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                                                                 Abstract. 
          Mobility of band carriers scattered on donors, partially ionized, partially neutral, is considered in general and 

calculated for crystals of AIII-BV group. As neutral impurity we have constructed the hydrogen-like model, which 

gives well appointed short-range scattering potential. It is shown that dependence of mobility on temperature is de-

termined by relation between number of ionized and neutral donors and by average energy of electrons. 

 

1. Introduction 

 During long time investigations of scattering of band carriers by neutral impurities had no notice-

able advance (see Refs. [1 – 5]). Several approaches to the problem of neutral impurity scattering were 

used, but wide recognition obtained only Erginsoy’s formula of relaxation time for carriers momentum 

(see Ref.[1]):  
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Here Lε  is dielectric constant of lattice,  is effective mass,  is concentration of scattering centers. 

But there are serious claims to method of scalar relaxation time in total [6, 7]. The attempts to improve 

agreement of theory with experimental data by the way of introducing in Eq. (1) some  adjusting factor 

(see for instance [4] ) should be considered as very naive only.     
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 Other direction of investigations is related to presentation of scattering potential for neutral impu-

rity as rectangular spherically isotropic hole (see Ref. [8]). Limit case of this model is delta-shaped 

function in space  (see Refs. [9, 10]). In this case there is no possibility to evaluate amplitude of inter-

action. There is also no way to derive rectangular or delta-shaped potential strictly as well-reasoned 

limit case of physically grounded interaction.  

 Bellow we consider mobility of band carriers, scattered by charged and neutral impurities; calcu-

lations will be based of quantum kinetic equation [9, 10]. For simplicity we use here only model of 

simple isotropic parabolic dispersion law for band carriers.  
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As scattering system we consider shallow donors, which are partially ionized ; their extent of ionization 

depends on temperature. So in general case we have as neutral as charged scattering centers; relation 

between their concentration depends on temperature. We consider here  only low temperatures and 

don’t accept for calculation phonon scattering. 

  

2. Scattering potential 

2a. Delta-shaped potential 

 The formulation “scattering of band electron on neutral point defect” is completely conditional, 

because Coulomb interaction of charged particle with really neutral point object is absent. Therefore 

neutral scattering center has to be some compact complex structure containing several different sepa-

rated charges; and this structure is neutral only in total. For such case the range of forces is practically 

limited by geometrical size of complex center.  

 Very popular is simplest model of neutral scattering center, presented by delta-shaped potential of 

unknown amplitude: 
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Fourier component of this potential: 
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Note, that the value )(qI
rϕ  does not depend on wave-vector qr  . 

2b. Charged impurity 

Fourier component of Coulomb potential generated by solitary charged impurity has the form 

(see Refs. [9, 10]) 
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Taking in account screening of scattering potential by band carriers one obtains: 
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Here Lε  is dielectric constant of lattice, ),( ωε qrΔ  is dielectric function for band carriers. Farther we 

use the last in the form   
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Here )(2/1 η−F is Fermi-integral (see Ref. [8]): 
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It is convenient to write the expression (6) in the form 
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Then we obtain 
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 Comparison of the forms (3) and (8) shows that even high-screened Coulomb potential cannot 

imitate the delta-shaped potential. The reason of this result is evident: the screening cuts Coulomb in-

teraction  at long distances and is not important for short distance interaction.  

 Correlator of screened potentials: 
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2c. Hydrogen-shape neutral impurity 

 Consider donor impurity which has the structure, similar to spherically symmetrical hydrogen 

atom. Space density of negative charge χ  can be presented by following relation: 
2)( )()( ρψρχ e−=− .                                                    (11) 

Here )(ρψ ∼ )/exp( Brρ− is wave function of electron of shallow donor; the value 

22 / mer LB εh=                   (12) 

is Bohr-radius of exterior donor electron; m  is effective mass.. The density of charge )(ρχ  is normal-

ized by the relation 
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 Electrostatic potential of the positive kernel of impurity atom in crystal is 
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Total scattering potential of neutral center, generated by distributed negative charge of exterior donor 

electron and point positive charge in center, is 
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Several examples for the space distribution of potential )(rINϕ  are presented on Fig. 1. Here 

errrK INL /)(),( 0 ϕεγ =  and Brr /0=γ  . The value of radius  determines range of action for scatter-

ing center, and   is scale-factor.   
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Fig. 1.     a) γ = 0 ; b) γ = 1 ;  c) γ = 2 ; d) γ = 4 . 

 Fourier component of  potential (15) has the following form: 
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 One can see that wave-vector    is natural measure for distribution in q-space of Fourier-

component for scattering potential, generated by neutral impurity. For n-GaAs we have:

Bq

0067.0 mm =  

and 5.12=Lε ; therefore we obtain:  .  It follows from here that noticeable screen-

ing of the short-range potential (16) by band electrons arrives in mentioned crystal at concentrations  

2122 10108.4 −⋅= cmqB
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31710 −> cmn . Assuming in the expression (16) formally 0=Bq  (that is  ), we obtain the Cou-

lomb form (4). Assuming there , we obtain the model form (3), used for short range scatter-

ing centres . 
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 From  Eq. (16) follows the correlator of scattering potentials for neutral centres: 
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Here   is concentration of neutral impurities. INN

 Due to short range of considered scattering center there is no need to involve in consideration 

screening of scattering potential by band electrons. 

 

3. Mobility of band carriers 

           Consider impurity system as donors, partially ionized, partially neutral. The degree of ionization 

depends on temperature T .  Write the relation between densities of ionized and neutral impurities as 

ICINIDNDD NNNNN +=+=  .                                            (18) 

 Below we assume that band electrons concentration  n   equals to concentration of ionized donors  
1]}/)exp[(1{ −−+=== TkNNNn BDFDICID εε .                                  (19) 

Here Fε   is Fermi energy, 0<Dε   presents energy level for donors. 

        Calculate mobility  μ    of  band  carriers using the formulae (see Ref. [11])  
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The value ICβ   presents deposit of charged impurities in (reverse) mobility of band carriers, the value  

INβ    relates to neutral impurities subsequently.   

The following numerical calculations we carry out for set of AIII-BV crystals (see Ref. [11]  and 

Table 1): 
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TABLE – 1 

 AIII-BV m / m0 εL -εD  (eV) 

1 GaAs 0.067 12.5 0.008 

2 GaSb 0.05 15 0.003 

3 InP 0.07 14 0.008 

4 InSb 0.013 17 0.0007 

5 InAs 0.02 14 0.002 

 

Results of calculations of mobility, based on formulae (21), (22), are shown  on Fig. 2 (a − g). 

Here mobility  μ   is presented in CGSE units. Numbers on curves correspond to numbers in Table 1. 
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Fig. 2. 

 Temperature dependence of  mobility μ   for considered crystals appears as result of competition 

of two processes. Change of temperature changes as the number of ionized centres as average energy of 

electronsl.  First process dominates at lower temperatures, second − at more high temperatures. There-

fore, calculated dependence of dimensionless mobility M on temperature T  becomes non-monotonous. 

 For comparison show here Fig. 3 which reproduces figure 4.5(b) from Ref. [8]. That figure relates 

to scattering of electrons by “neutral” impurities. Here curve-1 is constructed on the  base of Erginsoy’s 

theory [1], curves-2 and 3 − on the base of theoretical calculations of N. Sclar [11] and  T. McGill with 

R.Baron [12] consequently. Our curves shown on Fig. 4 have at low temperatures the same stile as 

curves-2 and 3 on Fig. 3. This comparison supports our critical relation to Erginsoy’s formula. 

 
                                  Fig. 3.                                     Fig. 4 . 
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4. Discussion 

To compare contribution of neutral and charged impurities to mobility introduce border tempera-

ture  by the relation *T *)(*)( TT INIC ββ = .  Connection between temperature   and donor con-

centration  is presented on Fig. 4 by five lines (corresponding to five different crystals). These lines 

divide the plane {N

*T

DN

D , T} on two areas. In top area  (there T > T*) scattering on charged donor prevails; 

in lower area (there T < T*) scattering on neutral impurities dominates. The numbers of curves corre-

spond to that in Table-1.  

Now compare results of this article with results which can be obtained on the base of calculations 

carried out on the base of  traditional τ -approximation (see Ref. [5]). Result of comparison is shown on 

Fig. 5 (Here B-lines relate to the calculations of this article, A-lines are constructed with the help of 

corresponding formulae represented in monograph of Anselm (see Ref. [5]).  One can see that diver-

gence  is quite noticeable. 

Fig. 6 represents our theoretical curve (solid line) and experimental curve (dashed line) obtained 

for InSb by H.J. Hrostowski et al. (see Refs. [13, 14] ). Due to limited accuracy of parameters, pre-

sented in Table 1, one can consider concordance of these lines quite satisfactory.   
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Fig. 5. 

 
Fig. 6. 
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