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COMPARISON OF CUBICAL AND SIMPLICIAL DERIVED FUNCTORS

IRAKLI PATCHKORIA

Abstract. In this note we prove that the simplicial derived functors introduced by Tierney and
Vogel [TV69] are naturally isomorphic to the cubical derived functors introduced by the author
in [P09]. We also explain how this result generalizes the well-known fact that the simplicial and
cubical singular homologies of a topological space are naturally isomorphic.

1. Introduction

In [TV69] Tierney and Vogel for any functor F : C −→ B, where C is a category with finite

limits and a projective class P, and B is an abelian category, constructed simplicial derived

functors and investigated relationships of their theory with other theories of derived functors.

Namely, they showed that if C is abelian and F is additive, then their theory coincides with the

classical relative theory of Eilenberg-Moore [EM65], whereas if C is abelian and F is an arbitrary

functor, then it gives a generalization of the theory of Dold-Puppe [DP61]. Besides, they proved

that their derived functors are naturally isomorphic to the cotriple derived functors of Barr-Beck

([BB66], [BB69]) if there is a cotriple in C that realizes the given projective class P.

The key point in the construction of the derived functors by Tierney and Vogel is that using

P-projective objects and simplicial kernels, for every C from C a P-projective pseudosimplicial

resolution can be constructed, which is a C-augmented pseudosimplicial object in C and which

for a given C is unique up to a presimplicial homotopy.

In [P09] using pseudocubical resolutions instead of pseudosimplicial ones we constructed cubical

derived functors for any functor F : C −→ B, where C is a category with finite limits and a

projective class P, and B is an abelian category. It was shown that if C is an abelian category,

F an additive functor, and P is closed, then our theory coincides with the theory of Eilenberg-

Moore [P09, 4.4]. However, there remained an open question whether the Tierney-Vogel simplicial

derived functors and our cubical derived functors are isomorphic in general or not. In this paper

we give a positive answer to this question. More precisely, we prove the following

Theorem 1.1. Suppose C is a category with finite limits, P a projective class in C in the sense

of [TV69, §2], B an abelian category, and F : C −→ B a functor. Let L
∆
n F : C −→ B, n ≥ 0,

be the Tierney-Vogel simplicial derived functors of F , and L
�
nF : C −→ B, n ≥ 0, the cubical

derived functors of F . Then there is an isomorphism

L
∆
n F (C)

∼= L
�
nF (C), C ∈ C , n ≥ 0,

which is natural in F and in C.
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Comparison of cubical and simplicial derived functors

The main idea of the proof goes back to Barr and Beck [BB69]. The point is that passing to

the unique additive extension

Fad : ZC −→ B

of the functor F , where ZC denotes the free preadditive category generated by C , one verifies

that the Eilenberg-Moore derived functors of Fad (with respect to the class P) restricted to C are

naturally isomorphic to the simplicial derived functors of F on the one hand and to the cubical

derived functors of F on the other hand.

The paper is organized as follows. In Section 2 the relative Eilenberg-Moore derived functor

theory of additive functors is reviewed from [EM65]. In Section 3 we recall the theory of Tierney-

Vogel and prove that the simplicial derived functors of F : C −→ B are just the Eilenberg-

Moore derived functors of Fad : ZC −→ B restricted to C . Section 4 is devoted to the definition

and properties of pseudocubical normalization functor for an idempotent complete preadditive

category. Note that the pseudocubical normalization is the main technical tool used in Section

5 to prove that the cubical derived functors of F : C −→ B are naturally isomorphic to the

Eilenberg-Moore derived functors of Fad : ZC −→ B restricted to C . In the final section we

briefly indicate that Theorem 1.1 generalizes the classical fact that the simplicial and cubical

singular homologies of a topological space are naturally isomorphic.

2. Partially defined Eilenberg-Moore derived functors

The following definitions are well-known.

Definition 2.1. A preadditive category is a category A together with the following data:

(i) For any objects X,Y in A , the set of morphisms HomA (X,Y ) is an abelian group;

(ii) For any morphisms f, g : X −→ Y , h : W −→ X and u : Y −→ Z in A , the following hold

(f + g)h = fh+ gh, u(f + g) = uf + ug.

In other words, a preadditive category is just a ring with several objects in the sense of [M72].

Definition 2.2. Let A be a preadditive category. An augmented chain complex over an object

A ∈ A (or just a complex over A) is a sequence

· · · // Cn
∂n // Cn−1

// · · · // C2
∂2 // C1

∂1 // C0
∂0 // A

such that ∂n∂n+1 = 0, n ≥ 0.

Definition 2.3. Let A be a preadditive category and P a class of objects in A (which need not

be a “projective class” in any sense). A complex

· · · // C2
∂2 // C1

∂1 // C0
∂0 // A

over A ∈ A is said to be P-acyclic if for any Q ∈ P the sequence of abelian groups

· · · // HomA (Q,C1)
∂1∗ // HomA (Q,C0)

∂0∗ // HomA (Q,A) // 0

is exact.
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Definition 2.4. Let A be a preadditive category and P a class of objects in A . A P-resolution

of an object A ∈ A is a P-acyclic complex

· · · // P2
∂2 // P1

∂1 // P0
∂0 // A

over A with Pn ∈ P, n ≥ 0.

Note that an object A ∈ A need not necessarily possess a P-resolution.

There is a comparison theorem for P-resolutions which can be proved using the standard

homological algebra arguments (see e.g. [W94, 2.2.7]). More precisely, the following is valid.

Proposition 2.5 (Comparison theorem). Let P∗ −→ A be a complex over A ∈ A consisting of

objects of P, and let S∗ −→ B be a P-acyclic complex. Then any morphism f : A −→ B can be

extended to a morphism of augmented chain complexes

P∗
//

f

��

A

f

��

S∗
// B.

Moreover, any two such extensions are chain homotopic.

Suppose A is a preadditive category, P a class of objects in A , B an abelian category,

F : A −→ B an additive functor, and A ′ the full subcategory of those objects in A which

possess P-resolutions. Recall that Proposition 2.5 allows one to construct the left derived functors

L
P
n F : A ′ −→ B, n ≥ 0, of F with respect to the class P as follows. If A ∈ A ′, choose (once

and for all) a P-resolution P∗ −→ A and define

L
P

n F (A) = Hn(F (P∗)), n ≥ 0.

Remark 2.6. If P is a projective class in the sense of [EM65], then L
P
n F , n ≥ 0, are exactly

the derived functors introduced in [EM65, I.3]. Note that in this case A ′ = A , i.e., the functors

L
P
n F are defined everywhere.

Further we recall

Definition 2.7 ([EM65, I.2]). Let A be a preadditive category and P a class of objects of A .

A sequence

X
f

// Y
g

// Z

in A is said to be P-exact if gf = 0 and the sequence of abelian groups

HomA (P,X)
f∗ // HomA (P, Y )

g∗ // HomA (P,Z)

is exact for any P ∈ P.

Definition 2.8 ([EM65, I.2]). A closure of a class P, denoted by P, is the class of all those

objects Q ∈ A for which

HomA (Q,X)
f∗ // HomA (Q, Y )

g∗ // HomA (Q,Z)

is exact whenever X
f

// Y
g

// Z is P-exact.
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Comparison of cubical and simplicial derived functors

Clearly, P ⊆ P and P-exactness is equivalent to P-exactness. In particular, P = P.

Note that if a preadditive category A has a terminal object, then any P-resolution is a P-

resolution as well. This together with 2.5 implies the following

Proposition 2.9. Let A be a preadditive category with a terminal object, P a class of objects

in A , B an abelian category, F : A −→ B an additive functor, and A an object in A which

possesses a P-resolution. Then there is a natural isomorphism

L
P

n F (A)
∼= L

P

n F (A), n ≥ 0.

3. Simplicial derived functors and Eilenberg-Moore derived functors

In this section we briefly review the construction of simplicial derived functors from [TV69, §2]

and show that they can be obtained as derived functors of an additive functor.

Let us recall the following definitions.

Definition 3.1. A presimplicial object S in a category C is a family of objects (Sn ∈ C )n≥0

together with morphisms

∂i : Sn −→ Sn−1, n ≥ 1, 0 ≤ i ≤ n,

in C satisfying the presimplicial identities

∂i∂j = ∂j−1∂i, i < j.

Definition 3.2. Let S be a presimplicial object in a preadditive category A . The unnormalized

chain complex K(S) associated to S is defined by

K(S)n = Sn, n ≥ 0,

∂ =
n∑

i=0

(−1)i∂i : K(S)n −→ K(S)n−1, n > 0.

The presimplicial identities imply that ∂2 = 0.

Now let C be a category with finite limits, P a projective class in C in the sense of [TV69,

§2], B an abelian category, and F : C −→ B a functor. The simplicial derived functors L
∆
n F of

F with respect to the class P are defined as follows. For any object C ∈ C , choose (once and for

all) a P-projective presimplicial resolution

S −→ C

of C (i.e., a P-exact presimplicial object S augmented over C with Sn ∈ P, n ≥ 0) and define

L
∆
n F (C) = Hn(K(F (S))), n ≥ 0.

By the comparison theorem for projective presimplicial resolutions [TV69, (2.4) Theorem], the

objects L
∆
n F (C) are well-defined and functorial in F and C.

We will now show that the derived functors L
∆
n F can be obtained as derived functors of some

additive functor. First recall

4
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Lemma 3.3. Let S −→ S−1 be an augmented presimplicial set. Suppose that ∂0 : S0 −→ S−1 is

surjective and the following extension condition holds: For any n ≥ 0 and any collection of n+ 2

elements xi ∈ Sn, 0 ≤ i ≤ n+ 1, satisfying

∂ixj = ∂j−1xi, 0 ≤ i < j ≤ n+ 1,

there exists x ∈ Sn+1 such that ∂ix = xi, 0 ≤ i ≤ n+ 1. Then the augmented chain complex

K(Z[S])
∂0 // Z[S−1]

is chain contractible (Z[X ] denotes the free abelian group generated by X). In particular, it has

trivial homology in each dimension.

The proof is standard (one constructs inductively a presimplicial contraction).

Example 3.4. Let S −→ C be a P-projective presimplicial resolution of C and suppose Q ∈ P.

Then the augmented presimplicial set

HomC (Q,S) −→ HomC (Q,C)

satisfies the conditions of 3.3. In particular, the homologies of the augmented chain complex

K(Z[HomC (Q,S)]) −→ Z[HomC (Q,C)]

vanish.

Now suppose again that C is a category with finite limits, P a projective class in C , B

an abelian category, and F : C −→ B a functor. Let ZC denote the free preadditive category

generated by C [M72, §1], i.e., the objects of ZC are those of C , and for any objects C and D in C ,

HomZC (C,D) is the free abelian group generated by HomC (C,D). The composition of morphisms

in ZC is induced by that in C . Clearly, C is a subcategory of ZC . Further, since the category

B is abelian (and therefore additive), the functor F : C −→ B can be uniquely extended to an

additive functor

Fad : ZC −→ B.

The following proposition relates the simplicial derived functors of F to the Eilenberg-Moore

derived functors of Fad.

Proposition 3.5. Let C be a category with finite limits, P a projective class in C , B an abelian

category, and F : C −→ B a functor. Then:

(i) For any P-projective presimplicial resolution S −→ C, the augmented chain complex

K(S) −→ C

in ZC is a P-resolution of C in the sense of Definition 2.4.

(ii) For any C ∈ C , there is a natural isomorphism

L
∆
n F (C)

∼= L
P

n Fad(C), n ≥ 0.
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Proof. The first claim immediately follows from 3.4 and the definition of ZC . The second claim

is a consequence of the first one and the definition of Fad. Indeed, if S −→ C is a P-projective

presimplicial resolution of C, then we have

L
∆
n F (C) = Hn(K(F (S))) =

Hn(Fad(K(S))) = LP
n Fad(C).

�

Remark 3.6. Proposition 3.5 is essentially due to Barr and Beck [BB69, §5]. More precisely, in

the case when the projective class P comes from a cotriple (see [TV69, §3]) the above statement

is proved in [BB69, §5]. (The cotriple derived functor theory of Barr-Beck is a special case of the

Tierney-Vogel theory [TV69 §3].) Thus 3.5 is a simple generalization of the result of Barr and

Beck.

4. Pseudocubical objects in idempotent complete preadditive categories

Definition 4.1 ([P09, 2.2]). A pseudocubical object X in a category C is a family of objects

(Xn ∈ C )n≥0 together with face operators

∂0i , ∂
1
i : Xn −→ Xn−1, n ≥ 1, 1 ≤ i ≤ n,

and pseudodegeneracy operators

si : Xn−1 −→ Xn, n ≥ 1, 1 ≤ i ≤ n,

satisfying the pseudocubical identities

∂αi ∂
ε
j = ∂εj−1∂

α
i i < j, α, ε ∈ {0, 1},

and

∂αi sj =





sj−1∂
α
i i < j,

id i = j,

sj∂
α
i−1 i > j,

for α ∈ {0, 1}.

Important examples of pseudocubical objects appear in a natural way: Let C be a category

with finite limits and P a projective class in C . Then for any object C ∈ C , there is a P-exact

augmented pseudocubical object

X −→ C

with Xn ∈ P, n ≥ 0, called P-projective pseudocubical resolution of C (see [P09, §3] for details).

In [P09] we use the normalized chain complex of a pseudocubical object in an abelian category

to define the cubical derived functors. (Note that the normalized chain complex of a cubical object

in an abelian category was introduced by Światek in [Ś75].) Below we recall the definition and

some properties of the normalized chain complex of a pseudocubical object in the general setting

of idempotent complete preadditive categories. These are needed to prove a cubical analog of

Proposition 3.5 in the next section.
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Definition 4.2. A preadditive category A is said to be idempotent complete if any idempotent

p : E −→ E in A (i.e., p2 = p) has a kernel. That is, there is a morphism

i : Ker(p) −→ E

with pi = 0, and for any morphism f : F −→ E, satisfying pf = 0, there is a unique morphism

g : F −→ Ker(p) such that ig = f .

The following two propositions are well known (see e.g. [K78]).

Proposition 4.3. Let A be an idempotent complete preadditive category and p : E −→ E an

idempotent in A . Then there is a diagram

Ker(p)
i1

// E
π1oo

π2 // Ker(1− p)
i2

oo

such that

π1i1 = 1, π2i2 = 1,

π1i2 = 0, π2i1 = 0,

i1π1 = 1− p, i2π2 = p.

In particular, the coproduct Ker(p)⊕Ker(1 − p) exists in A and is isomorphic to E.

Proposition 4.4. Let A be a preadditive category. Then there exists an idempotent complete

preadditive category Ã and a full additive embedding

ϕ : A −→ Ã

satisfying the following universal property: For any idempotent complete preadditive category D

and an additive functor ψ : A −→ D , there is an additive functor ψ′ : Ã −→ D which makes the

diagram

A
ϕ

//

ψ
��

@@
@@

@@
@@

Ã

ψ′

��~~
~~

~~
~

D

commute up to a natural equivalence, and which is unique up to a natural isomorphism.

Let X be a pseudocubical object in an idempotent complete preadditive category D .

Definition 4.5. The unnormalized chain complex C(X) associated to X is defined by

C(X)n = Xn, n ≥ 0,

∂ =

n∑

i=1

(−1)i(∂1i − ∂0i ) : C(X)n −→ C(X)n−1, n > 0.

The pseudocubical identities show that ∂2 = 0. Moreover, they imply that the morphisms

σXn = (1− s1∂
1
1)(1− s2∂

1
2) · · · (1 − sn∂

1
n) : Xn −→ Xn, n ≥ 0, (σ0 = 1)

are idempotents and form an endomorphism of the chain complex C(X). We denote this endo-

morphism by

σX : C(X) −→ C(X).

7



Comparison of cubical and simplicial derived functors

Since (σX)2 = σX and the category D is idempotent complete, the chain map σX has a kernel

KerσX in the category of non-negative chain complexes in D . Furthermore, by 4.3, there is a

diagram in the category of chain complexes

Ker(σX)
i1

// C(X)
π1oo

π2 //
Ker(1− σX)

i2

oo

such that

π1i1 = 1, π2i2 = 1,

π1i2 = 0, π2i1 = 0,

i1π1 = 1− σX , i2π2 = σX .

Definition 4.6. Let X be a pseudocubical object in an idempotent complete preadditive category

D . The chain complex Ker(1− σX), denoted by N(X), is called the normalized chain complex of

X .

Remark 4.7. If D is an abelian category, then N(X) admits the following description:

N(X)0 = X0, N(X)n =
n
∩
i=1

Ker(∂1i ), n > 0,

∂ =
n∑

i=1

(−1)i+1∂0i : N(X)n → N(X)n−1, n > 0.

Thus in the abelian case one does not need pseudodegeneracies to define N(X).

Next, we recall the construction of cubical derived functors from [P09, §3]. Let C be a category

with finite limits, P a projective class in C , B an abelian category, and F : C −→ B a functor.

Then the cubical derived functors L
�
nF of F with respect to the class P are defined as follows.

For any object C ∈ C , choose (once and for all) a P-projective pseudocubical resolution

X −→ C

of C and define

L
�

nF (C) = Hn(N(F (X))), n ≥ 0.

The comparison theorem for precubical resolutions [P09, 3.3] and the homotopy invariance of the

functor N [P09, 3.6] imply that the objects L
�
nF (C) are well-defined and functorial in F and C.

Note that one cannot use the unnormalized chain complex C(X) instead of N(X) to define the

cubical derived functors [P09, 3.8].

The following lemma is the main technical tool for proving a cubical analog of Proposition 3.5.

Lemma 4.8. Let F : D −→ D ′ be an additive functor between idempotent complete preadditive

categories. Then for any pseudocubical object X in D , there is a natural isomorphism

F (N(X)) ∼= N(F (X))

of chain complexes in D ′.

Proof. Applying the additive functor F to the diagram

Ker(σX)
i1

// C(X)
π1oo

π2 //
Ker(1− σX) = N(X),

i2

oo

8
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we get a digram in D ′

F (Ker(σX))
F (i1)

// C(F (X))
F (π1)
oo

F (π2)
//
F (N(X))

F (i2)
oo

whose morphisms satisfy the following identities:

F (π1)F (i1) = 1, F (π2)F (i2) = 1,

F (π1)F (i2) = 0, F (π2)F (i1) = 0,

F (i1)F (π1) = 1− F (σX),

F (i2)F (π2) = F (σX).

Besides, it follows from the additivity of F that F (σX) = σF (X), and hence we obtain

F (i2)F (π2) = σF (X).

This finally implies that

F (N(X)) ∼= Ker(1− σF (X)) = N(F (X)).

�

5. Cubical derived functors and Eilenberg-Moore derived functors

Let C be a category with finite limits, P a projective class, B an abelian category, and

F : C −→ B a functor. In this section we prove that for any object C ∈ C , there is a natural

isomorphism

L
�
nF (C)

∼= L
P
n Fad(C), n ≥ 0.

This together with 3.5 obviously implies Theorem 1.1.

The proof of this isomorphism is similar to that of 3.5. However, things become a little bit

complicated in the cubical setting as we have to consider normalized chain complexes in order to

get the “right” homology.

Proposition 5.1. Suppose A is a preadditive category, P a class of objects in A , B an abelian

category, and F : A −→ B an additive functor. Suppose further that P is the closure of the class

P in the idempotent completion Ã , and F̃ : Ã −→ B the extension of F . Then for any A ∈ A

which possesses a P-resolution, there is a natural isomorphism

L
P

n F (A)
∼= L

P

n F̃ (A), n ≥ 0.

Proof. Since Ã has a zero object, any P-resolution in A is a P-resolution in Ã . The rest

follows from 2.9. �

Corollary 5.2. Assume that C ia a category with finite limits, P a projective class in C , B

an abelian category, and F : C −→ B a functor. Assume further that F̃ad : Z̃C −→ B is the

extension of Fad : ZC −→ B to the idempotent completion Z̃C , and P the closure of P in Z̃C .

Then for any object C ∈ C , there is a natural isomorphism

L
P

n Fad(C)
∼= L

P

n F̃ad(C), n ≥ 0.

9



Comparison of cubical and simplicial derived functors

Next we state the following technical

Lemma 5.3. Let X −→ X−1 be an augmented pseudocubical set. Suppose that ∂ : X0 −→ X−1

is surjective and the following conditions hold:

(i) For any x, y ∈ X0, satisfying ∂x = ∂y, there exists z ∈ X1 such that ∂01z = x and ∂11z = y.

(ii) For any n ≥ 1 and any collection of 2n + 2 elements xεi ∈ Xn, 1 ≤ i ≤ n + 1, ε ∈ {0, 1},

satisfying

∂αi x
ε
j = ∂εj−1x

α
i , 1 ≤ i < j ≤ n+ 1, α, ε ∈ {0, 1},

there exists x ∈ Xn+1, such that

∂εi x = xεi , 1 ≤ i ≤ n+ 1, ε ∈ {0, 1}.

Then the augmented normalized chain complex

N(Z[X ]) −→ Z[X−1]

is chain contractible. In particular, it has trivial homology in each dimension.

We omit the routine details of the proof here. Note only that the main idea is to construct induc-

tively a precubical homotopy equivalence between X and the constant cubical object determined

by X−1 and then use the homotopy invariance of the functor N [P09, 3.6].

Example 5.4. LetX −→ C be a P-projective pseudocubical resolution of C and supposeQ ∈ P.

Then the augmented pseudocubical set

HomC (Q,X) −→ HomC (Q,C)

satisfies the conditions of 5.3. In particular, the homologies of the augmented chain complex

N(Z[HomC (Q,X)]) −→ Z[HomC (Q,C)]

vanish.

We are now ready to prove the main result of this section.

Proposition 5.5. Let C be a category with finite limits, P a projective class in C , B an abelian

category, and F : C −→ B a functor. Then:

(i) For any P-projective pseudocubical resolution X −→ C, the augmented chain complex

N(X) −→ C

in the category Z̃C is a P-resolution of C in the sense of 2.4. (P is the closure of P in Z̃C .)

(ii) For any C ∈ C , there is a natural isomorphism

L
�
nF (C)

∼= L
P
n Fad(C), n ≥ 0.

Proof. For all n ≥ 0, N(X)n ∈ P since N(X)n is a retract of Xn and P is closed under retracts.

Further, by 4.8, one has a natural isomorphism of augmented chain complexes

Hom
Z̃C

(Q,N(X)) //

∼=

��

Hom
Z̃C

(Q,C)

id

��

N(Z[HomC (Q,X)]) // Z[HomC (Q,C)]

10
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for any Q ∈ P. It follows from 5.4 that the lower chain complex is acyclic and thus so is the

upper one. Consequently, the augmented chain complex N(X) −→ C in Z̃C is P-acyclic or,

equivalently, P-acyclic. This completes the proof of the first claim.

Let us prove the second claim. By 5.2, it suffices to get a natural isomorphism

L
�

nF (C)
∼= L

P

n F̃ad(C).

Choose any P-projective pseudocubical resolution X −→ C. The first claim together with 4.8

gives

L
�

nF (C) = Hn(N(F (X)) = Hn(N(F̃ad(X))) ∼=

Hn(F̃ad(N(X))) = L
P

n F̃ad(C).

�

Clearly, Theorem 1.1 is an immediate consequence of 3.5 and 5.5.

6. Connection with topology

In this section we briefly explain that Theorem 1.1 generalizes the well-known fact that the

cubical and simplicial singular homologies of a topological space are naturally isomorphic. For the

definition and basic properties of the cubical singular homology see [M80].

Let Top denote the category of topological spaces, and let ∆n, n ≥ 0, be the standard n-

simplex. The class P∆ of all possible disjoint unions of standard simplices is a projective class

in Top in the sense of [TV69, §2]. (Moreover, in fact, it comes from a cotriple [BB69, (10.2)].)

Indeed, for any space Y , the map
⊔

∆n→Y,

n≥0

∆n −→ Y,

where the disjoint union is taken over all possible continuous maps ∆n −→ Y , n ≥ 0, is a P∆-

epimorphism. Consider the functor

F : Top −→ Ab, F (Y ) = H∆
0 (Y,A) = Z[π0Y ]⊗A,

where Ab is the category of abelian groups, H∆
∗ (Y,A) the simplicial singular homology of Y with

coefficients in an abelian group A, and π0Y the set of path components of Y . It follows from

[BB69, (10.2)] and [TV69, (3.1) Theorem] that there is a natural isomorphism

L
∆
n F (Y ) ∼= H∆

n (Y,A), n ≥ 0,

where the simplicial derived functors are taken with respect to the projective class P∆ (cf. [R69],

[R72]). We sketch the proof of this natural isomorphism along the lines of [BB69, (10.2)]. The

standard cosimplicial object ∆• gives rise to an augmented simplicial functor

F• −→ F, Fn(Y ) = Z[HomTop(∆
n, Y )]⊗A.

Further, suppose S• −→ Y is a P∆-projective presimplicial resolution of Y . Evaluating F• on

S• yields a bipresimplicial abelian group. It is easily seen that both resulting spectral sequences

collapse at E2. Finally, playing these two spectral sequences against each other gives the desired

isomorphism.
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Comparison of cubical and simplicial derived functors

Similarly, one can describe the cubical singular homologiesH�
n (Y,A) as cubical derived functors

of the functor F (Y ) = Z[π0Y ] ⊗ A. For this one uses the class P� consisting of all possible

disjoint unions of standard cubes. The class P� is a projective class in Top and there is a natural

isomorphism

L
�

nF (Y ) ∼= H�

n (Y,A), n ≥ 0,

where the cubical derived functors are taken with respect to P�. The proof of this isomorphism

is technically a little bit complicated compared to its simplicial counterpart as one has to consider

spectral sequences of bipseudocubical objects and take care of the normalizations.

Note that the class P = P∆ ∪ P� is also a projective class in Top. Obviously, the simplicial

derived functors with respect to the class P∆ are naturally isomorphic to the simplicial derived

functors with respect to P. On the other hand, the cubical derived functors with respect to the

class P� are naturally isomorphic to the cubical derived functors with respect to P. Thus, by

1.1, there is a natural isomorphism

L
∆
n F (Y ) ∼= L

�

nF (Y ), n ≥ 0,

for any topological space Y , i.e.,

H∆
n (Y,A) ∼= H�

n (Y,A), n ≥ 0.
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