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Abstract
MaxEnt inference algorithm from the information theory is relevant for the time evolution of macroscopic systems which

represents a problem of incomplete information. Two different approaches using MaxEnt algorithm are considered in this
work, both applied to the problem of predicting macroscopic time evolution of closed systems with Hamiltonian dynamics.
The first approach is based on Liouville equation for the conditional probability distribution introduced as a strict microscopic
constraint on time evolution in phase space. Phase space paths determined by solutions of Hamilton’s equations are introduced
as a representation of information about microscopic dynamics. Path probability distribution is defined for the set of phase
space paths. The conditional probability distribution is defined for the set of microstates associated with the set of phase space
paths. The MaxEnt inference algorithm with Shannon’s concept of conditional information entropy is then used for prediction of
time evolution consistently with this strict microscopic constraint on time evolution in phase space. It is concluded consequently
that this approach is equivalent to complete knowledge of microscopic dynamics. The second approach is based on the same
concepts with a difference that Liouville equation for the conditional probability distribution is introduced as a macroscopic
constraint given by phase space average. In this approach we consider incomplete nature of our information about microscopic
dynamics in a rational way that is consistent with Jaynes’ formulation of predictive statistical mechanics and the concept
of macroscopic reproducibility for time dependent processes. Maximization of the conditional information entropy subject
to this macroscopic constraint leads to a loss of correlation between the initial phase space paths and final microstates. It
is known from information theory that the information entropy is the upper bound on the conditional information entropy,
with the upper bound attained only in case of complete loss of correlation. In reproducible time evolution of a closed system,
information entropy of the microstate probability distribution has its maximum value consistent with constraints. This is a
consequence of macroscopic reproducibility and the information loss about possible but otherwise unknown microstates into
which the system finds itself during the reproducible process. In this alternative approach to prediction of macroscopic time
evolution, maximization of the conditional information entropy includes all described properties and is equivalent to the loss
of statistical correlation. Irreversibility appears as a consequence of gradual loss of information about possible microstates of
the system, as was suggested by Jaynes.
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I. INTRODUCTION

Maximum-entropy formalism, or alternatively MaxEnt algorithm, was formulated by E. T. Jaynes in his influential
papers [1, 2] intended for applications in statistical mechanics. In Jaynes’ approach a full development of the results
of equilibrium statistical mechanics and formalism of Gibbs [3] was possible as a form of statistical inference based on
the Shannon’s concept of information-theory entropy as a measure of information [4]. In the language of Jaynes, it is
the correct measure of the ”amount of uncertainty” in the probability distribution [5]. Maximization of information-
theory entropy subject to certain constraints is a central concept in Jaynes’ approach and provides the least biased
probability estimates subject to the available information. It is important that Jaynes sees Gibbs’ formalism as
essential tool for statistical inference in different problems with insufficient information, and this includes equilibrium
statistical mechanics [1] and the formulation of a theory of irreversibility [2] that he tries to accomplish in his later
works [5–9].
Predictions and calculations for different irreversible processes usually involve three distinct stages [6]: (1) Setting

up an ”ensemble”, i.e., choosing an initial density matrix, or in our case an N -particle distribution function, which
is to describe our initial knowledge about the system of interest; (2) Solving the dynamical problem; i.e., applying
the microscopic equations of motion to obtain the time evolution of the system; (3) Extracting the final physical
predictions from the time developed ensemble. As fully recognized by Jaynes, the stage (1) and the availability of
its general solution simplifies the complicated stage (2). The problem includes also an equally important stage (0)
consisting of some kind of measurement or observation defining both the system and the problem [10].
The aim of this paper is to consider the important stage (2) of the problem and assumptions that allow the use

of MaxEnt inference methods, consistently with the Hamiltonian formulation of classical mechanics, for prediction of
time evolution of closed macroscopic systems. In direct mathematical attempts leading to a theory of irreversibility
the Liouville theorem with the conservation of phase space volume inherent to Hamiltonian dynamics is represented as
one of the main difficulties. A necessary consequence of Hamiltonian dynamics and the Liouville theorem is that time
evolution of the phase space probability density functions is governed by the Liouville equation. If, at the microscopic
level Hamiltonian dynamics is invariant to time reversal, time evolution of phase space probability distributions that
is determined from the Liouville equation of motion is reversible. For all these reasons alone, and the fact that one of
the central mathematical problems in statistical mechanics is obtaining irreversible behavior for macroscopic systems
from this immensely complicated equation of motion, it is reduced to an irreversible equation termed Boltzmann
equation, rate equation or master equation. Far from creating difficulties, Jaynes considers the Liouville equation
and the related constancy in time of Gibbs’ entropy as precisely the dynamical property needed for solution of this
problem considering it to be more of conceptual than mathematical nature [6].
Mathematical clarity of this viewpoint has its basis in a limit theorem noted by Shannon [4], an application of the

fundamental asymptotic equipartition theorem of information theory, relating the Boltzmann’s original formula for
entropy of a macrostate and the Gibbs expression for entropy in the limit of a large number of particles [6, 7, 9].
Mathematical connection with the Boltzmann’s interpretation of entropy as the logarithm of the number or ways
(or microstates) by which a macroscopic state can be realized, S = k logW , introduces then a simple physical
interpretation to the Gibbs’ formalism and its generalizations in the maximum-entropy formalism. Maximization of
the information entropy subject to constraints predicts then the macroscopic behavior that can happen in the greatest
number of ways compatible with the available information. In applications to time dependent processes this is referred
to by Jaynes as the maximum caliber principle [8, 9]. Jaynes clearly stated that this does not represent a physical
theory that explains the behavior of different systems by deductive reasoning from the first principles, but a form
of statistical inference that makes predictions of observable phenomena from incomplete information [8]. For this
reason predictive statistical mechanics can not claim deductive certainty for its predictions. This does not mean that
it ignores the laws of microphysics; it certainly uses everything known about the structure of microstates and any
data on macroscopic quantities, without making any extra physical assumptions beyond what is given by available
information. It is important to note that sharp, definite predictions of macroscopic behavior are possible only when
it is characteristic of each of the overwhelming majority of microstates compatible with data. For the same reason,
this is just the behavior that is reproduced experimentally under those constraints; this is known essentially as the
principle of macroscopic uniformity [1, 2], or reproducibility [9]. For predicting macroscopic behavior that is found to
be reproducible it can not be necessary to specify all of the vast number of microvariables that were not under control
and would not be the same on successive repetitions of the experiment [9]. In somewhat different context this property
is recognized as the concept of macroscopic determinism whose precise definition involves some sort of thermodynamic
limit [11]. In Jaynes’ view the dynamical invariance of the Gibbs’ entropy gives a simple proof of the second law,
which is then a special case of a general requirement for any macroscopic process to be experimentally reproducible
[6]. In the simple demonstration based on the Liouville theorem this makes possible for Jaynes to generalize the
second law beyond the restrictions of initial and final equilibrium states, by considering it a special case of a general
restriction on the direction of any reproducible process [6, 12]. The arguments used in this demonstration imply also
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the question how to determine which nonequilibrium or equilibrium states can be reached from others, and this is
not possible without information about dynamics, constants of motion, constraints, etc. The second law predicts only
that a change of macroscopic state will go in the general direction of greater final entropy [9]. Better predictions are
possible only by introducing more information. For predictions this is not hopeless; macrostates of higher entropy can
be realized in overwhelmingly more ways and this is the reason for high reliability of the Gibbs equilibrium predictions
[9]. In this context Jaynes also speculated that accidental success in reversal of an irreversible process is exponentially
improbable [12].
Jaynes’ interpretation of irreversibility and the second law reflects the point of view of the actual experimenter.

Zurek [13] has introduced algorithmic randomness as the measure of the complexity of the microscopic state. He
has prescribed entropy not only to the ensemble but also to the microscopic state. This prescription makes the
principal distinction between his and Jaynes’ approach. The basic laws of computation reflected in this interpretation
allow Zurek to formulate thermodynamics from the point of view of Maxwell demon-type entities that can acquire
information through measurements and process it in a manner analogous to Turing machines. According to Jaynes, the
detailed description of microscopic development of the system can not be extracted from the data about macroscopic
development, and therefore it is not a subject of his approach. Increase of entropy is related to gradual decrease of
information about possible microstates of the system compatible with data.
MaxEnt algorithm and its standard methods represent a way of assigning probability distributions with the largest

uncertainty and extent compatible with the available information, and for the same reasons, least biased with respect
to unavailable information. Inferences drawn in this way depend only on our state of knowledge.1 Macroscopic
irreversibility is also an experimental fact and the nature of its subjectivity or objectivity is not necessarily a central
issue when applying the MaxEnt algorithm in the spirit of Jaynes approach. In this work two different applications of
MaxEnt algorithm to macroscopic closed systems with Hamiltonian dynamics and their time evolution are examined
in detail along with their consequences. In the first approach Liouville equation is introduced as a strict microscopic
constraint on time evolution of the phase space probability density functions, which are then completely determined
by this constraint and their initial values. If probabilities are considered in the objective sense as a property of the
system and not of our state of knowledge, this approach can be justified only if our knowledge of the microscopic
dynamics is complete. As expected, this approach leads to the aforementioned well known problems, but represents a
self-consistency check of the methods introduced in this variational problem to avoid problems with overconstraining.
The concepts of phase space paths, path probability distribution, conditional probability distribution, and respective
path information entropy and conditional information entropy are introduced. The importance of detailed dynamics
of Hamiltonian systems and its representations by phase space paths is emphasized in maximization of the conditional
information entropy subject to the constraint of Liouville equation for the conditional probability distribution. MaxEnt
distribution and inferred time evolution then predicts macroscopic behavior than can happen in the greatest number
of ways consistent with the information about microscopic dynamics, justified by our complete knowledge of it.
The concepts and quantities introduced in the first approach constitute also the basis for the second approach.

The distinction is that Liouville equation for the conditional probability distribution is introduced as a macroscopic
constraint. It means that it is regarded as a constraint on time evolution of the phase space probability density
functions only on average, given by the integral over accessible phase space. In this respect it is similar to the
constraints given by the data on macroscopic quantities. In Jaynes’ predictive statistical mechanics more objectivity
is ascribed to experimentally measured quantities than to probability distributions and their time evolution. The
subjective aspect that becomes important here is that probabilities are assigned because of incomplete knowledge,
i.e., partial information, and therefore represent our state of knowledge about the system. If our information about
dynamics is not sufficient to determine the time evolution, an average is taken over all cases possible on the basis of
our partial information. In this approach it can be seen how elements of irreversible macroscopic behavior in closed
Hamiltonian systems appear as a consequence of gradual loss of information about possible microstates of the system.
This idea has been developed by Jaynes in the density-matrix formalism [2]. Irreversible macroscopic behavior and
the interpretation based on reproducibility and information loss has a clear mathematical description in the concepts
of conditional information entropy and its relation with the information entropy, all introduced by Shannon [4]. The
predicted final state of the system is recognized as the one characterized by maximum Boltzmann-Gibbs entropy.
At the end of the work the subjective and objective aspects of the two approaches are indicated and relations with
entropy production are discussed.

1 This opinion is underlined with the following passage [2] ”...if it can be shown that the class of phenomena predictable by maximum-
entropy inference differs in any way from the class of experimentally reproducible phenomena, that fact would demonstrate the existence
of new laws of physics, not presently known. Assuming that this occurs, and the new laws of physics are eventually worked out, and
then the maximum-entropy inference based on the new laws will again have this property.”
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II. HAMILTONIAN DYNAMICS AND PHASE SPACE PATHS

The dynamical state of a Hamiltonian system with s degrees of freedom is described by the coordinates q1, q2, . . . , qs
and the momenta p1, p2, . . . , ps. At any time t it is represented by a point in the 2s-dimensional Euclidean space
Γ called the phase space of the system. To each possible state of the system corresponds a point in the phase
space Γ, determined by the values of the coordinates q1, q2, . . . , qs and the momenta p1, p2, . . . , ps. For a system
of N point particles in three-dimensional space, s will be equal to 3N . To simplify the notation, the symbol
(q, p) ≡ (q1, . . . , qs, p1, . . . , ps) is introduced for the set of 2s coordinates and momenta. The time dependence of
2s dynamical variables (q, p) is determined by Hamilton’s equations

q̇i =
∂H

∂pi
, ṗi = −

∂H

∂qi
, 1 ≤ i ≤ s, (1)

where H ≡ H(q, p) is the Hamiltonian function equal to the energy of the system. Given the values (q0, p0) at some
time t0, Hamilton’s equations (1) determine uniquely the values of the dynamical variables (q, p) at any other time t,
given by the uniquely determined solution of equations (1),

qi = qi(t; q0, p0), pi = pi(t; q0, p0), 1 ≤ i ≤ s. (2)

Motion of any point in the phase space Γ that represents the dynamical state of system, including all its subsequent
or preceding time evolution, is thus determined. Any point (q, p) in the phase space Γ describes a curve called a
phase space path, given by the uniquely determined solution of Hamilton’s equations. Hence, through each point of
the phase space Γ at any time t passes only one path. This is denoted by the index ω in (q, p)ω , where ω ∈ Ω(Γ), and
the set Ω(Γ) is the set of all paths in the phase space Γ. Index ω denotes this fact and is not used to parametrize the
set Ω(Γ).
The velocity v(q, p, t) of the point (q, p) in the phase space Γ at time t is given by

v ≡ |v| =

√

√

√

√

s
∑

i=1

(

dqi
dt

)2

+

s
∑

i=1

(

dpi
dt

)2

=

√

√

√

√

s
∑

i=1

(

∂H

dpi

)2

+

s
∑

i=1

(

dH

dqi

)2

. (3)

The velocity vector v((q, p)ω , t) is tangential at the point (q, p)ω ∈ Γ to the phase space path ω passing through it at
time t. For the systems considered here the Hamiltonian function H(q, p) does not depend on time and the velocity
field v(q, p, t) of all points in the phase space Γ is stationary, i.e., v(q, p, t) ≡ v(q, p).
Let M0 be any measurable (in the sense of Lebesgue) set of points of the phase space Γ. In the Hamiltonian motion

the set M0 is transformed into another set Mt during an interval of time t. Liouville’s theorem asserts that the
measure of the set Mt for any t coincides with the measure of the set M0.

2 This theorem proves that the measure in
the phase space Γ,

µ(Mt) =

∫

Mt

dq1 . . . dqsdp1 . . . dps =

∫

Mt

dΓ, (4)

is invariant under Hamiltonian motion. In the notation used in Eq. (4), volume element dq1 . . . dqsdp1 . . . dps of the
phase space Γ is denoted by dΓ. One immediate consequence or corollary [14, pp. 18-19] of Liouville’s theorem is
that, if M0 is a Lebesgue measurable set of points of the phase space Γ, of finite measure, and f(q, p) a phase function
Lebesgue integrable over Γ, then

∫

Mt

f(q, p)dΓ =

∫

M0

f(q(t; q0, p0), p(t; q0, p0))dΓ0. (5)

Eq. (5) is obtained by changing the variables in the integral and introducing new variables (q0, p0) related to the
variables (q, p) by transformation of the space Γ into itself in Hamiltonian motion, represented by uniquely determined
solutions of Hamilton’s equations in Eq. (2).
If, in particular, the set M is invariant to the Hamiltonian motion, then using this corollary it is easy to show how

an integral of a phase function f(q, p) over the invariant set M is transformed into an integration over the set Ω(M)

2 The theorem of Liouville is stated in this way in the book by Khinchin, [14, pp. 15-16].
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of all paths in M . At any time t through each point (q, p)ω ∈ Γ passes only one path ω ∈ Ω(Γ). The path ω also
passes through the point (q0, p0)ω ∈ Γ, given by the inverse of Eq. (2). The infinitesimal volume element dΓ0 around
the point (q0, p0)ω can be written as dΓ0 = ds0ωdS0ω. Here

(ds0ω)
2 =

s
∑

i=1

(dq0ωi)
2 +

s
∑

i=1

(dp0ωi)
2, (6)

is the (square of) infinitesimal distance along the path ω. The infinitesimal element dS0ω of the surface S0(M)
intersects the path ω perpendicularly at the point (q0, p0)ω. The surface S0(M) is then perpendicular to all paths in
the set Ω(M) of all paths in M .3

The invariance of the measure dΓ to Hamiltonian motion in Γ, and the fact that the velocity field v(q, p) in Γ is
stationary as the Hamiltonian H(q, p) does not depend on time, lead to the following consequence. For any phase
space path ω ∈ Ω(Γ), the product of the velocity v((q, p)ω) and the infinitesimal surface dSω intersecting the path ω
perpendicularly at the point (q, p)ω, is constant under Hamiltonian motion along the entire length of the path ω, i.e.,

v((q, p)ω)dSω = const. (7)

For any two points (q0, p0)ω and (qa, pa)ω on the same path ω, the following relation is obtained from (7):

v((q0, p0)ω)dS0ω = v((qa, pa)ω)dSaω. (8)

The infinitesimal element dSaω of the surface Sa(M) intersects the path ω perpendicularly at the point (qa, pa)ω.
Like the surface S0(M), surface Sa(M) is also perpendicular to all paths in Ω(M). The infinitesimal elements dS0ω

and dSaω of the two surfaces S0(M) and Sa(M) are connected by the path ω and neighboring paths determined by
solutions of Hamilton’s equations. The integral over surface Sa(M) is transformed with the help of Eq. (8) into
integration over surface S0(M),

∫

Sa(M)

dSaω =

∫

S0(M)

v((q0, p0)ω)

v((qa, pa)ω)
dS0ω. (9)

Functional dependence between the points (q0, p0)ω and (qa, pa)ω on the path ω is not explicitly written in the integral
(9); it is implied that this functional dependence is determined from solutions of Hamilton’s equations.
Using Eq. (2) and keeping the times t and t0 fixed allows the following notation to be introduced:

f(q(t; q0, p0), p(t; q0, p0)) ≡ g(q0, p0, t0). (10)

If notation in Eq. (10) (t and t0 are fixed and the indices in (q0, p0) are replaced by the indices (qa, pa)) is substituted
into the integral (5) over the set M which is invariant to Hamiltonian motion, this leads to following equality:

∫

M

f(q, p)dΓ =

∫

M

g(qa, pa, t0)dΓa =

∫

M

g(qa, pa, t0)dsaωdSaω. (11)

The integral (11) is then transformed using relation (8):

∫

M

g(qa, pa, t0)dsaωdSaω =

∫

S0(M)

dS0ωv((q0, p0)ω)

∫

ω

g(qa, pa, t0)

v(qa, pa)
dsaω. (12)

The function

F ((q0, p0)ω, t0) = v((q0, p0)ω)

∫

ω

g(qa, pa, t0)

v(qa, pa)
dsaω, (13)

is defined on the surface S0(M) and is called a path function or path distribution. The integral in the relation (13)
defining a path function F ((q0, p0)ω, t0) is over the entire length of the path ω intersected perpendicularly by the

3 It is a well established fact in the Hamiltonian formulation of classical mechanics that the integrals over subspaces of phase space of
different dimensions form a sequence of canonical invariants known as the integral invariants of Poincaré [15, p. 403]. The volume
integral (4) in the theorem of Liouville is a final member of this sequence. In this work, integrals over the surface S0(M) represent
integration over the set of phase space paths Ω(M), and for that reason, a result given by Eq. (7) and a related noninvariant ”measure”
of the set Ω(M), Eq. (9), are important.
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surface S0(M) at the point (q0, p0)ω. Infinitesimal element of the phase space path ω passing through the point
(qa, pa)ω is dsaω , and the time t0 in the integral (13) is fixed. There is no danger of the phase space velocity v(qa, pa)
in the integral (13) being equal to zero at some point along the path ω. If the phase space velocity v(qa, pa) is equal
to zero at some point (qa, pa) ∈ Γ, then the point (qa, pa) can not be part of any of phase space paths; points of this
kind are called fixed points.
If the phase function f(q, p) in Eq. (11) is a phase space probability density function, equal to zero everywhere

outside the invariant set M , it is straightforward to prove that the path function F ((q0, p0)ω, t0) defined by Eq. (13)
satisfies the nonnegativity and normalization conditions required from probability distributions. Nonnegativity and
normalization of the function F ((q0, p0)ω , t0) which then represents a path probability distribution follow from the
nonnegativity and normalization properties of the phase space probability density function f(q, p). With the help of
Eqs. (11) and (12) and the definition of F ((q0, p0)ω, t0) in Eq. (13), one then obtains the normalization property

∫

M

f(q, p)dΓ =

∫

S0(M)

F ((q0, p0)ω, t0)dS0 = 1. (14)

Nonnegativity is established for all (q0, p0)ω ∈ S0(M) in a similar way. Integral over any invariant and measurable
subset of the set M is transformed, in the way described above, into integral over a corresponding measurable subset
on the surface S0(M). It is clear also that the measure defined on the surface S0(M) can be utilized as a measure on
the set Ω(M) of all phase space paths in some invariant set M . Integrals in Eq. (14) are over all points (q, p) ∈ M ,
where M ⊂ Γ is an invariant set, and equivalently, over all paths ω ∈ Ω(M), passing through points (q0, p0)ω ∈ S0(M).
Index ω denotes the fact that through each point (q0, p0)ω ∈ S0(M) at time t0 passes only one path ω ∈ Ω(M), since
at any time through each point in Γ passes only one path.

III. MICROSTATE PROBABILITY AND PATH PROBABILITY

It is now possible to relate the microstate probability and the path probability in the phase space Γ of the system.
Let the function f(q, p, t) be a probability density function on Γ. The probability that at time t the system is in the
element dΓ of the 2s-dimensional phase space Γ is equal f(q, p, t)dΓ. All points in the phase space Γ move according
to Hamilton’s equations (1) and the probability density function f(q, p, t) satisfies the Liouville equation

∂f

∂t
+

s
∑

i=1

(

∂f

∂qi

∂H

∂pi
−

∂f

∂pi

∂H

∂qi

)

≡
df

dt
= 0. (15)

Since df/dt is a total or hydrodynamic derivative, Eq. (15) expresses that the time rate of change of f(q, p, t) is zero
along any phase space path given by uniquely determined solution of Hamilton’s equations. In the notation used here,
this fact is also written as

f((q, p)ω, t) = f((q0, p0)ω, t0), (16)

where points on the path ω ∈ Ω(Γ) are related by Eq. (2) (here, specifically point (q0, p0)ω at time t0 and point
(q, p)ω at time t) .
In addition to the definition of the path probability distribution F ((q0, p0)ω, t0) via microstate probability density

function f(q, p, t), it is possible to give another equivalent definition of F ((q0, p0)ω, t0). In order to accomplish this,
probability density function F(q, p, t; q0, p0, t0) is introduced on the 4s-dimensional Euclidean space Γ × Γ. This
function has the following special properties. If the integral of F(q, p, t; q0, p0, t0) is taken over the phase space Γ with
(q, p) as the integration variables, it gives the microstate probability density function f(q0, p0, t0) at time t0,

∫

Γ

F(q, p, t; q0, p0, t0)dΓ = f(q0, p0, t0). (17)

If F(q, p, t; q0, p0, t0) is integrated over Γ with (q0, p0) as the integration variables this gives the microstate probability
density function f(q, p, t) at time t,

∫

Γ

F(q, p, t; q0, p0, t0)dΓ0 = f(q, p, t). (18)

It is straightforward to prove that relations (17) and (18) are satisfied if the function F(q, p, t; q0, p0, t0) has the
following form:

F(q, p, t; q0, p0, t0) = f(q, p, t)

s
∏

i=1

δ(qi − qi(t; q0, p0))δ(pi − pi(t; q0, p0)), (19)
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where qi(t; q0, p0) and pi(t; q0, p0) are the solutions (2) of Hamilton’s equations and δ-s are Dirac delta functions.
This is clear if one uses the relation (16) remembering that at times t and t0 the solutions of Hamilton’s equations
qi(t; (q0, p0)ω) and pi(t; (q0, p0)ω) relate points (q, p)ω and (q0, p0)ω on the same phase space path ω ∈ Ω(M). The
function F(q, p, t; q0, p0, t0) given by Eq. (19) satisfies the normalization condition

∫

Γ

∫

Γ

F(q, p, t; q0, p0, t0)dΓdΓ0 = 1. (20)

In the space Γ × Γ function F(q, p, t; q0, p0, t0) given by Eq. (19) represents the probability density that the point
corresponding to the state of the system is in the element dΓ0 around the point (q0, p0) at time t0 and in the element
dΓ around the point (q, p) at time t.
As explained in Eq. (18), microstate probability density function f(q, p, t) is given by the integral of the function

F(q, p, t; q0, p0, t0) over Γ with (q0, p0) as integration variables. Now, by applying the procedure similar to the one
introduced in relations (11) and (12), the integral (18) can also be written as

f(q, p, t) =

∫

S0(M)

dS0ωv((q0, p0)ω)

∫

ω

F(q, p, t; qa, pa, t0)

v(qa, pa)
dsaω . (21)

The infinitesimal distance dsaω is along the path ω and dS0 is an infinitesimal element of S0(M), the surface which is
perpendicular to all paths ω ∈ Ω(M). The set M of all points in the phase space Γ that represent possible microstates
of the system is invariant to Hamiltonian motion. The set Ω(M) of all phase space paths in M , determined by
solutions (2) of Hamilton’s equations, represents all possible time evolutions of the system.
Along with the lines leading to Eq. (21), function G(q, p, t; (q0, p0)ω, t0) is also introduced:

G(q, p, t; (q0, p0)ω , t0) = v((q0, p0)ω)

∫

ω

F(q, p, t; qa, pa, t0)

v(qa, pa)
dsaω. (22)

Using the definition of G(q, p, t; (q0, p0)ω , t0) in Eq. (22), relation (21) is written as

f(q, p, t) =

∫

S0(M)

G(q, p, t; (q0, p0)ω , t0)dS0. (23)

The integral in the definition of G(q, p, t; (q0, p0)ω , t0) in Eq. (22) is over the entire length of the phase space path ω
intersected perpendicularly by the surface S0(M) at the point (q0, p0)ω. It is clear that the expression

G(q, p, t; (q0, p0)ω, t0)dS0dΓ ≡ P(q, p, t ∩ (q0, p0)ω, t0), (24)

represents the probability that the point corresponding to the state of the system is at time t0 anywhere along the
paths which pass through an infinitesimal element dS0 around (q0, p0) on the surface S0(M) and that this point at
some different time t is in the volume element dΓ around (q, p).
Another definition of the path probability distribution F ((q0, p0)ω , t0), in addition to Eq. (13), is possible in this

way. It is given by the integral

F ((q0, p0)ω, t0) =

∫

Γ

G(q, p, t; (q0, p0)ω, t0)dΓ. (25)

The expression F ((q0, p0)ω, t0)dS0 gives the probability that at time t0 the point corresponding to the state of the
system is anywhere along the paths that pass through an infinitesimal element dS0 around the point (q0, p0)ω on the
surface S0(M). As before, measure on the set Ω(M) of all phase space paths in some invariant set M is defined as
the measure on the surface S0(M). In accordance with the theory of probability, the ratio

G(q, p, t; (q0, p0)ω, t0)dS0dΓ

F ((q0, p0)ω, t0)dS0
≡ P(q, p, t|(q0, p0)ω , t0), (26)

represents the conditional probability that at time t the point corresponding to the state of the system is in the
element dΓ around (q, p), if at time t0 the point corresponding to the state of the system is anywhere along the paths
passing through the infinitesimal element dS0 around (q0, p0) on the surface S0(M). Relation (25) then proves that
the integral of (26) over Γ with (q, p) as integration variables satisfies the normalization condition, i.e.

∫

Γ

G(q, p, t; (q0, p0)ω, t0)dS0

F ((q0, p0)ω , t0)dS0
dΓ = 1. (27)
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To set up all the tools of probability theory needed in the rest of the work, conditional probability distribution
D(q, p, t|(q0, p0)ω , t0) on the phase space Γ, which corresponds to the conditional probability (26), is defined by the
relation

D(q, p, t|(q0, p0)ω , t0) =
G(q, p, t; (q0, p0)ω , t0)

F ((q0, p0)ω, t0)
. (28)

Definition (28) of the conditional probability distribution D(q, p, t|(q0, p0)ω, t0) is possible and consistent only for paths
passing through infinitesimal surface elements around the set of points {(q0, p0) | (q0, p0) ∈ S0(M), F ((q0, p0)ω, t0) 6= 0}
on the surface S0(M) at time t0. In the rest of the work, it is of practical importance to be able to write consistently

G(q, p, t; (q0, p0)ω , t0) = D(q, p, t|(q0, p0)ω , t0)F ((q0, p0)ω, t0). (29)

For this reason, it is set here D(q, p, t|(q0, p0)ω, t0) = 0 for paths passing through infinitesimal surface elements around
the remaining set of points {(q0, p0) | (q0, p0) ∈ S0(M), F ((q0, p0)ω, t0) = 0} on the same surface S0(M).
Hamiltonian motion of all points in Γ is along the flow lines, i.e along the uniquely determined phase space paths

ω ∈ Ω(Γ). Liouville’s theorem asserts that the measure of any measurable set of points of the phase space Γ is invariant
under Hamiltonian motion. The relation (26), like the relation (24), represents probability and it is conserved in the
phase space Γ. The total time derivative (i.e., time rate of change along the Hamiltonian flow lines) of this probability
is equal to zero. In the relation (26) for the conditional probability, the path probability distribution F ((q0, p0)ω , t0)
and the surface element dS0 are independent of the variables t and (q, p). Also, measure dΓ is invariant to Hamiltonian
motion. Therefore, it follows that the total time derivative of the conditional probability (26) is equal to zero if and
only if

dG

dt
≡

∂G

∂t
+

s
∑

i=1

(

∂G

∂qi

∂H

∂pi
−

∂G

∂pi

∂H

∂qi

)

= 0 . (30)

This is a simple demonstration that the probability distribution G(q, p, t; (q0, p0)ω, t0) satisfies an equation analogous
to the Liouville equation (15) for the microstate probability distribution f(q, p, t). In relation to the macroscopic time
evolution this issue is further discussed in this work.

IV. INFORMATION ENTROPIES AND MAXENT ALGORITHM

Different concepts introduced in previous sections are needed in finding relations between the Hamiltonian dynamics
and the description of behavior of macroscopically large systems. Phase space paths given by uniquely determined
solutions of Hamilton’s equations represent information about the detailed microscopic dynamics of the Hamiltonian
system. Microstate probability density functions on the other hand represent statistical, probabilistic aspect of
description. The connection between two aspects is the Liouville equation governing the time evolution of microstate
probability density functions, including all predictions on the values of macroscopic physical observables. In further
sections that connection is studied with a maximum possible consistency, directed to prediction of the macroscopic
time evolution of Hamiltonian closed systems based on the MaxEnt algorithm. Probability distribution utilized in
this application of MaxEnt algorithm is the conditional probability distribution introduced in the previous section
(Eqs. (28) and (29)). The reasoning behind this is that the conditional probability distribution D(q, p, t|(q0, p0)ω , t0)
represents both described aspects, i.e., information about the microscopic dynamics represented by phase space paths
and the probabilistic description which should be compatible with the macroscopic data. In general, MaxEnt algorithm
is applied to ensure that the probability distribution describes only the information that we have and contains no
hidden assumptions and information that is not available.
The quantity of the form H = −

∑

i pi log pi has a central role in information theory as a measure of information,
choice and uncertainty for different probability distributions pi. This quantity is named entropy of a probability
distribution by Shannon [4] and is known also as information entropy. In an analogous manner Shannon defines
entropy of a continuous distribution and entropy of N -dimensional continuous distribution. As pointed out by Jaynes
[5], the analog of −

∑n

i=1 pi log pi for a discrete probability distribution pi which goes over in a limit of infinite number
of points n → ∞ into a continuous distribution w(x) (in such a way that the density of points divided by the total

number of points approaches a definite function m(x)) is given by −
∫

w(x) log
[

w(x)
m(x)

]

dx. Shannon [4] assumed the

analog −
∫

w(x) log[w(x)]dx, but he also pointed out an important difference between his definitions of the discrete
and continuous entropies. The difference is that the former is absolute and the latter relative to the coordinate
system. If we change coordinates the entropy of a continuous distribution will in general change in the way taken into
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account by Shannon [4]. To achieve the required invariance of entropy of a continuous distribution under a change
of the independent variable it is necessary to introduce a modification that follows from mathematical deduction.
Accordingly, this is achieved with an introduction of the measure function m(x) and yields the invariant information
measure [5]:

SI = −

∫

w(x) log

[

w(x)

m(x)

]

dx. (31)

In a limit going from the discrete distribution to a continuous distribution of several variables these results are
readily generalized. If a uniform measure m = const is assumed,4 the invariant information measure differs from the
Shannon’s definition of entropy of a continuous distribution [4] by a irrelevant additive constant. Therefore, in all
further discussions in this work, the irrelevant additive constant will be dropped.
Shannon [4] has also defined the joint and conditional entropies of a joint distribution of two continuous vari-

ables (which may themselves be multidimensional), concepts which are needed and utilized in this work. In the
previous section, joint distribution G(q, p, t; (q0, p0)ω , t0) of two continuous multidimensional variables (q, p) ∈ Γ and
(q0, p0)ω ∈ S0(M) was introduced. Following the detailed explanation of Eq. (24), G(q, p, t; (q0, p0)ω , t0)dS0dΓ repre-
sents the probability of the joint occurrence of two events; the first occurring at time t0 among the set of all possible
phase space paths Ω(M) and the second occurring at time t among the set of all possible phase space points, the
invariant set M . In accordance with Shannon’s definition [4], joint information entropy of the joint distribution
G(q, p, t; (q0, p0)ω, t0) is given by

SG
I (t, t0) = −

∫

S0(M)

∫

Γ

G logG dΓdS0. (32)

The notation SG
I (t, t0) indicates that this quantity is a function of the time t and time t0, through the distribution

G ≡ G(q, p, t; (q0, p0)ω, t0). Following Shannon’s definition [4], conditional information entropy of the joint distribution
G(q, p, t; (q0, p0)ω, t0) is given by

SDF
I (t, t0) = −

∫

S0(M)

∫

Γ

G log

[

G

F

]

dΓdS0, (33)

where F ≡ F ((q0, p0)ω, t0) is the path probability distribution. Using the definition of D ≡ D(q, p, t|(q0, p0)ω, t0) in
Eqs. (28) and (29), one then immediately obtains the equivalent form of the conditional information entropy (33):

SDF
I (t, t0) = −

∫

S0(M)

∫

Γ

DF logD dΓdS0. (34)

From Eq. (34) it is clear that the conditional information entropy SDF
I (t, t0) is the average of the entropy of conditional

probability D(q, p, t|(q0, p0)ω, t0), weighted over all possible phase space paths ω ∈ Ω(M) according to the path
probability distribution F ((q0, p0)ω , t0). More explicitly, it is the average of the entropy of (q, p) ∈ Γ at time t for
each value of (q0, p0) ∈ S0(M), weighted according to the probability distribution F ((q0, p0)ω , t0).
Relation between the information entropies SG

I (t, t0) and SDF
I (t, t0), introduced in Eqs. (32) and (33), is completed

by introducing the information entropy of the distribution F ((q0, p0)ω, t0), or alternatively, path information entropy:

SF
I (t0) = −

∫

S0(M)

F logF dS0. (35)

Relation between SG
I (t, t0), S

DF
I (t, t0) and SF

I (t0) is obtained straightforwardly, if one substitutes Eq. (29) in Eq.
(32) for the information entropy SG

I (t, t0), and then uses the properties of probability distributions. In this way one
obtains

SG
I (t, t0) = SDF

I (t, t0) + SF
I (t0). (36)

Relation (36) between SG
I (t, t0), S

DF
I (t, t0) and SF

I (t0), in accordance with an analogous relation of Shannon [4],
states that the uncertainty (or entropy) of the joint event is equal to the uncertainty of the first plus the uncertainty

4 In classical statistical mechanics one assumes a uniform measure for phase space: m = const. The measure for phase space is of
considerable interest as we can regard classical statistical mechanics as a limiting form of quantum statistical mechanics (for further
reference see [5]).
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of the second when the first is known (and vice versa). This is the interpretation of relation (36), with the first event
occurring at time t0 among the set of all possible phase space paths Ω(M), and the second event occurring at time t
among the set of all possible phase space points, the invariant set M .
It is important to give additional comments to Eq. (36). In general, uncertainty of the joint event is less then or

equal to the sum of uncertainties of the two individual events, with the equality if (and only if) the two events are
independent [4]. The probability distribution of the joint event is given here by G(q, p, t; (q0, p0)ω, t0). Information
entropy or uncertainty of one of them (in this case called the second event because of its occurrence at a later time)
is given by

Sf
I (t) = −

∫

Γ

f log f dΓ. (37)

The quantity Sf
I (t) is also known as the information entropy of the microstate probability distribution f(q, p, t), or

in short, information entropy. The uncertainty of the first event is the path information entropy SF
I (t0), defined in

Eq. (35). The aforementioned property of information entropies is given here for SG
I (t, t0), S

f
I (t) and SF

I (t0) in the
following relation:

SG
I (t, t0) ≤ Sf

I (t) + SF
I (t0), (38)

with the equality if (and only if) the two events are independent. Furthermore, from Eqs. (36) and (38) one obtains

an important relation between Sf
I (t) and SDF

I (t, t0):

Sf
I (t) ≥ SDF

I (t, t0), (39)

with the equality if (and only if) the events occurring at time t0 among the set of all possible phase space paths Ω(M)
and at time t among the set of all possible phase space points M , are independent of each other.
Time evolution of the joint probability distribution G(q, p, t; (q0, p0)ω, t0) is determined by the Hamiltonian motion

via Eq. (30) which is analogous to the Liouville equation (15) for the microstate probability distribution f(q, p, t). This
is explicit in another way if one considers the definition of G(q, p, t; (q0, p0)ω, t0) in Eq. (22), where the information
about Hamiltonian dynamics enters via Eqs. (16) and (19). Possible microstates in Γ at time t are dependent on
the possible phase space paths at time t0, and vice versa, as through any point of Γ at any time t passes only one
path. If the values of joint probability distribution G(q, p, t; (q0, p0)ω, t0) are well defined for all points (q, p) ∈ Γ and
(q0, p0) ∈ S0(M) at given initial time t = t0, its values are then determined at all times t in the entire phase space Γ
via Liouville equation (30). In the terms of probability, the events occurring at time t0 among the set of all possible
phase space paths Ω(M) and at time t among the set of all possible phase space points M ⊂ Γ, are not independent.
Deduction based on these arguments, suggests that maximization of the conditional information entropy SDF

I (t, t0)
subject to the constraints of Liouville Eq. (30) and normalization, can not yield the upper bound which is given

(at any time t) by the value of the information entropy Sf
I (t). Attaining this upper bound (i.e., SDF

I (t, t0) = Sf
I (t))

would require statistical independence or, in other words, a complete loss of correlation between the set of possible
phase space paths Ω(M) at time t0 and the set of possible phase space points M ⊂ Γ at time t. This is precluded at
any time t by the constraint implied by Liouville Eq. (30).
At this point it is helpful to make a distinction between two aspects of time evolution. The first is a microscopic

aspect which represents a problem of dynamics implied in this work by Hamilton’s equations. The solutions are
represented in Γ as phase space paths. Predicting a macroscopic time evolution represents a problem of available
information and drawing inferences from that partial information. To be precise, in the problem considered here, this
is finding the set of possible phase space paths Ω(M) at time t0 and relating them to the set of possible phase space
points M ⊂ Γ at time t, along with the probability of their occurrence. Therefore, the microscopic dynamics and
the respective phase space paths are also part of information problem. Information about microscopic dynamics in
a case of macroscopic system is very likely to be incomplete for a variety of different possible reasons. However, in
the absence of more complete knowledge, Hamilton’s equations (1) and the set of possible phase space paths are the
representation of our information about microscopic dynamics. It is natural to assume that the predicted macroscopic
time evolution for a closed system is consistent with our knowledge of microscopic dynamics, even if this knowledge
is not complete. In accordance with this the following assumptions are made: all phase space paths in the set M of
possible points in Γ are given entirely by the set Ω(M) of all possible phase space paths at time t0. The set M of all
possible phase space points is an invariant set. The set Ω(M) is comprised of all possible phase space paths at any
time t ≥ t0 and is invariant to time evolution.
All the reasons mentioned before lead to a conclusion that regarding Liouville Eq. (30) as a strict microscopic

constraint on time evolution is equivalent to having complete knowledge of microscopic dynamics. Following previously
introduced assumptions, Liouville Eq. (30) can also be regarded in a different way as a macroscopic constraint on time
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evolution. If our information about microscopic dynamics is not sufficient to determine the time evolution, an average
is taken over all cases possible on the basis of our partial information. The conditional information entropy SDF

I (t, t0)
is maximized subject to the constraint of Liouville Eq. (30) regarded as a phase space average, or more precisely,
an integral over phase space similarly to other macroscopic constraints. In this way ”objectivity” of probability
assignment for the conditional probability distribution D(q, p, t|(q0, p0)ω , t0) and predictions made is ensured from
introducing extraneous assumptions not warranted by our data. In predictive statistical mechanics as formulated
by Jaynes, inferences are drawn from probability distributions whose sample spaces represent what is known about
the structure of microstates, and maximize information entropy subject to the available macroscopic data [8]. By
developing this description further, loss of correlation between the initial phase space paths and final microstates
leads to uncertainty in prediction, which in this sense becomes a property of MaxEnt inferences on macroscopic time
evolution. Measure of this uncertainty is given by the conditional information entropy SDF

I (t, t0).

V. MAXENT INFERENCES AND TIME EVOLUTION

It is assumed that it is possible to assign the path probability distribution F ((q0, p0)ω, t0) at initial time t0 to the
set Ω(M) of possible paths in the phase space Γ. The initial path probability distribution distribution F ((q0, p0)ω , t0)
is compatible with the available information at time t0. It may be assigned by MaxEnt algorithm applied on the path
information entropy SF

I (t0) given in Eq. (35), or some other means. Microstate probability distribution f(q, p, t0)
at initial time t0 is not completely determined from F ((q0, p0)ω , t0); values of f(q, p, t0) for possible microstates
are not completely assigned in this way. It is possible to calculate the values of f(q, p, t) in Γ at any time t ≥ t0
from F ((q0, p0)ω , t0) using Eqs. (23) and (29), but for that full knowledge of the conditional probability distribution
D(q, p, t|(q0, p0)ω , t0) is necessary. This is due to the fact that phase space paths are one-dimensional objects in Γ, each
comprising an infinite number of points and therefore permitting an infinite number of different initial microstates
along each path. In other words, points representing possible states of the system at initial time are not precisely
determined by the phase space paths although microscopic dynamics is; this requires more information.
In the first approach, time evolution of the conditional probability distribution D(q, p, t|(q0, p0)ω , t0) in the interval

t0 ≤ t ≤ ta should satisfy the following constraints: normalization condition

∫

M

D(q, p, t|(q0, p0)ω , t0)dΓ = 1. (40)

and the Liouville equation for D(q, p, t|(q0, p0)ω, t0),

∂D

∂t
+

s
∑

i=1

(

∂D

∂qi

∂H

∂pi
−

∂D

∂pi

∂H

∂qi

)

= 0. (41)

By Eq. (29), constraints given by the Liouville Eqs. (30) and (41) are equivalent. By definition, the set M ⊂ Γ of all
possible microstates is an invariant set. Normalization condition in Eq. (40) contains information about the structure
of possible microstates in the phase space Γ, in the time interval under consideration t0 ≤ t ≤ ta. Information
about microscopic dynamics is contained in the Liouville Eq. (41). Information which is available at initial time t0 is
contained in the path probability distribution distribution F ((q0, p0)ω, t0), defined on the surface S0(M) perpendicular
to all paths in the set Ω(M) of possible phase space paths.
Time derivative of the conditional information entropy SDF

I (t, t0) is given by

dSDF
I (t, t0)

dt
= −

∫

S0(M)

∫

M

∂D

∂t
F logD dΓdS0 −

∫

S0(M)

∫

M

∂D

∂t
F dΓdS0. (42)

Because of the normalization, Eq. (40), last term in Eq. (42) is equal to zero. As it will become clear, it is safe
to use somewhat simplified expression with this term left out from the variational problem. At time ta, conditional
information entropy SDF

I (ta, t0) is then given by the expression

SDF
I (ta, t0) = −

∫ ta

t0

∫

S0(M)

∫

M

∂D

∂t
F logD dΓdS0dt+ SDF

I (t0, t0). (43)

Path probability distribution F ((q0, p0)ω, t0) is fixed. The conditional probability distribution D(q, p, t|(q0, p0)ω , t0) is
determined by the Liouville Eq. (41) and its initial values at time t0. Therefore, S

DF
I (t0, t0) in Eq. (43) is also varied

in the maximization of SDF
I (ta, t0) at time ta, subject to the constraints on time evolution of D(q, p, t|(q0, p0)ω , t0)
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given by the Liouville Eq. (41) and normalization (40). Restriction of the class of functions that render SDF
I (ta, t0)

in Eq. (43) stationary subject to constrains (40) and (41), only to those functions with physically well defined values
in Γ at initial time t0 represents an intricate mathematical task. For that reason this problem is avoided here by
forming the functional

J [D] = SDF
I (ta, t0)− SDF

I (t0, t0) =

∫ ta

t0

∫

S0(M)

∫

M

K(D, ∂tD)dΓdS0dt, (44)

with the function K(D, ∂tD) given by

K(D, ∂tD) = −
∂D

∂t
F logD. (45)

From the simple form ofK(D, ∂tD) it follows, under assumption that the function D(q, p, t|(q0, p0)ω, t0) has continuous
first partial derivatives, that the Euler equation with K(D, ∂tD) given by Eq. (45) is satisfied for all such functions,

dK

dD
−

d

dt

(

dK

d(∂tD)

)

−

s
∑

i=1

[

d

dqi

(

dK

d(∂qiD)

)

+
d

dpi

(

dK

d(∂pi
D)

)]

= 0. (46)

Eq. (46) is a simple mathematical identity which follows from the form of K(D, ∂tD), but the time evolution
of D(q, p, t|(q0, p0)ω , t0) is determined in the constrained variational problem that is considered in this work. In the
variational problem that is considered here, functional J [D] in Eq. (44) should be stationary with respect to variations
subject to the constraints (40) and (41). In addition, on the boundary of integration region M × (t0, ta) in (44), values
of D(q, p, t|(q0, p0)ω, t0) are not prescribed. The constraints given by Eqs. (40) and (41) are valid for each point
(q0, p0)ω ∈ S0(M), i.e., for each path ω ∈ Ω(M), individually. They are written here in equivalent but more suitable
form:

ϕ1((q0, p0)ω, t0; t,D) = F ((q0, p0)ω, t0)

∫

M

D(q, p, t|(q0, p0)ω , t0)dΓ− F ((q0, p0)ω , t0) = 0, (47)

and

ϕ2((q0, p0)ω, t0; q, p, t, ∂qD, ∂pD, ∂tD) =

[

∂D

∂t
+

s
∑

i=1

(

∂D

∂qi

∂H

∂pi
−

∂D

∂pi

∂H

∂qi

)

]

F = 0. (48)

Conditional probability distribution D(q, p, t|(q0, p0)ω, t0) that renders J [D] stationary, subject to the isoperimetric
(47) and strict equality constraints (48), is completely determined by the initial conditional probability distribution
D(q, p, t0|(q0, p0)ω, t0) at time t0, and it is assumed here only that it is well defined in the sense of Eqs.(26) and (28).
Methods for variational problems with this type of constraints exist and one can develop them and apply in

practical problems [16]. Here, in the notation which is adapted to this particular problem, the following functionals
are introduced:

C1[D,λ1] =

∫

S0(M)

∫ ta

t0

λ1ϕ1 dtdS0, (49)

and

C2[D,λ2] =

∫

S0(M)

∫ ta

t0

∫

M

λ2ϕ2 dΓdtdS0. (50)

The Lagrange multipliers λ1 ≡ λ1((q0, p0)ω , t0; t) and λ2 ≡ λ2((q0, p0)ω, t0; q, p, t) are functions defined in the inte-
gration regions in (49) and (50). For any function with continuous first partial derivatives, Euler equation for the
constraint ϕ2 ≡ ϕ2((q0, p0)ω, t0; q, p, t, ∂qD, ∂pD, ∂tD) is equal to zero. Following the multiplier rule for such problems
explained in reference [16], we introduce an additional (constant) Lagrange multiplier λ0 as a multiplicative factor for
K,

J [D,λ0] =

∫ ta

t0

∫

S0(M)

∫

M

λ0K(D, ∂tD) dΓdS0dt. (51)

The functional I[D,λ0, λ1, λ2] is formed from J [D,λ0], C1[D,λ1] and C2[D,λ2]:

I[D,λ0, λ1, λ2] = J [D,λ0]− C1[D,λ1]− C2[D,λ2]. (52)
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Existence of Lagrange multipliers λ0 6= 0, λ1 and λ2, such that the variation of I[D,λ0, λ1, λ2] is stationary,

δI = δJ − δC1 − δC2 = 0, (53)

represents a proof that it is possible to make J [D] in Eq. (44) stationary subject to constraints (47) and (48). Due
to constraint (48), comparison functions considered in this variational problem should have at least their first partial
derivatives continuous. The function D(q, p, t|(q0, p0)ω, t0) which renders J [D] stationary subject to (47) and (48)
must satisfy the Euler equation:

λ0

{

dK

dD
−

d

dt

(

dK

d(∂tD)

)

−
s

∑

i=1

[

d

dqi

(

dK

d(∂qiD)

)

+
d

dpi

(

dK

d(∂pi
D)

)]

}

−λ1F +

[

∂λ2

∂t
+

s
∑

i=1

(

∂λ2

∂qi

∂H

∂pi
−

∂λ2

∂pi

∂H

∂qi

)

]

F = 0. (54)

Because of Eq. (46), the term multiplied by λ0 in Euler equation (54) is equal to zero. Stationarity of the functional
I[D,λ0, λ1, λ2] in Eq. (52) is therefore possible even with λ0 6= 0. Then, following the multiplier rule [16], it is possible
to set λ0 = 1 in Eqs. (52), (53) and (54) without affecting the solution. This is equivalent to dividing by the constant
Lagrange multiplier λ0.
Taking into account Eq. (46), from Eq. (54) follows that the Lagrange multipliers λ1 and λ2 satisfy the equation

[

∂λ2

∂t
+

s
∑

i=1

(

∂λ2

∂qi

∂H

∂pi
−

∂λ2

∂pi

∂H

∂qi

)

]

F = λ1F. (55)

For phase space paths passing through infinitesimal surface elements around the set of points {(q0, p0) | (q0, p0) ∈
S0(M), F ((q0, p0)ω, t0) 6= 0} on the surface S0(M), Eq. (55) is equivalent to

∂λ2

∂t
+

s
∑

i=1

(

∂λ2

∂qi

∂H

∂pi
−

∂λ2

∂pi

∂H

∂qi

)

= λ1. (56)

In accordance with the explanation of this variational problem given after Eq. (46), functions D(q, p, t|(q0, p0)ω , t0)
that render J [D] in Eq. (44) stationary subject to the constraints (47) and (48), are not required to take prescribed
values on the boundary of integration region M×(t0, ta). Then, it is necessary that, in addition to satisfying the Euler
equation (54), they also satisfy the Euler boundary condition on the boundary of integration region [16]. For all points
on the part of the boundary of M × (t0, ta) where t = t0 and t = ta, Euler boundary condition gives independently:

[

dK

d(∂tD)
− λ2F

]

t=t0,ta

= − [logD + λ2]t=t0,ta
F = 0. (57)

For all points on the part of the boundary of M×(t0, ta) where time t0 ≤ t ≤ ta is allowed to vary, the Euler boundary
condition gives:

F [λ2v · n] at the boundary of M = 0. (58)

In Eq. (58), v ·n is a scalar product of the velocity field v(q, p) in Γ (defined in Sec. II) and the unit normal n of the
boundary surface of invariant set M , taken at the surface. Eq. (58) is satisfied naturally due to Hamiltonian motion,
since the set M is invariant by definition, and therefore v · n = 0 for all points on the boundary surface of M . This
is a consequence of the fact that phase space paths do not cross over the boundary surface of the invariant set M .
Eq. (46) is satisfied for all functions with continuous first partial derivatives, and the scalar product in Eq. (58)

vanishes naturally due to Hamiltonian motion. Therefore, functions D(q, p, t|(q0, p0)ω, t0) that render J [D] in Eq.
(44) stationary subject to the constraints (47) and (48) are determined from these constraints and the boundary
condition (57). From this boundary condition one obtains the form of D(q, p, t|(q0, p0)ω, t0) at times t0 and ta,

D(q, p, t|(q0, p0)ω, t0)|t=t0,ta
= exp [−λ2((q0, p0)ω, t0; q, p, t)]|t=t0,ta

. (59)

Since it is only required that ta ≥ t0, time ta is arbitrary in other respects. The boundary condition (57) then holds
for any time t ≥ t0:

D(q, p, t|(q0, p0)ω, t0) = exp [−λ2((q0, p0)ω, t0; q, p, t)] . (60)
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From the constraint (48), using Eq. (60), one immediately obtains an equation for the Lagrange multiplier
λ2((q0, p0)ω , t0; q, p, t):

∂λ2

∂t
+

s
∑

i=1

(

∂λ2

∂qi

∂H

∂pi
−

∂λ2

∂pi

∂H

∂qi

)

= 0, (61)

By comparison of Eq. (56) with Eq. (61), it follows that for all t ≥ t0,

λ1((q0, p0)ω, t0; t) = 0. (62)

Eqs. (59-62) refer to phase space paths passing through infinitesimal surface elements around the set of points
{(q0, p0) | (q0, p0) ∈ S0(M), F ((q0, p0)ω, t0) 6= 0} on the surface S0(M). This issue is explained more fully in Section
III, Eqs. (28) and (29).
The conditional probability distribution in Eq. (60) renders the functional J [D] in Eq. (44) stationary subject to

the constraints (47) and (48). With the help of the constraint (48) and Eqs. (60) and (61), it is then straightforward
to check that the value of the conditional information entropy SDF

I (t, t0) is constant for all times t ≥ t0. The value
of SDF

I (t, t0) in this way depends on the initial conditional probability distribution D(q, p, t0|(q0, p0)ω , t0) at time t0,
which is only assumed to be physically well defined. Furthermore, for all conditional probability distributions that are
well defined, the upper bound on SDF

I (t, t0), given by Eq. (39), is not attained in maximization. This is not possible
because it requires statistical independence, i.e., complete loss of correlation between the initial phase space paths
and final microstates. This is precluded by the constraint (48) on the microscopic dynamics. Therefore, it is now
possible to state that complete knowledge of microscopic dynamics, implied in the constraint of Liouville equation (41),
precludes the conditional information entropy SDF

I (t, t0) from attaining the upper bound (39), which requires statistical
independence. The problem of information about microscopic dynamics, regarding all types of possible interactions,
translates into a general question on objectivity or subjectivity of our probability assignments and inferences on
macroscopic time evolution. Incomplete knowledge of microscopic dynamics leads to a loss of information about
possible microstates of the system during reproducible time evolution compatible with our macroscopic data. The
role of constraints is central in this respect, as it is clear in the second approach.
The above conclusions reached from the interpretation of relation (39) and the property of SDF

I (t, t0) being a measure
of uncertainty, as explained at the end of Section IV, form a basis for the second approach. Loss of correlation between
the initial phase space paths and final microstates enters into description by regarding Liouville equation (41) for the
conditional probability distribution D(q, p, t|(q0, p0)ω, t0) as a macroscopic constraint, along with other macroscopic
constraints in Jaynes’ theory. This is done by replacing the strict equality constraint (48) by the constraint which is
of isoperimetric form,

ϕ2((q0, p0)ω, t0; t,D) =

∫

M

[

∂D

∂t
+

s
∑

i=1

(

∂D

∂qi

∂H

∂pi
−

∂D

∂pi

∂H

∂qi

)

]

F dΓ = 0. (63)

The functional (50) is then replaced with the functional

C2[D,λ2] =

∫

S0(M)

∫ ta

t0

λ2ϕ2 dtdS0. (64)

Lagrange multiplier λ2 ≡ λ2((q0, p0)ω , t0; t) is now a function defined in the integration region in the functional
(64). With replacement of the constraint (48) by the constraint (63), one can proceed with this variational problem in
analogy with the first approach. Information that the set M of possible microstates is invariant to Hamiltonian motion
is contained in the constraint (63). Analogy is not complete, since the constraint (63) is more flexible and does not
determine the time evolution of D(q, p, t|(q0, p0)ω, t0) in the way that the constraint (48) does. In simple words, there
is a much larger class of functions that satisfy the constraint (63), including all functions that, in addition, satisfy also
the constraint (48). This broader class of functions allows for maximization of the conditional information entropy
SDF
I (ta, t0) in Eq. (43) subject to constraints (47) and (63), even if the initial D(q, p, t0|(q0, p0)ω, t0) at time t0 is

prescribed. In this way the initial conditional information entropy term SDF
I (t0, t0) in Eq. (43) is equal to some fixed

value and, therefore, is not varied in this redefined variational problem. The prescribed initial D(q, p, t0|(q0, p0)ω , t0)
at time t0 must be physically well defined.
In all other respects, one can proceed in complete analogy with the first approach. Due to constraint (63) comparison

functions considered in this variational problem should have their first partial derivatives continuous. The function
D(q, p, t|(q0, p0)ω , t0) that maximizes SDF

I (ta, t0) subject to constraints (47) and (63) satisfies the Euler equation:

λ0

{

dK

dD
−

d

dt

(

dK

d(∂tD)

)

−

s
∑

i=1

[

d

dqi

(

dK

d(∂qiD)

)

+
d

dpi

(

dK

d(∂pi
D)

)]

}

− λ1F +
∂λ2

∂t
F = 0. (65)
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Eq. (46) still holds here. Therefore, in a completely analogous manner already explained in first approach, it is
possible to set here λ0 = 1 in Eq. (65) without affecting the solution. Eqs. (46) and (65) then lead to the equation
for Lagrange multipliers λ1((q0, p0)ω , t0; t) and λ2((q0, p0)ω , t0; t), analogous to Eq. (56):

∂λ2

∂t
= λ1. (66)

Function D(q, p, t|(q0, p0)ω, t0) that maximizes SDF
I (ta, t0) subject to constraints (47) and (63) is required also to

take prescribed values on the part of the boundary of integration region M × (t0, ta) where t = t0. This function is
not prescribed on the remaining part of the boundary of M × (t0, ta), and it is necessary that it satisfies the Euler
boundary condition on that part of the boundary, [16]. For all points on the part of the boundary of M × (t0, ta)
where t = ta, the Euler boundary condition gives:

[

dK

d(∂tD)
− λ2F

]

t=ta

= − [logD + λ2]t=ta
F = 0. (67)

The Euler boundary condition is satisfied naturally for all points on the part of the boundary of M × (t0, ta) where
time t0 ≤ t ≤ ta is allowed to vary. The set M is invariant to Hamiltonian motion and, in the way already explained
in Eq. (58), analogous equation here is also satisfied naturally due to Hamiltonian motion.
The form of MaxEnt conditional probability distribution at time ta follows from the boundary condition (67):

D(q, p, ta|(q0, p0)ω , t0) = exp [−λ2((q0, p0)ω, t0; ta)] . (68)

In this way, MaxEnt conditional probability distribution D(q, p, t|(q0, p0)ω, t0) is not strictly determined in the interval
t0 < t < ta, with the exception of times t0 and ta. This is a consequence of the fact that Eq. (46) is satisfied for
all functions with continuous first partial derivatives and that the macroscopic constraint (63) does not determine
time evolution of D(q, p, t|(q0, p0)ω, t0) in the way that the strict microscopic constraint (48) does. Therefore, for
any well defined initial conditional probability distribution D(q, p, t0|(q0, p0)ω, t0) at time t0, there is an entire class of
equally probable solutions obtained by MaxEnt algorithm, all satisfying the macroscopic constraint (63). In the interval
t0 < t < ta, all functions in this class describe possible time evolutions of the conditional probability distribution, com-
patible with the macroscopic constraint (63) and the initial conditional probability distribution D(q, p, t0|(q0, p0)ω , t0)
at time t0. At time ta, the form of all functions in this class of MaxEnt solutions is determined by Eq. (68). The
aforementioned different time evolutions of conditional probability distribution do not represent actual microscopic
time evolutions. All that conditional probability distributions in this class of MaxEnt solutions represent is a sta-
tistical inference that predicts possible time evolutions from incomplete information about microscopic dynamics,
represented by the set Ω(M) of phase space paths and the macroscopic constraint (63). By definition, the set M
of possible microstates in Γ is invariant to Hamiltonian motion. Due to Eq. (58), MaxEnt conditional probability
distributions satisfying the macroscopic constraint (63) predict only time evolutions entirely within the invariant set
M . This description is compatible with the values of the constants of motion that shape the invariant set M . It takes
into account the conservation laws that the Hamiltonian system has and predicts only the behavior and final states
consistent with these conservation laws. In this way, description also incorporates memory effects as characteristic
features of irreversible processes.
From the normalization property (40) of the conditional probability distribution given at time ta by Eq. (68) one

obtains the relation:

W (M) exp [−λ2((q0, p0)ω , t0; ta)] = 1, (69)

with W (M) as the measure, i.e., phase space volume of the invariant set M . Eq. (69) implies the following relation
for Lagrange multiplier λ2((q0, p0)ω , t0; ta) at time ta:

λ2((q0, p0)ω , t0; ta) = λ2(ta). (70)

Microstate probability distribution f(q, p, ta) at time ta is then calculated using Eqs. (23) and (29), from the
MaxEnt conditional probability distribution D(q, p, ta|(q0, p0)ω, t0) at time ta and the path probability distribution
F ((q0, p0)ω, t0) at initial time t0. With the help of Eqs. (68) and (70) and the normalization property of the path
probability distribution F ((q0, p0)ω, t0), one then obtains

f(q, p, ta) = exp [−λ2(ta)] . (71)

From Eqs. (68-71) it follows that, at time ta, the MaxEnt conditional probability distribution and the corresponding
microstate probability distribution are equal,

D(q, p, ta|(q0, p0)ω, t0) = f(q, p, ta) = exp [−λ2(ta)] =
1

W (M)
. (72)
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From Eq. (72) follows that possible microstates at time ta in the invariant setM and possible phase space paths at time
t0 in the set Ω(M) are statistically uncorrelated, i.e., statistically independent. Eqs. (68-72) refer to phase space paths
passing through infinitesimal surface elements around the set of points {(q0, p0) | (q0, p0) ∈ S0(M), F ((q0, p0)ω, t0) 6= 0}
on the surface S0(M), as explained in Section III, Eqs. (28) and (29).

VI. SUMMARY AND CONCLUSIONS

From Eq. (72) and the definition of conditional information entropy SDF
I (t, t0) in Eq. (34) and information entropy

Sf
I (t) in Eq. (37), one obtains their values at time ta. The values of SDF

I (ta, t0) and Sf
I (ta) at time ta are equal

Sf
I (ta) = SDF

I (ta) = logW (M). (73)

In accordance with Eq. (39), it follows that Eq. (73) is possible if (and only if) possible phase space paths at time t0 in
the set Ω(M) and possible microstates at time ta in the invariant set M are statistically independent. Interpretation
of Eq. (73), in accordance with Eq. (39) and properties described by it, is a central result of the second approach to
MaxEnt inference algorithm and leads to the following conclusion:
Maximization of the conditional information entropy SDF

I (ta, t0) at time ta, subject to Liouville equation (41)
regarded as a macroscopic constraint on time evolution, results in a maximum possible value of SDF

I (ta, t0). In re-

producible time evolution of a closed system, information entropy Sf
I (t) of the microstate probability distribution has

its maximum value consistent with constraints. The values of SDF
I (ta, t0) and Sf

I (ta) at time ta are equal (Eq. 73).
This last property is possible if (and only if) the initial phase space paths and final microstates are statistically in-
dependent, i.e., uncorrelated. If (and only if) statistical independence is realized, conditional information entropy

SDF
I (ta, t0) attains its upper bound given by Sf

I (ta). Therefore, if MaxEnt inference algorithm is applied on macro-
scopic time evolution of a closed Hamiltonian system as done here in second approach, maximization of the conditional
information entropy SDF

I (ta, t0) includes all above properties and is equivalent to loss of statistical correlation.
It is important to emphasize that in the second approach, SDF

I (ta, t0) is maximized, subject to constraints (47) and
(63), for some particular time ta, such that ta > t0. In general, property of macroscopic systems is that they appear to
randomize themselves between observations, provided that the observations follow each other by a time interval longer
then a certain characteristic time τ called the relaxation time [17]. In the interpretation given here, relaxation time τ
for a closed Hamiltonian system represents a characteristic time required for the described loss of correlation between
the initial phase space paths and final microstates. It can also be said that τ represents a time interval during
which predictions, based on incomplete information about possible microscopic time evolutions, become uncertain
to a maximum extent compatible with the macroscopic data. This interpretation follows from Shannon’s concept
of information entropy as a measure of information and uncertainty [4], and from Jaynes formulation of predictive
statistical mechanics [8]. It is underlined with the fact that in first approach, equivalent to complete knowledge of
microscopic dynamics, SDF

I (t, t0) is constant for all times t ≥ t0.
This interpretation is reflected in the role of Lagrange multipliers λ1((q0, p0)ω, t0; t) and λ2((q0, p0)ω , t0; t). They

are required to satisfy Eq. (66), and by integrating it, one obtains the following relation:

λ2((q0, p0)ω , t0; t) =

∫ t

t0

λ1((q0, p0)ω , t0; t
′)dt′ + λ2((q0, p0)ω, t0; t0), (74)

for all t in the interval t0 ≤ t ≤ ta of time evolution. Using Eqs. (69), (70), (73) and (74) one then obtains

Sf
I (ta) = SDF

I (ta, t0) = logW (M) =

∫ ta

t0

λ1((q0, p0)ω , t0; t)dt+ λ2((q0, p0)ω , t0; t0). (75)

It is clear from Eqs. (70), (74) and (75) that the value of Lagrange multiplier λ2((q0, p0)ω , t0; ta) ≡ λ2(ta) at time ta
is determined by the measure W (M) of the invariant set M of possible microstates, i.e., by the volume of accessible
phase space. Subsequent applications of the MaxEnt algorithm of described type for a closed Hamiltonian system
without introducing additional constraints, should all result in increase of the volume of accessible phase space. From
Eqs. (70), (74) and (75) it is then deduced that

λ2(ta) ≥ λ2(t0). (76)

Eq. (76) follows because in the described subsequent applications of MaxEnt, in strictly mathematical sense there are
no other upper bounds on volumes of accessible phase space, except those given by the values of conserved quantities
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and the conservation laws that the closed Hamiltonian system has. This restriction of the set of possible microstates
gives an upper bound on volumes of accessible phase space and represents information that contains what is known
about the structure of possible microstates. If volumes of accessible phase space are subsequently increased, the
information about possible microstates is lost gradually along with our ability to predict the time evolution from
incomplete information. The idea that irreversibility is related to gradual loss of information has been developed by
Jaynes in the density-matrix formalism [2]. According to Jaynes [6], the real reason behind the second law, since phase
space volume is conserved in the dynamical evolution (by Liouville’s theorem), is a fundamental requirement on any
reproducible process that the phase space volume W ′ compatible with the final state can not be less than the phase
space volume W0 which describes our ability to reproduce the initial state. In the limit of large number particles,
Boltzmann’s original interpretation of entropy of a macrostate as the logarithm of the classical phase space volume
consistent with it, i.e., number of microstates by which the macroscopic state can be realized, is compatible with the
Gibbs’ formalism and the maximum-entropy inference. By considering W as the volume of the high-probability region
in phase space, entropy maximization for all practical purposes finds the probability distribution which defines the
largest high-probability region while agreeing with data [6, 7]. Macroscopic behavior that is predicted can be realized
in the greatest number of ways compatible with data.

The values of SDF
I (ta, t0) and Sf

I (ta) at time ta in Eq. (75) are equal to the maximum value of the Boltzmann-
Gibbs entropy, compatible with the information about the structure of possible microstates. The Lagrange multiplier
λ1((q0, p0)ω , t0; t) integrated over time t0 ≤ t ≤ ta in Eq. (75) is determined by the rate at which the macroscopic
state characterized by the maximum value of Boltzmann-Gibbs entropy is reached in a reproducible time evolution.
Integral over time in Eq. (75) and the quantity λ1((q0, p0)ω , t0; t) can be identified with the change in entropy and
the entropy production for a closed Hamiltonian system, respectively. If the information about microscopic dynamics
of closed Hamiltonian system is considered complete, whether entropy production can be defined without recourse to
coarse graining procedures, or macroscopic, phenomenological approaches, remains an open question. This opinion
is underlined with the result given by Eq. (62) which implies that in the objective approach that assumes complete
knowledge of microscopic dynamics, entropy produced by all individual phase space paths is equal to zero. In
the approach that takes into account the incomplete nature of information about microscopic dynamics, concepts
of macroscopic reproducibility and information loss become fundamental to the interpretation and description of
macroscopic time evolution and irreversibility. This approach leads to a simple definition for entropy production.
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