x) + βk0(x)U ′(x)] + o(ǫ)]

For our calculation, we need k(x, x− ǫ), which is thus equal to

1
ǫ2

[k0(x) + ǫ[k1(x) − k′
0(x) − βk0(x)f(x) + βk0(x)U ′(x)] + o(ǫ)]

Substituting this into the generator, we get the following limit:

lim
ǫ→0

Lǫg(x) = k0(x)g′′(x) + [βk0(x)f(x) − βk0(x)U ′(x) + k′
0(x)]g′(x)

which exactly defines the generator for a diffusion process with the Langevin
equation

dxt = χ(x)[f(xt) − U ′(xt)]dt+D′(xt)dt+
√

2D(xt)dBt

with D = k0 and χ = βk0. We therefore see the forcing with D′ naturally emerging.
Moreover, the local detailed balance condition for Markov jump processes, has the
relation χ = βD as a consequence after the rescaling.
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[33] A. Einstein. Über die von der molekularkinetischen theorie der wärme
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[44] J. Gärtner. On large deviations from the invariant measure. Theory Probab.
Appl., 22:24–39, 1977.

[45] J. R. Gomez-Solano, A. Petrosyan, S. Ciliberto, R. Chetrite, and
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