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Lost and found: The missing diabolical points in the Fe8 molecular magnet

Feifei Li and Anupam Garg∗

Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208

Certain diabolical points in the tunneling spectrum of the single-molecule magnet Fe8 were pre-
viously believed to be have been eliminated as a result of a weak fourth-order anisotropy. As shown
by Bruno, this is not so, and the points are only displaced in the magnetic field space along the
medium anisotropy direction. The previously missing points are numerically located by following
the lines of the Berry curvature. The importance of an experimental search for these rediscovered
points is discussed.

PACS numbers: 75.50.Xx, 03.65.Vf, 03.65.Db

The purpose of this note is to report on a numerical
search of certain diabolical points (DP’s) in the energy
spectrum of Fe8 that were earlier believed to be miss-
ing, but are in fact not so [1]. Several other DP’s have

been seen experimentally in Fe8 [2], and their observa-
tion provides the best evidence of spin orientation tunnel-
ing between deep levels in all molecular magnets studied
to date. Observation of even some of the missing DP’s
would advance our understanding of Fe8 substantially.

For a system whose Hamiltonian depends on some pa-
rameter, a DP is a point in parameter space where two
(or more) energy levels are degenerate. In Fe8, the pa-
rameter is the static applied magnetic field, and the loca-
tions of the DP’s so far observed (as well as many other
experimental measurements) are well described by the
following anisotropy Hamiltonian:

H = k1J
2
x + k2J

2
y − C(J4

+ + J4
−)− gµBJ ·H. (1)

Here J = (Jx, Jy, Jz) is the spin of magnitude 10, H is
an external magnetic field, k1 ≃ 0.338 K, k2 ≃ 0.246 K,
C ≃ 29µK, and g ≃ 2. The DP’s can be understood as
arising when tunneling between two states with (nearly)
oppositely oriented magnetic moment is quenched be-
cause of destructive interference between instantons (spin
tunneling trajectories) [3, 4].

The model Hamiltonian (1) was first analyzed in
1993 [3] with C = 0, and it was found that for ground
state tunneling it had 10 DP’s along the positive Hx axis,
corresponding to J = 10. In reality only 4 DP’s are
seen [2], which was explained in Ref. [5] as follows. When
C 6= 0, we get two new (but noninterfering) instantons,
which are discontinuous at the end points. One of these
instantons has the least action for Hx >∼ H∗, where H∗

is just beyond the location of the fourth DP, and since
it has no interfering partner, there are no more DP’s for
Hx > H∗.

However, as shown by Bruno [1], the above picture,
though correct, is incomplete. For any energy level, the
sum of the Chern numbers for all DPs involving that
level is a topological invariant as parameters like k1, k2,
or C are varied. Since DP’s in any system are generically
simple, we expect this to be so in Fe8 also, and the Chern

number for any one DP should be ±1 whether C = 0 or
C 6= 0. Hence the six missing DP’s must be present
elsewhere in magnetic field space. For tunneling between
the ground states, they merely move off the x axis into
the xy plane. For the higher energy levels, they move
off the xz plane into the full three dimensional H space.
This point can also be understood by noting that for a
system with purely four-fold symmetry (k2 = k1, C 6= 0),
the ground state DP’s lie on the ±x̂ ± ŷ axes, while for
the excited states they lie in the planes formed by these
axes and the ẑ axis [6]. When both two-fold and four-fold
anisotropies are present (k2 6= k1, C 6= 0), it is then not
surprising that the location of some of the DP’s is also
intermediate [1].

Observation of these rediscovered DPs would be in-
teresting in itself, and also provide an important test of
the validity of the model (1) vs. other models [7] that
add extra 6th and 8th order anisotropies because the lo-
cation of the DPs is very sensitive to the higher order
anisotropies. With this motivation, we have undertaken
a search for the DP’s for the ground state and some of the
excited states. We stress that the key insight that these
points should exist in the first place is due to Bruno, and
our contribution is only to find their specific locations.
Neverthless, finding them is not without challenge as we
discuss next.

A direct search for the DPs by numerical minimization
of the energy differences fails because the energy surface
is like a golf course with rolling hills on which the DPs
are the holes. Because the holes are so localized, unless
one starts close to one of them by luck, any numerical
algorithm will simply head for the valleys of the course
and miss the holes entirely. Because H is not real for
general H, we cannot also corral the DPs by using the
Longuet-Higgins theorem to find and successively bisect a
sign-reversing circuit [6]. We therefore proceed as follows.
Let us denote the eigenstates and eigenvalues of Eq. (1)
for fixed H by |n(H)〉 and En(H), n = 1, 2, . . . , 21, and
order them so that En ≥ En−1 for every H. Except at
degeneracies (the DPs), the Berry curvature for the nth
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FIG. 1: Diabolic points of Fe8 in the first three layers pro-
jected onto the xy plane. Hc = 2k1J/gµB.

level is defined by [8]

Bn = −Im
∑

n′ 6=n

〈n|∇HH|n′〉 × 〈n′|∇HH|n〉

(En′ − En)2
, (2)

Near a DP, Bn has the form of a monopole field with
flux equal to ±2π (see below). Hence, to find the DPs,
we numerically evaluate Bn for an initial H, and follow
the lines of Bn in the direction of increasing strength un-
til we hit a monopole. Since the number of DPs where
levels n and n + 1 are degenerate is topologically fixed
and known, all the DPs can be found by taking suffi-
ciently many initial values of H. The DPs for successive
pairs of levels occur in layers, with Hz essentially con-
stant in a layer. With h ≡ gµBH/2k1J , the first three
layers are at hz = 0 (exactly), 0.0427, and 0.0854, and
their projections onto the xy plane are shown in Fig.
1. For the lowest two levels (first layer), the DPs are
at (hx, hy) = (0.0404, 0), (0.121, 0), (0.201, 0), (0.257, 0),
(0.314,±0.0642), (0.388,±0.133), (0.466,±0.204).
In the rest of this note, we discuss the form of the Berry

curvature near a DP in more detail. For simplicity, we
will divide H by k1J

2. Since ∇HH and En are both
divided by this factor, it follows from Eq. (2) that Bn is
unchanged. With this preliminary remark, let us suppose
that En = En−1 ≡ En,n−1 at h = hn,n−1, and denote

r = h− hn,n−1. (3)

Further, let us make a particular choice of the two de-
generate states at r = 0, and denote them by |a〉 and |b〉,
with 〈b|a〉 = 0. (Any orthogonal linear combination of
|a〉 and |b〉 would also work.) It suffices to truncate the
Hamiltonian to this two dimensional subspace since the
sum in Eq. (2) is dominated by degenerate states. Hence,
at r = 0, we have

H = En,n−1

(

1 0
0 1

)

. (4)

For small enough r, we can take |a〉 and |b〉 to be un-
changed, so

∇hH = −
2

J

(

Jaa Jab

Jba Jbb

)

, (5)

where Jaa = 〈a|J|a〉 etc. Next, let us define Jaa + Jbb =
Js, Jaa − Jbb = Ju, Jab = J(v + iw)/2, where s, u, v,
and w are real vectors. In terms of these vectors, we have

H = −
s · r

J
−

(

u · r (v + iw) · r
(v − iw) · r u · r

)

. (6)

Ignoring the constant −s · r/J , the eigenvalues of this
matrix are ±ǫ(r), with

ǫ(r) = [(u · r)2 + (v · r)2 + (w · r)2]1/2. (7)

To write the eigenvectors compactly, we define

cos θ(r) = u · r/ǫ(r), (8)

sin θ(r)eiϕ(r) = (v + iw) · h/ǫ(r). (9)

The eigenvectors are then

|−〉 =

(

cos 1
2θ

sin 1
2θe

−iϕ

)

, |+〉 =

(

sin 1
2θ

− cos 1
2θe

−iϕ

)

. (10)

Further abbreviating c = cos 1
2θ and s = sin 1

2θ, and
g = 〈+|∇hH|−〉, we have

g = −2csu− s2e−iϕ(v + iw) + c2eiϕ(v − iw). (11)

It then follows that

g×g∗ = 2i[cos θ(v×w)+sin θ cosϕ(w×u)+sin θ sinϕ(u×v)],
(12)

so that

B+ =
−1

2ǫ3(r)
[(u · r)(v ×w) + (v · r)(w × u) + (w · r)(u× v)] .

(13)
This is clearly of monopole form with appropriately
scaled and sheared axes.
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