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We present a new method for simulating Markovian jump processes with time-dependent tran-
sitions rates, which avoids the transformation of random numbers by inverting time integrals over
the rates. It relies on constructing a sequence of random time points from a homogeneous Poisson
process, where the system under investigation attempts to change its state with certain probabili-
ties. With respect to the underlying master equation the method corresponds to an exact formal
solution in terms of a Dyson series. Different algorithms can be derived from the method and their
power is demonstrated for a set of interacting two-level systems that are periodically driven by an
external field.

PACS numbers: 05.10.-a, 05.10.Ln

I. INTRODUCTION

Stochastic jump processes with time-dependent tran-
sition rates are of general importance for many appli-
cations in physics and chemistry, in particular for de-
scribing the kinetics of chemical reactions [1–3] and the
non-equilibrium dynamics of driven systems in statistical
mechanics [4–6]. With respect to applications in interdis-
ciplinary fields they play an important role in connection
with queuing theories.
In general a system with N states is considered that at

random time instants performs transitions from one state
to another. In case of a Markovian jump dynamics the
probability for the system to change its state in the time
interval [t, t+∆t[ is independent of the history and given
by wij(t)∆t+o(∆t), where j and i 6= j are the initial and
target state, respectively, and wij(t) the corresponding
transition rate at time t (wjj(t) = 0). This implies that,
if the systems is in the state j at time t0, it will stay in
this state until a time t > t0 with probability φj(t, t0) =

exp[−
∫ t

t0
dτ wtot

j (τ)], where wtot
j (τ) =

∑

iwij(τ) is the
total escape rate from state j at time τ . The probability
to perform a transition to the target state i in the time
interval [t, t+ dt[ then is wij(t)φj(t, t0)dt, i. e.

ψij(t, t0) = wij(t) exp

[

−

∫ t

t0

dτ wtot
j (τ)

]

(1)

is the probability density for the first transition to state i
to occur at time t after the system was in state j at time
t0. Any algorithm that evolves the system according to
Eq. (1) generates stochastic trajectories with the correct
path probabilities.
The first algorithm of this kind was developed by Gille-

spie [7] in generalization of the continuous-time Monte-
Carlo algorithm introduced by Bortz et al. [8] for time-
independent rates. We call it the reaction time algorithm
(RTA) in the following. The RTA consists of drawing a
random time t from the first transition time probabil-

ity density ψtot
j (t, t0) =

∑

i ψij(t, t0) = wtot
j φj(t, t0) =

−∂tφj(t, t0) to any other state i 6= j, and a subsequent
random selection of the target state i with probability
wij(t)/w

tot
j (t). In practice these two steps can be per-

formed by generating two uncorrelated and uniformly
distributed random numbers r1, r2 in the unit interval
[0, 1[ with some random number generator, where the
first is used to specify the transition time t via

Wj(t, t0) =

∫ t

t0

dτwtot
j (τ) = − log(1 − r1) (2)

and the second is used to select the target state i by
requiring

i−1
∑

k=1

wkj(t)

wtot
j (t)

≤ r2 <

i
∑

k=1

wkj(t)

wtot
j (t)

(3)

Both steps, however, lead to some unpleasant problems
in the practical realization.
The first step according to Eq. (2) requires the calcu-

lation of Wj(t, t0) and the determination of its inverse

W̃j(., t0) with respect to t in order to obtain the transi-

tion time t = W̃j(− log(1 − r1), t0). While this is always
possible, since wtot

j > 0 and accordingly Wj(t, t0) is a
monotonously increasing function of t, it can be CPU
time consuming in case Wj(t, t0) cannot be explicitly
given in an analytical form and one needs to implement
a root finding procedure.
The second step according to Eq. (3) can be cumber-

some in case there are many states (N large) and a sys-
tematic grouping of the wij(t) to only a few classes is not
possible. This situation in particular applies to many-
particle systems, where N typically grows exponentially
with the number of particles, and the interactions (or
a coupling to spatially inhomogeneous time-dependent
external fields) can lead to a large number of different
transitions rates. Moreover, even for systems with simple
interactions (as, for example, Ising spin systems), where
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a grouping is in principle possible, the subdivision of the
unit interval underlying Eq. (3) cannot be strongly sim-
plified for time-dependent rates.
A way to circumvent Eq. (3) is the use of the First Re-

action Time Algorithm (FRTA) for time dependent rates
[9], or modifications of it [2]. In the FRTA one draws
random first transition times tk from the probability den-

sities ψkj(tk, t0) = wkj(tk) exp[−
∫ tk

t0
dτ wkj(τ)] for the

individual transitions to each of the target states k and
performs the transition i with the smallest ti = mink{tk}
at time ti. This is statistically equivalent to the RTA,
since for the given initial state j, the possible transitions
to all target states are independent of each other. In
short-range interacting systems, in particular, many of
the random times tk can be kept for determining the
next transition following i. In fact, all transitions from
the new state i to target states k can be kept for which
wki(τ) = wkj(τ) for τ > t (see Ref. [10] for details).
However, the random times tk need to be drawn from
ψkj(tk, t0) and this unfortunately involves the same prob-
lems as discussed above in connection with Eq. (2).

II. ALGORITHMS

We now present a new “attempt time algorithm”
(ATA) that allows one to avoid the problems associated
with the generation of the transition time in Eq. (2).
Starting with the system in state j at time t0 as before,
one first considers a large time interval T and determines
a number µtot

j satisfying

µtot
j ≥ max

t0≤τ≤t0+T
{wtot

j (τ)} . (4)

In general this can by done easily, since wtot
j (τ) is a

known function. In particular for bounded transition
rates it poses no difficulty, as, for example, in the case
of Glauber rates or a periodic external driving, where
T could be chosen as the time period. If an unlimited
growth of wtot

j with time were present (an unphysical sit-
uation for long times), T can be chosen self-consistently
by requiring that the time t for the next transition to
another state i 6= j (see below) must be smaller than
t0 + T .
Next an attempt time interval ∆t1 is drawn from the

exponential density Fj(∆t1) = µtot
j exp(−µtot

j ∆t1) and
the resulting attempt transition time t1 = t0 + ∆t1 is
rejected with probability prejj (t1) = 1−wtot

j (t1)/µ
tot
j . If it

is rejected, a further attempt time interval ∆t2 is drawn
from Fj(∆t2), corresponding to an attempt transition
time t2 = t1 + ∆t2, and so on until an attempt time
t < t0 + T is eventually accepted. Then a transition to
a target state i is performed at time t with probability
wij(t)/w

tot
j (t), using the target state selection of Eq. (3).

In order to show that this method yields the correct
first transition probability density ψij(t, t0) from Eq. (1),
let us first consider a sequence, where exactly n ≥ 0 at-
tempts at some times t1 < . . . < tn are rejected and then

the (n+ 1)th attempt leads to a transition to the target
state i in the time interval [t, t+ dt[. The corresponding

probability density ψ
(n)
ij (t, t0) is given by

ψ
(n)
ij (t, t0) =

∫ t

t0

dtn

∫ tn−1

t0

dtn−1 . . .

∫ t2

t0

dt1
wij(t)

wtot
j (t)

×
[

1− prejj (t)
]

Fj(t− tn)

n
∏

m=1

prejj (tm)Fj(tm − tm−1)

(5)

=
wij(t)e

−µtot

j (t−t0)

n!

[
∫ t

t0

dτ µtot
j prejj (τ)

]n

=
wij(t)e

−µtot

j (t−t0)

n!

[

µtot
j (t− t0)−

∫ t

t0

dτ wtot
j (τ)

]n

.

Summing over all possible n hence yields

ψj(t, t0) =

∞
∑

n=0

ψ
(n)
ij (t, t0) = wij(t) exp

[

−

∫ t

t0

dτ wtot
j (τ)

]

(6)
from Eq. (1).
It is clear that for avoiding the root finding of Eq. (2)

by use of the ATA, one has to pay the price for intro-
ducing rejections. If the typical number of rejections can
be kept small and an explicit analytical expression for t
cannot be derived from Eq. (2), the ATA should become
favorable in comparison to the RTA. Moreover, the ATA
can be implemented in a software routine independent
of the special form of the wij(τ) for applicants who are
not interested to invest special thoughts on how to solve
Eq. (2).
One may object that the ATA still entails the problem

connected with the cumbersome target state selection by
Eq. (3). However, as the RTA has the first reaction vari-
ant FRTA, the ATA has a first attempt variant. In this
first attempt time algorithm (FATA) one first determines,
instead of µtot

j from Eq. (4), upper bounds for the indi-
vidual transitions to all target states k 6= j (µjj = 0),

µkj ≥ max
t0≤τ≤t0+T

{wkj(τ)} . (7)

Thereon random time intervals ∆tk are drawn from
Fkj(∆tk) = µkj exp(−µkj∆tk), yielding corresponding

attempt transition times t
(1)
k = t0 + ∆tk. The tran-

sition to the target state k′ with the minimal t
(1)
k′ =

mink{t
(1)
k } = t1 is attempted and rejected with probabil-

ity prejk′k(t
(1)
k′ ) = 1−wk′k(t

(1)
k′ )/µk′k. If it is rejected, a fur-

ther time interval ∆t
(2)
k′ is drawn from Fk′j(∆t

(2)
k′ ), yield-

ing t
(2)
k′ = t

(1)
k′ +∆t

(2)
k′ , while the other attempt transition

times are kept, t
(2)
k = t

(1)
k for k 6= k′ (it is not necessary

to draw new time intervals for these target states due to
the absence of memory in the Poisson process). The tar-

get state k′′ with the new minimal t
(2)
k′′ = mink{t

(2)
k } = t2

is then attempted and so on until eventually a transition
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to a target state i is accepted at a time t < t0 + T . The
determination of the minimal times can be done effec-
tively by keeping an ordered stack of the attempt times.
Furthermore, as in the FRTA, one can, after a successful
transition to a target state i at time t, keep the (last up-
dated) attempt times tk for all target states that are not
affected by this transition (i. e. for which wki(τ) = wkj(τ)
for τ ≥ t). Overall one can view the procedure implied
by the FATA as that each state k has a next attempt
time tk (with tj = ∞ if the system is in state j) and that
the next attempt is made to the target state with the
minimal tk. After each attempt, updates of some of the
tk are made as described above in dependence of whether
the attempt was rejected or accepted.

In order to prove that the FATA gives the ψj(t, t0)
from Eq. (1), we show that the probability den-

sities χij(t, tn) = [wij(t)/w
tot
j (t)](1 − prejj (t))Fj(t −

tn) = wij(t) exp[−µ
tot
j (t − tn)] and ηj(tm, tm−1) =

prejj (tm)Fj(tm − tm−1) = [µtot
j − wtot

j ] exp[−µtot
j (tm −

tm−1)] appearing in Eq. (5) are generated, if we set
µtot
j =

∑

k µkj (note that Eq. (4) is automatically satis-
fied by this choice). These probability densities have the
following meaning: χij(t, tn)dt is the probability that, if
the system is in state j at time tn, the next attempt to
a target state occurs in the time interval [t, t + dt[, the
attempt is accepted, and it changes the state from j to
i; ηj(tm, tm−1)dtm is the probability that, after the at-
tempt time tm, the next attempt occurs in [tm, tm+dtm[
with tm > tm−1 and is rejected.

In the FATA the probability κlj(tm, tm−1)dtm that,
when starting at time tm−1, the next attempt is occurring
in [tm, tm + dtm[ to a target state l is given by

κlj(tm, tm−1) = µlj exp[−µlj(tm − tm−1)]

×
∏

k 6=l

∫ ∞

tm−tm−1

dτ µkj exp(−µkjτ)

= µlj exp[−µ
tot
j (tm − tm−1)] . (8)

The product ensures that tm is the minimal time (the
lower bound in the integral can be set equal to (tm−tm−1)
for all k 6= l due to the absence of memory in the Poisson
process). The probability that this attempted transition

is rejected is prejlj (tm) = 1−wlj(tm)/µlj and accordingly,
by summing over all target states l, we obtain

ηj(tm, tm−1) =
∑

l

prejlj (tm)µlj exp[−µ
tot
j )(tm − tm−1)]

= [µtot
j − wtot

j (tm)] exp[−µtot
j (tm − tm−1)]

(9)

in agreement with the expression appearing in Eq. (5).
Furthermore, when starting from time tn, the probability
density χij(t, tn) referring to the joint probability that
the next attempted transition occurs in [t, t+dt[ to state

i and is accepted is given by

χij(t, tn) =
wij(t)

µij

κij(t, tn) = wij(t) exp[−µ
tot
j (t− tn)] .

(10)
Hence one recovers the decomposition in Eq. (5) with
µtot
j =

∑

k µkj .
Before discussing an example, it is instructive to see

how the ATA (and RTA) can be associated with a solu-
tion of the underlying master equation

∂

∂t
G(t, t′) = −M(t)G(t, t′) , G(t′, t′) = I (11)

where G(t, t′) is the matrix of transition probabilities
Gij(t, t

′) for the system to be in state i at time t if it
was in state j at time t′ ≤ t, and M(t) is the tran-
sition rate matrix with elements Mij(t) = −wij(t) for
i 6= j and Mjj(t) = −

∑

i6=j Mij(t) = wtot
j (t). Let

us decompose M(t) as M(t) = D + A(t), where D =
diag {µtot

1 , . . . , µtot
N }. If A(t) were missing, the solu-

tion of the master equation (11) would be G0(t, t
′) =

diag {exp(−µtot
1 (t− t′), . . . , exp(−µtot

N (t− t′)}. Hence,

when introducing Ã(t, t′) = G
−1
0 (t, t′)A(t)G0(t, t

′) =
G0(t

′, t)A(t)G0(t, t
′) in the “interaction picture”, the so-

lution of the master equation can be written as

G(t, t′) = G0(t, t
′)

[

I+

∫ t

t′
dt1Ã(t1, t

′)

+

∫ t

t′
dt2

∫ t2

t′
dt1Ã(t2, t

′)Ã(t1, t
′) + . . .

]

(12)

Inserting I = D−1D after each matrix Ã, one arrives at

G(t, t′) = G0(t, t
′) +

∫ t

t′
dt1G0(t, t1)B(t1)F0(t1, t

′)

+

∫ t

t′
dt2

∫ t2

t′
dt1G0(t, t2)B(t2)F0(t2, t1)B(t1)F0(t1, t

′)

+ . . . (13)

where F0(t, t
′) = DG0(t, t

′) = diag{µtot
1 exp[−µtot

1 (t −
t′)], . . . , µtot

N exp[−µtot
N (t− t′)]}, and B(t) = A(t)D−1 has

the matrix elements Bij(t) = −wij(t)/µ
tot
j for i 6= j and

Bjj(t) = 1− wtot
j (t)/µtot

j .
Equation (13) resembles the ATA: The transition prob-

abilities Gij(t, t
′) are decomposed into paths with an ar-

bitrary number n = 0, 1, 2, . . . of “Poisson points”, where
transitions are attempted. The times between successive
attempted transitions are exponentially distributed ac-
cording to the matrix elements of F0 and the attempted
transitions are accepted or rejected according to the
probabilities encoded in the diagonal and non-diagonal
elements of the B matrix, respectively. The G0 enter-
ing Eq. (13) takes care that after the last attempt in a
path with exactly n attempted transitions no further at-
tempt occurs and the system remains in the target state
i. The RTA can be associated with an analogous formal
solution of the master equation if one replaces G0(t, t

′)
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by GRTA
0 (t, t′) = diag

{

wtot
1 (t) exp[−

∫ t

t′
dτ wtot

1 (τ)], . . . ,

wtot
N (t) exp[−

∫ t

t′
dτ wtot

N (τ)]
}

and B(t) by BRTA(t) with

elements BRTA
ij (t) = (1− δij)wij(t)/w

tot
j (t) (the diagonal

elements are zero since the RTA is rejection-free).

III. EXAMPLE

Let us now demonstrate the implementation of the
FATA in an example. To this end we consider three
mutually coupled two-level systems that are periodically
driven. For an arbitrary given i, i = 1, 2, 3, the state
| i,±〉 has the energy ±E(t). The occupancy of the state
| i,±〉 is specified by the occupation number ni = ±1.
For example, if ni = −1, the i-th two level system resides
in the state | i,−〉 and it possesses the energy−E(t). The
coupling is described by the (positive) interaction param-
eter V . The total energy of the three coupled two-level
systems is given by the expression

H(n, t) = V (n1n2 + n1n3 + n2n3) + E(t)

3
∑

i=1

ni , (14)

where n = (n1, n2, n3) specifies the microstate of the
compound system. The periodic driving is considered
to change energies of the individual two-level systems as

E(t) =
∆E

2
sin(ωt) , (15)

where ∆E > 0 is the amplitude of modulation and ω
its frequency. Due to contact of the compound system
with a heat reservoir at temperature T , transitions be-
tween its microstates occur. Assume that in the initial
state m one and only one occupation number differs from
the corresponding occupation number in the final state
n. Then instantaneous value of the detailed-balanced
Glauber jump rates connecting these two states reads

w(m → n, t) =
ν

1 + exp {β [H(n, t)−H(m, t)]}
. (16)

The other pairs of microstates are not connected, that is,
the transition rates between them vanish. In the above
expression, ν designates an attempt frequency, and β is
the inverse temperature. In the following we will use kBT
as our energy unit and ν−1 as our time unit.
In current research of non-equilibrium systems, in par-

ticular of processes in small molecular systems, the in-
vestigation of distributions of microscopic work receives
much attention. Among others, this is largely motivated
by questions concerning the optimization of processes,
and by the connection of the work distributions to fluc-
tuation theorems. These theorems allow one to obtain
equilibrium thermodynamic quantities from the study of
non-equilibrium processes and they are useful for getting
a deeper insight into the manifestation of the second law
of thermodynamics. At the same time, the analytical ex-
pressions for the work distribution are rarely attainable

−15 −10 −5 0 5 10 15
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FIG. 1: Work distributions p(w) as obtained from the FATA
for ∆E = V = 5 and ω = 0.1 (squares, green color), 1 (circles,
blue color), and ω = 10 (stars, red color).

(one exception is reported in [12]). It is therefore inter-
esting to see how the FATA can be employed for studies
in this research field. To be specific, we focus on the sta-
tionary state and calculate work distributions within one
period of the external driving. For these distributions we
check the detailed fluctuation theorem of Crooks [4], as
generalized by Hatano and Sasa [11] to steady states (for
a nice summary of different forms of detailed and integral
fluctuation theorems, see [6]).
In our model, due to the possibility of thermally acti-

vated transitions between the eight microstates, the state
vector n must be understood as a stochastic process. We
designate it as n(t), and let n

tr(t) denotes its arbitrary
fixed realization. The instantaneous energy of the com-
pound system along this realization is then H(ntr(t), t).
The work done on the system during the mth period
[mτ, (m+1)τ ], τ = 2π/ω, if the system evolves along the
realization in question, is given by

wtr
m =

∫ (m+1)τ

mτ

dt
∂

∂t
H(ntr(t), t)

=
ω∆E

2

3
∑

i=1

∫ (m+1)τ

mτ

dt ntr
i (t) cos(ωt) . (17)

In the stationary limit m → ∞ (m ≫ 1) we can drop
the index m. According to the detailed fluctuation theo-
rem, the work distribution p(w) should, in our case (time-
symmetric situation with respect to the initial microstate
distribution for starting forward and backward paths),
obey the relation p(w) exp(−w) = p(−w).
Figure 1 shows the results for p(w) obtained from the

FATA for ∆E = V = 5, and three different frequencies
ω = 0.1, 1, and 10. First, we let the system evolve during



5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

p(−w)

p
(w

)
ex

p
(−

w
)

FIG. 2: Check of the detailed fluctuation theorem
p(w) exp(−w) = p(−w) for the work distributions shown in
Fig. 1. The same symbols/colors are used for the three dif-
ferent frequencies as in Fig. 1.

the Nini = 1 (ω = 0.1), Nini = 3 (ω = 1), Nini = 9 (ω =
10) periods to reach the stationary state. Subsequently,
the work values wtr according to Eq. (17) were sampled
over N = 104 (ω = 0.1), N = 105 (ω = 1), and N = 105

(ω = 10) periods.
With decreasing ω, the maxima of the work distribu-

tions in Fig. 1 shift toward w = 0, and δ-singularities,
marked by the vertical lines, receive less weight. These
δ−singularities are associated with stochastic trajectories
of the system, where no transitions occur within a period
of the driving. For ω = 0.1, p(w) is already close to the
Gaussian fluctuation regime.
In Fig. 2 we show that the work distributions from

Fig. 1 indeed fulfill the detailed fluctuation theorem. This
demonstrates that the FATA successfully generates sys-

tem trajectories with the correct statistics of the stochas-
tic process.

IV. SUMMARY

In summary, we have presented new simulation al-
gorithms for Markovian jump processes with time-
dependent transition rates, which avoid the often cum-
bersome or unhandy calculation of inverse functions. The
ATA and FATA rely on the construction of a series of
Poisson points, where transitions are attempted and re-
jected with certain probabilities. As a consequence, both
algorithms are easy to implement, and their efficiency will
be good as long as the number of rejections can be kept
small. For complex interacting systems, the FATA has
the same merits as the FRTA with respect to the FRA.
Both the ATA and FATA generate exact realizations of
the stochastic process. Their connection to perturbative
solutions of the underlying master equation may allow
one to include in future work also non-Markovian fea-
tures of a stochastic dynamics by letting the rejection
probabilities to depend on the history [13]. Compared to
the RTA and FRTA, the new algorithms should in par-
ticular be favorable, when considering periodically driven
systems with interactions. Such systems are of much cur-
rent interest in the study of non-equilibrium stationary
states and we thus hope that our findings will help to
investigate them more conveniently and efficiently.
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