ARCHIMEDEAN OPERATOR-THEORETIC POSITIVSTELLENSÄTZE

J. CIMPRIČ

Abstract

We prove a general archimedean positivstellensatz for hermitian operator-valued polynomials and show that it implies the multivariate Fejer-Riesz Theorem of Dritschel-Rovnyak and Positivstellensätze of Ambrozie-Vasilescu, Scherer-Hol and KlepSchweighofer. We also obtain several generalizations of these and related results. The proof of the main result depends on an extension of the abstract archimedean positivstellensatz for $*$-algebras that is interesting in its own right.

1. Introduction

We fix $d \in \mathbb{N}$ and write $\mathbb{R}[x]:=\mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$. In real algebraic geometry, a positivstellensatz is a theorem which for given polynomials $p_{1}, \ldots, p_{m} \in \mathbb{R}[x]$ characterizes all polynomials $p \in \mathbb{R}[x]$ which satisfy $p_{1}(a) \geq 0, \ldots, p_{m}(a) \geq 0 \Rightarrow p(a)>0$ for every point $a \in \mathbb{R}^{d}$. A nice survey of them is [12]. The name archimedean positivstellensatz is reserved for the following result of Putinar [14] and Jacobi [8]:

Theorem A. Let $S=\left\{p_{1}, \ldots, p_{m}\right\}$ be a finite subset of $\mathbb{R}[x]$. Write $M_{S}:=\left\{c_{0}+\sum_{i=1}^{m} c_{i} p_{i} \mid c_{0}, \ldots, c_{m}\right.$ are sums of squares of polynomials from $\mathbb{R}[x]\}$. If the set M_{S} is archimedean (i.e. if for every $f \in \mathbb{R}[x]$ there is $l \in \mathbb{N}$ such that $l \pm f \in M_{S}$, or equivalently, if the set M_{S} contains an element g such that the set $\left\{x \in \mathbb{R}^{d} \mid g(x) \geq 0\right\}$ is compact), then for every $p \in \mathbb{R}[x]$ the following are equivalent:
(1) $p(x)>0$ on $K_{S}:=\left\{x \in \mathbb{R}^{d} \mid p_{1}(x) \geq 0, \ldots, p_{m}(x) \geq 0\right\}$.
(2) There exists an $\epsilon>0$ such that $p-\epsilon \in M_{S}$.

An important corollary of Theorem A is the following theorem of Putinar and Vasilescu [15, Corollary 4.4]. The case $S=\emptyset$ was first done by Reznick 16.

[^0]Theorem B. Notation as in Theorem A. If p_{1}, \ldots, p_{m} and p are homogeneous of even degree and if $p(x)>0$ for every nonzero $x \in K_{S}$, then there exists $\theta \in \mathbb{N}$ such that $\left(x_{1}^{2}+\ldots+x_{d}^{2}\right)^{\theta} p \in M_{S}$.

Another important corollary of Theorem A is the following multivariate Fejer-Riesz theorem.

Theorem C. Every element of $\mathbb{R}\left[\cos \phi_{1}, \sin \phi_{1}, \ldots, \cos \phi_{d}, \sin \phi_{d}\right]$ which is strictly positive for every $\phi_{1}, \ldots, \phi_{d}$ is equal to a sum of squares of elements from $\mathbb{R}\left[\cos \phi_{1}, \sin \phi_{1}, \ldots, \cos \phi_{d}, \sin \phi_{d}\right]$.

We get Theorem \mathbf{C} from Theorem \mathbf{A} for $S=\left\{1-x_{1}^{2}-y_{1}^{2}, x_{1}^{2}+y_{1}^{2}-\right.$ $\left.1, \ldots, 1-x_{d}^{2}-y_{d}^{2}, x_{d}^{2}+y_{d}^{2}-1\right\}$, a subset of $\mathbb{R}\left[x_{1}, y_{1}, \ldots, x_{d}, y_{d}\right]$. Note that it implies neither the classical univariate Fejer-Riesz theorem nor its multivariate extension from [13] which both work for nonnegative trigonometric polynomials.

We are interested in generalizations of Theorems A, B and C to hermitian operator-valued polynomials, i.e. elements of $\mathbb{R}[x] \otimes A_{h}$ where A is some operator algebra with involution. Such results are of interest in control theory. They fit into the emerging field of noncommutative real algebraic geometry, see [19].

The first result in this direction was the following generalization of Theorem B which was proved by Ambrozie and Vasilescu in [1], see the last part of their Theorem 8. We say that an element a of a C^{*}-algebra A is nonnegative (i.e. $a \geq 0$) if $a=b^{*} b$ for some $b \in A$ and that it is strictly positive (i.e. $a>0$) if $a-\epsilon \geq 0$ for some real $\epsilon>0$.

Theorem D. Let A be a C^{*}-algebra and let $p \in \mathbb{R}[x] \otimes A_{h}$ and $p_{k} \in$ $\mathbb{R}[x] \otimes M_{\nu_{k}}(\mathbb{C})_{h}, k=1, \ldots, m, \nu_{k} \in \mathbb{N}$, be homogeneous polynomials of even degree. Assume that $K_{0}:=\left\{t \in S^{d-1} \mid p_{1}(t) \geq 0, \ldots, p_{m}(t) \geq 0\right\}$ is nonempty and $p(t)>0$ for all $t \in K_{0}$. Then there are homogeneous polynomials $q_{j} \in \mathbb{R}[x] \otimes A, q_{j k} \in \mathbb{R}[x] \otimes M_{\nu_{k} \times 1}(A), j \in J, J$ finite, and an integer θ such that

$$
\left(x_{1}^{2}+\ldots+x_{d}^{2}\right)^{\theta} p=\sum_{j \in J}\left(q_{j}^{*} q_{j}+\sum_{k=1}^{m} q_{j k}^{*} p_{k} q_{j k}\right)
$$

It is clear from the proof of Theorem D (combine Theorem 3 and Lemma 5 in [1) that authors were aware of the following generalization of Theorem A,

Theorem E. Let A be a C^{*}-algebra, p an element of $\mathbb{R}[x] \otimes A_{h}$ and $S=$ $\left\{p_{1}, \ldots, p_{k}\right\}$ a finite subset of $\mathbb{R}[x]$ such that the set M_{S} is archimedean. If the set K_{S} is nonempty and $p(t)>0$ for every $t \in K_{S}$, then there
exist polynomials $q_{j}, q_{j k} \in \mathbb{R}[x] \otimes A, j \in J, J$ finite, such that

$$
p=\sum_{j \in J}\left(q_{j}^{*} q_{j}+\sum_{k=1}^{m} q_{j k}^{*} p_{k} q_{j k}\right) .
$$

Theorem E was explicitly stated for the first time by Scherer and Hol in [17], see their Theorem 2. Because of their techniques they had to assume that A is finite-dimensional.

An interesting special case of Theorem E is the following generalization of Theorem C which was proved (for $A=B(H)$) by Dritschel and Rovnyak in [6], see their Theorem 5.1.

Theorem F. Let A be a C^{*}-algebra. If an element

$$
p \in \mathbb{R}\left[\cos \phi_{1}, \sin \phi_{1}, \ldots, \cos \phi_{n}, \sin \phi_{n}\right] \otimes A_{h}
$$

is strictly positive for every $\phi_{1}, \ldots, \phi_{n}$ then $p=\sum_{j \in J} q_{j}^{*} q_{j}$ for some finite J and $q_{j} \in \mathbb{R}\left[\cos \phi_{1}, \sin \phi_{1}, \ldots, \cos \phi_{n}, \sin \phi_{n}\right] \otimes A$.

Our interest in this subject stems from the following theorem of Klep and Schweighofer, see Theorem 13 in [10], which generalizes the finitedimensional version of Theorem 国 (from scalar to matrix constraints) but does not seem to follow from the proof of Theorem D.

Theorem G. For a finite subset $S=\left\{p_{1}, \ldots, p_{m}\right\}$ of $M_{\nu}(\mathbb{R}[x])_{h}, \nu \in$ \mathbb{N}, write $K_{S}:=\left\{t \in \mathbb{R}^{d} \mid p_{1}(t) \geq 0, \ldots, p_{m}(t) \geq 0\right\}$ and $M_{S}:=$ $\left\{\sum_{j \in J}\left(q_{j}^{*} q_{j}+\sum_{k=1}^{m} q_{j k}^{*} p_{k} q_{j k}\right) \mid q_{j}, q_{j k} \in M_{\nu}(\mathbb{R}[x]), j \in J, J\right.$ finite $\}$. If the set $M_{S} \cap \mathbb{R}[x]$ is archimedean (in the sense of Theorem A) then for every $p \in M_{\nu}(\mathbb{R}[x])_{h}$ such that $p(t)>0$ on K_{S} we have that $p \in M$.

The aim of this paper is to prove the following very general operatortheoretic Positivstellensatz and show that it implies generalizations of Theorems D, E, Fand G, (Theorems D, Eand F will be extended from C^{*}-algebras to algebraically bounded $*$-algebras and Theorems Eand G will be extended from $\mathbb{R}[x]$ to any commutative real algebra. Theorem G will also be extended from matrices to more general operators.)

Theorem H. Let R be a commutative real algebra, A a real or complex *-algebra and M an archimedean quadratic module in $R \otimes A$ (definitions are in section(2). Then for every $p \in R \otimes A_{h}$ the following are equivalent:
(1) $p \in \epsilon+M$ for some real $\epsilon>0$.
(2) For every multiplicative state ϕ on R, there exists real $\epsilon_{\phi}>0$ such that $\left(\phi \otimes \mathrm{id}_{A}\right)(p) \in \epsilon_{\phi}+\left(\phi \otimes \mathrm{id}_{A}\right)(M)$.

One of the main differences between the operator case and the scalar case is that in the operator case an element of A_{h} that is not ≤ 0 is
not necessarily >0. We would like to give an algebraic characterization of operator-valued polynomials that are not ≤ 0 in every point from a given set. Every theorem of this type is called a nichtnegativsemidefinitheitsstellensatz. We will prove variants of Theorems E and G that fit into this context.

Finally, we use our results and the main theorem from [9] to get a generalization of the existence result for operator-valued moment problems from [1] to algebraically bounded $*$-algebras.

2. Factorizable states

Associative unital algebras with involution will be called $*$-algebras for short. Let B be a real or complex $*$-algebra. Write $Z(B)$ for the center of B and write $B_{h}=\left\{b \in B \mid b^{*}=b\right\}$ for its set of hermitian elements. Note that the set B_{h} is a real vector space; we assume that it is equipped with the finest locally convex topology, i.e. every convex absorbing set in B_{h} is a neighbourhood of zero.

Clearly, every linear functional on B_{h} is continuous with respect to the finest locally convex topology. In other words, the algebraic and the topological dual of B_{h} are the same; we will write $\left(B_{h}\right)^{\prime}$ for both. We assume that $\left(B_{h}\right)^{\prime}$ is equipped with the weak*-topology, i.e. topology of pointwise convergence. We say that $\omega \in\left(B_{h}\right)^{\prime}$ is factorizable if $\omega(x y)=\omega(x) \omega(y)$ for every $x \in B_{h}$ and $y \in Z(B)_{h}$. Clearly, the set of all factorizable linear functionals on B_{h} is closed in the weak*-topology.

We say that a subset M of B_{h} is a quadratic module if $1 \in M$, $M+M \subseteq M$ and $b^{*} M b \subseteq M$ for every $b \in B$. The smallest quadratic module in B is the set $\Sigma^{2}(B)$ which consists of all finite sums of elements $b^{*} b$ with $b \in B$. The largest quadratic module in B is the set B_{h}. A quadratic module is proper if it is different from B_{h} (or equivalently, if $-1 \notin M$.) We say that an element $b \in B_{h}$ is bounded w.r.t. a quadratic module M if there exists a number $l \in \mathbb{N}$ such that $l \pm b \in M$. A quadratic module M is archimedean if every element $b \in B_{h}$ is bounded w.r.t. M (or equivalently, if 1 is an interior point of M.)

For every subset M of B_{h} write M^{\vee} for the set of all $f \in\left(B_{h}\right)^{\prime}$ which satisfy $f(1)=1$ and $f(M) \geq 0$. The set of all extreme points of M^{\vee} will be denoted by ex M^{\vee}. Elements of M^{\vee} will be called M-states and elements of ex M^{\vee} extreme M-states. A $\Sigma^{2}(B)$-state is simply called a state. Suppose now that M is an archimedean quadratic module. Note that M^{\vee} is non-empty iff M is proper. Applying the Banach-Alaoglu Theorem to $V=(M-1) \cap(1-M)$ which is a neighbourhood of zero,
we see that M^{\vee} is compact. The Krein-Milman theorem then implies, that M^{\vee} is equal to the closure of the convex hull of the set ex M^{\vee}.

Recall that a (bounded) *-representation of B is a homomorphism of unital $*$-algebras from B to the algebra of all bounded operators on some Hilbert space H_{π}. We say that a $*$-representation π of B is M-positive for a given subset M of B_{h} if $\pi(m)$ is positive semidefinite for every $m \in M$. For every such π and every $v \in H_{\pi}$ of norm 1, $\omega_{\pi, v}(x):=\langle\pi(x) v, v\rangle$ belongs to M^{\vee}. Conversely, if M is a quadratic module, then every $\omega \in M^{\vee}$ is of this form by the GNS construction.

The equivalence of (1)-(4) in the following result is sometimes referred to as archimedean positivstellensatz for $*$-algebras. It originates from the Vidav-Handelmann theory, cf. [7, Section 1] and [22]. Our aim is to add assertions (5) and (6) to this equivalence.

Proposition 1. For every archimedean quadratic module M in B and every element $b \in B_{h}$ the following are equivalent:
(1) $b \in M^{\circ}$ (the interior w.r.t. the finest locally convex topology),
(2) $b \in \epsilon+M$ for some real $\epsilon>0$,
(3) $\pi(b)$ is strictly positive definite for every M-positive $*$-representation π of B,
(4) $f(b)>0$ for every $f \in M^{\vee}$,
(5) $f(b)>0$ for every $f \in \overline{\operatorname{ex} M^{v}}$,
(6) $f(b)>0$ for every factorizable $f \in M^{\vee}$.

Proof. (1) implies (2) because the set $M-b$ is absorbing, hence $-1 \in$ $t(M-b)$ for some $t>0$. Clearly (2) implies (3). (3) implies (4) because the cyclic $*$-representation that belongs to f by the $G N S$ construction clearly has the property that $\pi(m)$ is positive semidefinite for every $m \in M$. (4) implies (1) by the separation theorem for convex sets. The details can be found in [3, Theorem 12] or [19, Proposition 15] or [5, Proposition 1.4].

If (5) is true then, by the compactness of $\overline{\operatorname{ex~} M^{\vee}}$, there exists $\epsilon>0$ such that $f(b) \geq \epsilon$ for every $f \in \overline{\operatorname{ex} M^{v}}$, hence (4) is true by the KreinMilman theorem. Clearly, (4) implies (6). By Proposition 3 below and the fact that the set of all factorizable M-states is closed, (6) implies (5).

Similarly, we have the following:
Proposition 2. For every archimedean quadratic module M in B and every element $b \in B_{h}$ the following are equivalent:
(1) $b \in \bar{M}$ (the closure w.r.t. the finest locally convex topology),
(2) $b+\epsilon \in M$ for every $\epsilon>0$,
(3) $\pi(b)$ is positive semidefinite for every M-positive *-representation π of B,
(4) $f(b) \geq 0$ for every $f \in M^{\vee}$,
(5) $f(b) \geq 0$ for every $f \in \overline{\operatorname{ex} M^{v}}$,
(6) $f(b) \geq 0$ for every factorizable $f \in M^{\vee}$.

The following proposition which extends [21, Ch. IV, Lemma 4.11] was used in the proof of equivalences (4)-(6) in Propositions 11 and 2, Its proof depends on the equivalence of (2) and (3) in Proposition 2 .

Proposition 3. If M is an archimedean quadratic module in B then all extreme M-positive states are factorizable.

Proof. Pick any $\omega \in \operatorname{ex} M^{\vee}$ and $y \in Z(B)_{h}$. We claim that $\omega(x y)=$ $\omega(x) \omega(y)$ for every $x \in B_{h}$. Since $y=\frac{1}{4}\left((1+y)^{2}-(1-y)^{2}\right)$ and $(1 \pm y)^{2} \in M$, we may assume that $y \in M$. Since M is archimedean, we may also assume that $1-y \in M$.

Claim: If $\omega(y)=0$, then $\omega\left(y^{2}\right)=0$. (Equivalently, if $\omega(1-y)=0$, then $\omega\left((1-y)^{2}\right)=0$.)

Since $1 \pm(1-y) \in M$, it follows that $1-(1-y)^{2}=\frac{1}{2}\left(y(2-y)^{2}+(2-\right.$ y) $\left.y^{2}\right) \in M$. Since ω is an M-positive state, it follows that $\omega\left((1-y)^{2}\right) \leq$ 1. On the other hand, $\omega\left((1-y)^{2}\right) \omega\left(1^{2}\right) \geq|\omega((1-y) \cdot 1)|^{2}$ by the CauchySchwartz inequality. Now, $\omega(y)=0$ implies that $\omega\left((1-y)^{2}\right)=1$, hence $\omega\left(y^{2}\right)=0$.

Case 1: If $\omega(y)=0$, then $\omega(x y)=0$ for every $x \in B_{h}$. (Equivalently, if $\omega(1-y)=0$, then $\omega(x(1-y))=0$ for every $x \in B_{h}$.) Namely, by the Cauchy-Schwartz inequality and the Claim, $|\omega(x y)|^{2} \leq \omega\left(x^{2}\right) \omega\left(y^{2}\right)=$ 0 . It follows that $\omega(x y)=\omega(x) \omega(y)$ if $\omega(y)=0$ or $\omega(y)=1$.

Case 2: If $0<\omega(y)<1$, then

$$
\omega_{1}(x):=\frac{1}{\omega(y)} \omega(x y) \quad \text { and } \quad \omega_{2}(x):=\frac{1}{\omega(1-y)} \omega(x(1-y))
$$

are M-positive states on B_{h}. Namely, for every M-positive *-representation π of B and every $x \in M$, we have that $\pi(x y)=\pi(x) \pi(y)$ is a product of two commuting positive semidefinite bounded operators, hence a positive semidefinite bounded operator. By the equivalence of assertions (2) and (3) in Proposition 2, $x y+\epsilon \in M$ for every $\epsilon>0$. Since ω is M-positive, it follows that $\omega(x y) \geq 0$ as claimed. Similarly, we prove that ω_{2} is M-positive. Clearly, $\omega=\omega(y) \omega_{1}+\omega(1-y) \omega_{2}$. Since ω is an extreme point of the set of all M-positive states on B_{h}, it follows that either $\omega_{1}=0$ or $\omega_{2}=0$. Eitherway, $\omega(x y)=\omega(x) \omega(y)$.

If we apply Proposition 1 or 2 to $b=1$, we get the following corollary, parts of which were already mentioned above.

Corollary 4. For every archimedean quadratic module M in B the following are equivalent:
(1) $-1 \notin M$,
(2) there exists an M-positive $*$-representation of B,
(3) there exists an M-state on B,
(4) there exists an extreme M-state on B,
(5) there exists a factorizable M-state on B.

The following variant of Proposition 1 which follows easily from Corollary 4 was proved in [4, Theorem 5]. We could call it archimedean nichtnegativsemidefinitheitsstellensatz for $*$-algebras.

Proposition 5. For every archimedean proper quadratic module M on a real or complex $*$-algebra B and for every $x \in B_{h}$, the following are equivalent:
(1) For every M-positive *-representation ψ of $B, \psi(x)$ is not negative semidefinite (i.e. $\langle\psi(x) v, v\rangle>0$ for some $v \in H_{\psi}$).
(2) There exists $k \in \mathbb{N}$ and $c_{1}, \ldots, c_{k} \in B$ such that $\sum_{i=1}^{k} c_{i} x c_{i}^{*} \in$ $1+M$.

3. Theorems H and G

The aim of this section is to prove Theorem [$\mathrm{H}_{\text {(}}$ (see Theorem 6) and show that it implies a generalization of Theorem G to compact operators. We also prove a concrete version of Proposition 5.

Theorem 6. Let R be a commutative real algebra with trivial involution, $A a *$-algebra over $F \in\{\mathbb{R}, \mathbb{C}\}$ and M an archimedean quadratic module in $B:=R \otimes A$. For every element p of $B_{h}=R \otimes A_{h}$, the following are equivalent:
(1) $p \in \epsilon+M$ for some real $\epsilon>0$.
(2) For every multiplicative state ϕ on R, there exists real $\epsilon_{\phi}>0$ such that $\left(\phi \otimes \mathrm{id}_{A}\right)(p) \in \epsilon_{\phi}+\left(\phi \otimes \mathrm{id}_{A}\right)(M)$.
The following are also equivalent:
(1') $p+\epsilon \in M$ for every real $\epsilon>0$.
(2') For every multiplicative state ϕ on R and every real $\epsilon>0$ we have that $\left(\phi \otimes \operatorname{id}_{A}\right)(p)+\epsilon \in\left(\phi \otimes \operatorname{id}_{A}\right)(M)$.
Moreover, the following are equivalent:
(1") There exist finitely many $c_{i} \in B$ such that $\sum_{i} c_{i}^{*} p c_{i} \in 1+M$.
(2") For every multiplicative state ϕ on R there exist finitely many $d_{i} \in A$ such that $\sum_{i} d_{i}^{*}\left(\phi \otimes \operatorname{id}_{A}\right)(p) d_{i} \in 1+\left(\phi \otimes \operatorname{id}_{A}\right)(M)$.
Proof. Clearly (1) implies (2). We will prove the converse in several steps. Note that for every multiplicative state ϕ on R, the mapping $\phi \otimes \mathrm{id}_{A}: B \rightarrow A$ is a surjective homomorphism of $*$-algebras, hence $\left(\phi \otimes \operatorname{id}_{A}\right)(M)$ is an archimedean quadratic module in A. Replacing B, M, f and p in Proposition 1 with $A,\left(\phi \otimes \mathrm{id}_{A}\right)(M), \sigma$ and $\left(\phi \otimes \mathrm{id}_{A}\right)(p)$, we see that (2) is equivalent to
(A) For every multiplicative state ϕ on R and every state σ on A_{h} such that $\sigma\left(\left(\phi \otimes \mathrm{id}_{A}\right)(M)\right) \geq 0$ we have that $\sigma\left(\left(\phi \otimes \operatorname{id}_{A}\right)(p)\right)>0$. Note that $(\phi \otimes \sigma)(r \otimes a)=\phi(r) \sigma(a)=\sigma(\phi(r) a)=\sigma\left(\left(\phi \otimes \mathrm{id}_{A}\right)(r \otimes a)\right)$ for every $r \in R$ and $a \in A_{h}$. It follows that $\phi \otimes \sigma=\sigma \circ\left(\phi \otimes \mathrm{id}_{A}\right)$. Thus, (A) is equivalent to
(B) for every M-positive state on $R \otimes A_{h}$ of the form $\omega=\phi \otimes \sigma$ where ϕ is multiplicative, we have that $\omega(p)>0$.
Since $R \otimes 1 \subseteq Z(B)$, every factorizable state ω satisfies $\omega(r \otimes a)=$ $\omega(r \otimes 1) \omega(1 \otimes a)$ and $\omega(r s \otimes 1)=\omega(r \otimes 1) \omega(s \otimes 1)$ for any $r, s \in R$ and $a \in A_{h}$. Hence $\omega=\phi \otimes \sigma$ where ϕ is a multiplicative state on R and σ is a state on A_{h}. Therefore, (B) implies that
(C) $\omega(p)>0$ for every factorizable $\omega \in M^{\vee}$.

By Proposition (1 () is equivalent to (1).
The equivalence of (1^{\prime}) and (2^{\prime}) can be proved in a similar way using Proposition 2. It can also be easily deduced from the equivalence of (1) and (2).

Clearly (1") implies (2"). Conversely, if (1") is false, then $-1 \notin N$ where $N:=\left\{m-\sum c_{i}^{*} p c_{i} \mid m \in M, c_{i} \in B\right\}$ is the smallest quadratic module in B which contains M and $-p$. By Corollary 4, there exists a factorizable state $\omega \in N^{\vee}$. From the proof of $(1) \Leftrightarrow(2)$, we know that $\omega=\phi \otimes \sigma=\sigma \circ\left(\phi \otimes \mathrm{id}_{A}\right)$ for a multiplicative state ϕ on R and a state σ on A. Since $\sigma\left(\left(\phi \otimes \operatorname{id}_{A}\right)(N)\right)=\omega(N) \geq 0$, it follows by Corollary 4 that $-1 \notin\left(\phi \otimes \operatorname{id}_{A}\right)(N)$. Since $\left(\phi \otimes \operatorname{id}_{A}\right)(N)=\left\{\left(\phi \otimes \operatorname{id}_{A}\right)(m)-\right.$ $\left.\sum_{j} d_{j}^{*}\left(\phi \otimes \mathrm{id}_{A}\right)(p) d_{j} \mid m \in M, d_{j} \in A\right\}$, we get that $(2 ")$ is false.

For every Hilbert space H we write $B(H)$ for the set of all bounded operators on $H, P(H)=\Sigma^{2}(B(H))$ for the set of all positive semidefinite operators on H and $K(H)$ for the set of all compact operators on H.

Lemma 7. Let H be a separable Hilbert space and M a quadratic module in $B(H)$ which is not contained in $P(H)$. Then \bar{M} contains all hermitian compact operators, i.e. $K(H)_{h} \subseteq \bar{M}$.

Proof. Let M be a quadratic module in $B(H)$ which is not contained in $P(H)$. Pick an arbitrary operator L in $M \backslash P(H)$ and a vector $v \in H$ such that $\langle v, L v\rangle<0$. Write P for the orthogonal projection of H on the span of v. Clearly, $P L P=\lambda P$ where $\lambda<0$, hence $-P \in M$. If Q is an orthogonal projection of rank 1 , then $Q=U^{*} P U$ for some unitary U, hence $-Q \in M$. Since also $Q=Q^{*} Q \in M, M$ contains all hermitian operators of rank 1. Therefore, M contains all finite rank operators. Pick any $K \in K(H)_{h} \cap P(H)$ and note that $\sqrt{K} \in K(H)_{h} \cap P(H)$ as well. Clearly, $-K+\epsilon \sqrt{K} \in M$ for every $\epsilon>0$ since it is a sum of an element from $K(H)_{h} \cap P(H)$ and a finite rank operator (check the eigenvalues). It follows that $-K \in \bar{M}$. It is also clear that every element of $K(H)_{h}$ is a difference of two elements from $K(H)_{h} \cap P(H)$, hence $K(H)_{h} \subseteq \bar{M}$.

As the first application of Theorem 6 and Lemma 7, we prove the following generalization of Theorem G, By Lemma 11 below, Theorem G corresponds to the case $R=\mathbb{R}[x]$ and H finite-dimensional, i.e. in the finite-dimensional case we can omit the assumption on p.

Theorem 8. Let H be a separable Hilbert space, M an archimedean quadratic module in $R \otimes B(H)$ and p an element of $R \otimes B(H)$.

If for every multiplicative state ϕ on R there exists a real $\eta_{\phi}>0$ such that $\left(\phi \otimes \operatorname{id}_{B(H)}\right)(p) \in \eta_{\phi}+P(H)+K(H)_{h}$ (e.g. if $p \in \eta+R \otimes K(H)_{h}$ for some $\eta>0)$ then the following are equivalent:
(1) $p \in M^{\circ}$,
(2) For every multiplicative state ϕ on R such that $\left(\phi \otimes \operatorname{id}_{B(H)}\right)(M) \subseteq$ $P(H)$, there exists $\epsilon_{\phi}>0$ such that $\left(\phi \otimes \operatorname{id}_{B(H)}\right)(p) \in \epsilon_{\phi}+P(H)$.
If $\left(\phi \otimes \operatorname{id}_{B(H)}\right)(p) \in P(H)+K(H)_{h}$ for every multiplicative state ϕ on R (e.g. if $p \in R \otimes K(H)_{h}$) then the following are equivalent:
(1') $p \in \bar{M}$,
(2') For every multiplicative state ϕ on R such that $\left(\phi \otimes \operatorname{id}_{B(H)}\right)(M) \subseteq$ $P(H)$, we have that $\left(\phi \otimes \operatorname{id}_{B(H)}\right)(p) \in P(H)$.

Proof. Suppose that (1) is true, i.e. $p \in \epsilon+M$ for some $\epsilon>0$. For every multiplicative state ϕ on R such that $\left(\phi \otimes \operatorname{id}_{B(H)}\right)(M) \subseteq P(H)$ we have that $\left(\phi \otimes \operatorname{id}_{B(H)}\right)(p) \in\left(\phi \otimes \operatorname{id}_{B(H)}\right)(\epsilon+M) \subseteq \epsilon+P(H)$, hence (2) is true. Conversely, suppose that (2) is true. We claim that for every multiplicative state ϕ on R there exists $\epsilon_{\phi}>0$ such that $\left(\phi \otimes \operatorname{id}_{B(H)}\right)(p) \in \epsilon_{\phi}+\left(\phi \otimes \operatorname{id}_{B(H)}\right)(M)$. Then it follows by Theorem 6 that (1) is true. If $\left(\phi \otimes \mathrm{id}_{B(H)}\right)(M) \subseteq P(H)$, then $\left(\phi \otimes \mathrm{id}_{B(H)}\right)(p) \in \epsilon_{\phi}+$ $P(H) \subseteq \epsilon_{\phi}+\left(\phi \otimes \operatorname{id}_{B(H)}\right)(M)$ by (2) and the fact that $\left(\phi \otimes \operatorname{id}_{B(H)}\right)(M)$ is a quadratic module in $B(H)$. On the other hand, if $\left(\phi \otimes \operatorname{id}_{B(H)}\right)(M) \nsubseteq$
$P(H)$, then $K(H)_{h} \subseteq \overline{\left(\phi \otimes \operatorname{id}_{B(H)}\right)(M)}$ by Lemma 7. The assumption $\left(\phi \otimes \operatorname{id}_{B(H)}\right)(p) \in \eta_{\phi}+P(H)+K(H)_{h}$ for some $\eta_{\phi}>0$ then implies that $\left(\phi \otimes \operatorname{id}_{B(H)}\right)(p) \in \frac{\eta_{\phi}}{2}+\left(\phi \otimes \operatorname{id}_{B(H)}\right)(M)$ as claimed. The proof of the equivalence $\left(1^{\prime}\right) \Leftrightarrow\left(2^{\prime}\right)$ is similar.

In the infinite-dimensional case, the assumption on p cannot be omitted as the following example shows:

Example. Let H be an infinite-dimensional separable Hilbert space, $0 \neq E \in B(H)_{h}$ an orthogonal projection of finite rank and T an element of $B(H)_{h}$ such that $T \notin P(H)+K(H)_{h}$. Since the quadratic module $\Sigma^{2}(B(H) / K(H))$ is closed, also $P(H)+K(H)_{h}$ is closed, hence there exists a real $\epsilon>0$ such that $T+\epsilon \notin P(H)+K(H)_{h}$. Write $p_{1}=-x^{2} E, p_{2}=1-x^{2}$ and $p=\epsilon+x^{2} T$. Let M be the quadratic module in $\mathbb{R}[x] \otimes B(H)$ generated by p_{1} and p_{2}. Since $p_{2} \in M$, it follows from Lemma 11 below that M is archimedean. For every point $a \in \mathbb{R}$ such that $p_{1}(a) \geq 0$ and $p_{2}(a) \geq 0$ we have that $a=0$, hence $p(a)=\epsilon$. Therefore, assertion (2) of Theorem 8 is true for our M and p. Assertion (1), however, fails for our M and p. If it was true then there would exist finitely many $q_{i}, u_{j}, v_{k} \in \mathbb{R}[x] \otimes B(H)$ and a real $\eta>0$ such that $p=\eta+\sum_{i} q_{i}^{*} q_{i}+\sum_{j} u_{j}^{*} p_{1} u_{j}+\sum_{k} v_{k}^{*} p_{2} v_{k}$. For $x=1$, we get $\epsilon+T=\eta+\sum_{i} q_{i}(1)^{*} q_{i}(1)-\sum_{j} u_{j}(1)^{*} E u_{j}(1)$. The first two terms belong to $P(H)$ and the last term belongs to $K(H)_{h}$, a contradiction with the choice of T.

We finish this section with a concrete version of Proposition 5 in the spirit of Theorem G] For $R=\mathbb{R}[x]$, we get [10, Corollary 22].

Theorem 9. Let R be a commutative real algebra with trivial involution, $\nu \in \mathbb{N}$, and M an archimedean quadratic module in $M_{\nu}(R)$. For every element $p \in M_{\nu}(R)_{h}$, the following are equivalent:
(1) There are finitely many $c_{i} \in M_{\nu}(R)$ such that $\sum_{i} c_{i}^{*} p c_{i} \in 1+M$.
(2) For every multiplicative state ϕ on R such that $(\phi \otimes \mathrm{id})(m)$ is positive semidefinite for all $m \in M$, we have that the operator $(\phi \otimes \mathrm{id})(p)$ is not negative semidefinite.

Proof. Write $A=M_{\nu}(\mathbb{R})$. Clearly, a matrix $C \in A_{h}$ is not negative semidefinite (i.e. it has at least one strictly positive eigenvalue) iff there exist a matrices $D_{i} \in A$ such that $\sum_{i} D_{i}^{*} C D_{i}-I$ is positive semidefinite. It follows that a quadratic module M in A which is different from $\Sigma^{2}(A)$ contains $-I$, hence it is equal to A_{h}. (This also follows from Lemma 7.) Now we use equivalence $(1 ") \Leftrightarrow(2 ")$ of Theorem 6.

4. Theorem D

Recall that a *-algebra A is algebraically bounded if the quadratic module $\Sigma^{2}(A)$ is archimedean. For an element $a \in A_{h}$ we say that $a \geq 0$ iff $a+\epsilon \in \Sigma^{2}(A)$ for all real $\epsilon>0$ (i.e. iff $\left.a \in \overline{\Sigma^{2}(A)}\right)$ and that $a>0$ iff $a \in \epsilon+\Sigma^{2}(A)$ for some real $\epsilon>0$ (i.e. iff $\left.a \in \Sigma^{2}(A)^{\circ}\right)$. It is well-known that every Banach $*$-algebra is algebraically bounded.

The aim of this section is to deduce the following theorem from Theorem 6 and to show that it implies Theorem D. Other applications of Theorem 6 will be discussed in section 5 .

Theorem 10. Let R be a commutative real algebra with trivial involution and A an algebraically bounded $*$-algebra over $F \in\{\mathbb{R}, \mathbb{C}\}$. Let U be an inner product space over $F, \mathcal{L}(U)$ the *-algebra of all adjointable linear operators on $U, \mathcal{L}(U)_{+}$its subset of positive semidefinite operators, and M an archimedean quadratic module in $R \otimes \mathcal{L}(U)$.

Write $B:=R \otimes A$ and consider the vector space $B \otimes U$ as left $R \otimes \mathcal{L}(U)$ right B bimodule which is equipped with the biadditive form $\langle\cdot, \cdot\rangle$ defined by $\left\langle b_{1} \otimes u_{1}, b_{2} \otimes u_{2}\right\rangle:=b_{1}^{*} b_{2}\left\langle u_{1}, u_{2}\right\rangle_{U}$. Write M^{\prime} for the subset of B_{h} which consists of all finite sums of elements of the form $\langle q, m q\rangle$ where $m \in M$ and $q \in B \otimes U$.

We claim that the set M^{\prime} is an archimedean quadratic module and that for every element $p \in R \otimes A_{h}$, the following are equivalent:
(1) $p \in \epsilon+M^{\prime}$ for some real $\epsilon>0$.
(2) For every multiplicative state ϕ on R such that $\left(\phi \otimes \operatorname{id}_{\mathcal{L}(U)}\right)(M) \subseteq$ $\mathcal{L}(U)_{+}$, we have that $\left(\phi \otimes \mathrm{id}_{A}\right)(p)>0$.
Moreover, the following are equivalent:
(1') $p \in \overline{M^{\prime}}$.
(2') For every multiplicative state ϕ on R such that $\left(\phi \otimes \operatorname{id}_{\mathcal{L}(U)}\right)(M) \subseteq$ $\mathcal{L}(U)_{+}$, we have that $\left(\phi \otimes \mathrm{id}_{A}\right)(p) \geq 0$.
Finally, the following are equivalent:
(1") There exist finitely many $c_{i} \in B$ such that $\sum_{i} c_{i}^{*} p c_{i} \in 1+M^{\prime}$.
(2") For every multiplicative state ϕ on R such that $\left(\phi \otimes \mathrm{id}_{\mathcal{L}(U)}\right)(M) \subseteq$ $\mathcal{L}(U)_{+}$, there exist finitely many elements $d_{i} \in A$ such that $\sum_{i} d_{i}^{*}\left(\phi \otimes \mathrm{id}_{A}\right)(p) d_{i}-1 \geq 0$.
We will need the following observation which follows from the fact that the set of bounded elements w.r.t. a given quadratic module is closed for addition and multiplication of commuting elements.

Lemma 11. Let R be a commutative algebra with trivial involution and A an algebraically bounded *-algebra. A quadratic module N in $R \otimes A$ is archimedean if and only if $N \cap R$ is archimedean in R. If
x_{1}, \ldots, x_{d} are generators of R, then N is archimedean if and only if it contains $K^{2}-x_{1}^{2}-\ldots-x_{d}^{2}$ for some real K.

Proof of Theorem 10. To prove that (1) implies (2), it suffices to prove:
Claim 1. For every multiplicative state ϕ on R such that $(\phi \otimes$ $\left.\operatorname{id}_{\mathcal{L}(U)}\right)(M) \subseteq \mathcal{L}(U)_{+}$, we have that $\left(\phi \otimes \mathrm{id}_{A}\right)\left(M^{\prime}\right) \subseteq \Sigma^{2}(A)$.

For every $q \in B \otimes U$ and $m \in M$ we have that $\left(\phi \otimes \operatorname{id}_{A}\right)(\langle q, m q\rangle)=$ $\left\langle s,\left(\phi \otimes \operatorname{id}_{\mathcal{L}(U)}\right)(m) s\right\rangle$ where $s=\left(\phi \otimes \operatorname{id}_{A} \otimes \operatorname{id}_{U}\right)(q) \in A \otimes U$. If $s=$ $\sum_{i=1}^{k} a_{i} \otimes u_{i}$, then

$$
\left\langle s,\left(\phi \otimes \operatorname{id}_{\mathcal{L}(U)}\right)(m) s\right\rangle=\left[\begin{array}{lll}
a_{1}^{*} & \ldots & a_{k}^{*}
\end{array}\right] T\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{k}
\end{array}\right]
$$

where $T=\left[\left\langle u_{i},\left(\phi \otimes \operatorname{id}_{\mathcal{L}(U)}\right)(m) u_{j}\right\rangle\right]_{i, j=1}^{k} \in M_{k}(F)$. Since $\left(\phi \otimes \operatorname{id}_{\mathcal{L}(U)}\right)(m)$ is positive semidefinite for every $m \in M, T$ is also positive semidefinite.

To prove that (2) implies (1), consider the following statement:
(3) For every multiplicative state ϕ on R there exists a real $\epsilon_{\phi}>0$ such that $\left(\phi \otimes \mathrm{id}_{A}\right)(p) \in \epsilon_{\phi}+\left(\phi \otimes \mathrm{id}_{A}\right)\left(M^{\prime}\right)$.
We claim that (2) implies (3) and (3) implies (1).
Clearly, $b^{*}\langle q, m q\rangle b=\langle q b, m q b\rangle \in M^{\prime}$ for every $m \in M, q \in B \otimes U$ and $b \in B$, hence the set M^{\prime} is a quadratic module in B. Clearly, $M^{\prime} \cap R$ is archimedean since it contains $M \cap R$. By Lemma 11, M^{\prime} is also archimedean. Hence (3) implies (1) by Theorem 6 .

Suppose that (2) is true and pick a multiplicative state ϕ on R. Clearly, $\left(\phi \otimes \operatorname{id}_{\mathcal{L}(U)}\right)(M)$ is a quadratic module in $\mathcal{L}(U)$ and $(\phi \otimes$ $\left.\operatorname{id}_{A}\right)\left(M^{\prime}\right)$ is a quadratic module in A. If $\left(\phi \otimes \operatorname{id}_{\mathcal{L}(U)}\right)(M) \subseteq \mathcal{L}(U)_{+}$, then (2) implies that $\left(\phi \otimes \operatorname{id}_{A}\right)(p) \in \epsilon_{\phi}+\Sigma^{2}(A) \subseteq \epsilon_{\phi}+\left(\phi \otimes \operatorname{id}_{A}\right)\left(M^{\prime}\right)$ for some real $\epsilon_{\phi}>0$, hence (3) is true. If $\left(\phi \otimes \operatorname{id}_{\mathcal{L}(U)}\right)(M) \nsubseteq \mathcal{L}(U)_{+}$ then (3) follows from:

Claim 2. For every multiplicative state ϕ on R such that $(\phi \otimes$ $\left.\operatorname{id}_{\mathcal{L}(U)}\right)(M) \nsubseteq \mathcal{L}(U)_{+}$we have that $\left(\phi \otimes \operatorname{id}_{A}\right)\left(M^{\prime}\right)=A_{h}$.

We could use Lemmal7but we prefer to prove this claim from scratch. Pick any $C \in\left(\phi \otimes \operatorname{id}_{\mathcal{L}(U)}\right)(M) \backslash \mathcal{L}(U)_{+}$. There exists $u \in U$ of length 1 such that $\langle u, C u\rangle<0$. Write P for the orthogonal projection of U on the span of $\{u\}$. Clearly, $P^{*} C P=-\lambda P$ for some $\lambda>0$, hence $-P \in\left(\phi \otimes \operatorname{id}_{\mathcal{L}(U)}\right)(M)$. Also, $P=P^{*} P \in\left(\phi \otimes \operatorname{id}_{\mathcal{L}(U)}\right)(M)$. Let $m_{ \pm} \in M$ be such that $\left(\phi \otimes \operatorname{id}_{\mathcal{L}(U)}\right)\left(m_{ \pm}\right)= \pm P$. Pick any $a \in A_{h}$ and write $q_{ \pm}=1_{R} \otimes \frac{1 \pm a}{2} \otimes u$ where $1=1_{A}$. The element $m^{\prime}=$ $\left\langle q_{+}, m_{+} q_{+}\right\rangle+\left\langle q_{-}, m_{-} q_{-}\right\rangle$belongs to M^{\prime} and, by the proof of Claim 1, $\left(\phi \otimes \operatorname{id}_{A}\right)\left(m^{\prime}\right)=\left\langle s_{+},\left(\phi \otimes \operatorname{id}_{\mathcal{L}(U)}\right)\left(m_{+}\right) s_{+}\right\rangle+\left\langle s_{-},\left(\phi \otimes \operatorname{id}_{\mathcal{L}(U)}\right)\left(m_{-}\right) s_{-}\right\rangle$
where $s_{ \pm}=\left(\phi \otimes \operatorname{id}_{A} \otimes \operatorname{id}_{U}\right)\left(q_{ \pm}\right)=\frac{1 \pm a}{2} \otimes u$. Therefore, $\left(\phi \otimes \mathrm{id}_{A}\right)\left(m^{\prime}\right)=$ $\left(\frac{1+a}{2}\right)^{2}\langle u, P u\rangle+\left(\frac{1-a}{2}\right)^{2}\langle u,-P u\rangle=\left(\frac{1+a}{2}\right)^{2}-\left(\frac{1-a}{2}\right)^{2}=a$.

Claim 1 also gives implications $\left(1^{\prime}\right) \Rightarrow\left(2^{\prime}\right)$ and $\left(1^{\prime \prime}\right) \Rightarrow\left(2^{\prime \prime}\right)$ and Claim 2 gives their converses. Note that assertion (3) must be replaced with suitable assertions (3^{\prime}) and (3") to which Theorem6 can be applied.

For $U=F^{\nu}$, we have that $B \otimes U \cong B^{\nu} \cong M_{\nu \times 1}(B), R \otimes \mathcal{L}(U) \cong$ $M_{\nu}(R) \subseteq M_{\nu}(B)$ and $\langle q, m q\rangle=q^{*} m q$ in Theorem 10. However, if also $A=M_{\nu}(F)$ (i.e. $B=M_{\nu}(R)$), we do not get Theorem G. Combining both theorems, we get that archimedean quadratic modules M and M^{\prime} in $M_{\nu}(R)$ have the same interior and the same closure.

Finally, we would like to show that Theorem 10 implies Theorem D. The proof also works for algebraically bounded $*$-algebras.

Proof of Theorem D. Write $\nu=2+\nu_{1}+\ldots+\nu_{m},\|x\|=\sqrt{x_{1}^{2}+\ldots+x_{d}^{2}}$ and $p_{0}=\left[1-\|x\|^{2}\right] \oplus\left[\|x\|^{2}-1\right] \oplus p_{1} \oplus \ldots \oplus p_{m} \in M_{\nu}(\mathbb{R}[x])$. Clearly, $K_{0}=$ $\left\{t \in \mathbb{R}^{d} \mid p_{0}(t) \geq 0\right\}$. Let M_{0} be the quadratic module in $M_{\nu}(\mathbb{R}[x])$ generated by p_{0}. Since M_{0} contains $\left(1-\|x\|^{2}\right) I_{\nu}$, it is archimedean by Lemma 11. By Theorem 10 applied to $U=F^{\nu}$, every element $p \in \mathbb{R}[x] \otimes A$ which is strictly positive definite on K_{0} belongs to M_{0}^{\prime}. From the definition of M_{0}^{\prime}, we get that $p=\sum_{j \in J}\left(s_{j}^{*} s_{j}+q_{j}^{*} p_{0} q_{j}\right)$ for a finite $J, s_{j} \in \mathbb{R}[x] \otimes A$ and $q_{j} \in M_{\nu \times 1}(\mathbb{R}[x] \otimes A)$, hence

$$
p=\sum_{j \in J}\left(s_{j}^{*} s_{j}+w_{j}^{*}\left(1-\|x\|^{2}\right) w_{j}+z_{j}^{*}\left(\|x\|^{2}-1\right) z_{j}+\sum_{k=1}^{m} s_{j k}^{*} p_{k} s_{j k}\right)
$$

for a finite $J, s_{j}, w_{j}, z_{j} \in \mathbb{R}[x] \otimes A$ and $s_{j k} \in M_{\nu_{k} \times 1}(\mathbb{R}[x] \otimes A)$. Replacing x by $\frac{x}{\|x\|}$ and multiplying with a large power of $\|x\|^{2}$ we get that

$$
\begin{array}{r}
\|x\|^{2 \theta} p(x)=\sum_{j \in J}\left(\left(u_{j}(x)+\|x\| v_{j}(x)\right)^{*}\left(u_{j}(x)+\|x\| v_{j}(x)\right)+\right. \\
\left.\quad+\sum_{k=1}^{m}\left(u_{j k}(x)+\|x\| v_{j k}(x)\right)^{*} p_{k}(x)\left(u_{j k}(x)+\|x\| v_{j k}(x)\right)\right)
\end{array}
$$

where $u_{j}, v_{j} \in \in \mathbb{R}[x] \otimes A$ and $u_{j k}, v_{j k} \in M_{\nu_{k} \times 1}(\mathbb{R}[x] \otimes A)$ for every $j \in J$. Finally, we can get rid of the terms containing $\|x\|$ by replacing $\|x\|$ with $-\|x\|$ and adding the old and the new equation.

5. Theorems E and F

Our next result, Theorem 12, is a special case of Theorem 10 for $U=$ F. It extends Theorem \mathbb{E} from $\mathbb{R}[x]$ to R and from C^{*}-algebras to algebraically bounded $*$-algebras. For $R=\mathbb{R}\left[\cos \phi_{1}, \sin \phi_{1}, \ldots, \cos \phi_{n}, \sin \phi_{n}\right]$
we get a generalization of Theorem F to algebraically bounded *algebras.

Theorem 12. Let R be a commutative real algebra with trivial involution, A an algebraically bounded $*$-algebra over $F \in\{\mathbb{R}, \mathbb{C}\}$ and M an archimedean quadratic module in R. Write $M^{\prime}=M \cdot \Sigma^{2}(R \otimes A)$ for the quadratic module in $R \otimes A$ which consists of all finite sums of elements of the form $m q^{*} q$ with $m \in M$ and $q \in R \otimes A$. For every element $p \in R \otimes A_{h}$, the following are equivalent:
(1) $p \in \epsilon+M^{\prime}$ for some real $\epsilon>0$.
(2) For every multiplicative state ϕ on R such that $\phi(M) \geq 0$, we have that $\left(\phi \otimes \mathrm{id}_{A}\right)(p)>0$.

If we combine Theorem 12 with a suitable version of the Riesz representation theorem (namely, Theorem 1 in [9]) we get the following existence result for operator-valued moment problems which extends Theorem 3 and Lemma 5 from [1].

Theorem 13. Let A be an algebraically bounded $*$-algebra, R a commutative real algebra and M an archimedean quadratic module on R. For every linear functional $L: R \otimes A \rightarrow \mathbb{R}$ such that $L\left(m q^{*} q\right) \geq 0$ for every $m \in M$ and $q \in R \otimes A$, there exists an A^{\prime}-valued nonnegative measure m on M^{\vee} such that $L(p)=\int_{M^{\vee}}(d m, p)$ for every $p \in R \otimes A$. (Note that p defines a function $\phi \mapsto\left(\phi \otimes \operatorname{id}_{A}\right)(p)$ from M^{\vee} to A.)

Proof. Recall that the set M^{\vee} is compact in the weak*-topology. We assume that A is equipped with its natural C^{*}-seminorm induced by the archimedean quadratic module $\Sigma^{2}(A)$, see [3, Section 3], hence it is a locally convex $*$-algebra. We will write $\mathcal{C}^{+}\left(M^{\vee}, A\right):=\mathcal{C}\left(M^{\vee}, \overline{\Sigma^{2}(A)}\right)$ for the positive cone of $\mathcal{C}\left(M^{\vee}, A\right)$. Let i be the mapping from $R \otimes A$ to $\mathcal{C}\left(M^{\vee}, A\right)$ defined by $i(p)(\phi)=\left(\phi \otimes \mathrm{id}_{A}\right)(p)$ for every $p \in R \otimes A$ and $\phi \in M^{\vee}$. By Theorem [12, we have that $\mathcal{C}^{+}\left(M^{\vee}, A\right) \cap i(R \otimes A)=i\left(\overline{M^{\prime}}\right)$ where $M^{\prime}=M \cdot \Sigma^{2}(R \otimes A)$. Note that L is a $\overline{M^{\prime}}$-positive functional on $R \otimes A$ and that is defines in the natural way an $i\left(\overline{M^{\prime}}\right)$-positive functional L^{\prime} on $i(R \otimes A)$. By the Riesz extension theorem for positive functionals, L^{\prime} extends to a $\mathcal{C}^{+}\left(M^{\vee}, A\right)$-positive functional on $\mathcal{C}\left(M^{\vee}, A\right)$ which has the required integral representation by Theorem 1 in 9]. Hence L also has the required integral representation.

Finally, we would like to prove a nichtnegativsemidefinitheitsstellensatz that corresponds to Theorem [12,

Theorem 14. Let H be a separable infinite-dimensional complex Hilbert space and R a commutative real algebra with trivial involution. Let M
be an archimedean quadratic module in R and $M^{\prime}=M \cdot \Sigma^{2}(R \otimes B(H))$. For every $p \in R \otimes B(H)_{h}$, the following are equivalent:
(1) There are finitely many $c_{i} \in R \otimes B(H)$ such that $\sum_{i} c_{i}^{*} p c_{i} \in$ $1+M^{\prime}$.
(2) For every multiplicative state ϕ on R such that $\phi(M) \geq 0$, the operator $\left(\phi \otimes \operatorname{id}_{B(H)}\right)(p)$ is not the sum of a negative semidefinite and a compact operator.

Note that for finite-dimensional $H,(1)$ is equivalent to the following: For every multiplicative state ϕ on R such that $\phi(M) \geq 0$, the operator $\left(\phi \otimes \operatorname{id}_{B(H)}\right)(p)$ is not negative semidefinite; cf. Theorem 9 .

Proof. The equivalence (1") $\Leftrightarrow(2 ")$ of Theorem 10 (with $U=\mathbb{C}$ and $A=B(H))$ says that our assertion (1) is equivalent to the following:
(3) For every multiplicative state ϕ on R such that $\phi(M) \geq 0$, there exist finitely many operators $D_{i} \in B(H)$ such that $\sum_{i} D_{i}^{*}(\phi \otimes$ $\left.\operatorname{id}_{A}\right)(p) D_{i} \in 1+P(H)$.

Therefore it suffices to prove the following claim:
Claim. For every operator $C \in B(H)_{h}$, the following are equivalent:
(i) C is not the sum of a negative semidefinite and a compact operator,
(ii) the positive part of C is not compact,
(iii) there exists an operator D such that $D^{*} C D=1$,
(iv) there exist finitely many $D_{i} \in B(H)$ such that $\sum_{i} D_{i}^{*} C D_{i} \in$ $1+P(H)$.
The implications (i) \Rightarrow (ii), (iii) \Rightarrow (iv) and (iv) \Rightarrow (i) are clear. To prove that (ii) implies (iii) we first note that $C_{+}:=E_{0} C=E_{0}^{*} C E_{0}$ where E_{0} is the spectral projection belonging to the interval $[0, \infty)$. Since C_{+}is not compact, there exists by the spectral theorem a real number $\gamma>0$ such that the spectral projection E_{γ} belonging to the interval $[\gamma, \infty)$ has infinite-dimensional range. The operator $C_{\gamma}:=$ $E_{\gamma} C_{+}=E_{\gamma}^{*} C E_{\gamma}$ has decomposition $C_{\gamma}=\tilde{C}_{\gamma} \oplus 0$ with respect to $H=$ $E_{\gamma} H \oplus\left(1-E_{\gamma}\right) H$ where $\tilde{C}_{\gamma} \geq \gamma$. Write $F=\left(\tilde{C}_{\gamma}\right)^{-1 / 2} \oplus 0$ and note that $\left(E_{\gamma} F\right)^{*} C\left(E_{\gamma} F\right)=1 \oplus 0$. Since $E_{\gamma} H$ is infinite-dimensional, it is isometric to H. If G is an isometry from H onto $E_{\gamma} H$ then $D:=E_{\gamma} F G$ satisfies (iii).

References

[1] C.-G. Ambrozie, F.-H. Vasilescu, Operator-theoretic Positivstellenstze, Z. Anal. Anwend. 22 (2003), No. 2, 299-314.
[2] R. Berr, T. Wörmann, Positive polynomials on compact sets. Manuscripta Math. 104 (2001), no. 2, 135-143.
[3] J. Cimprič, A representation theorem for archimedean quadratic modules on *-rings. Can. Math. Bull. 52 (2009), 39-52.
[4] J. Cimprič, Maximal quadratic modules on $*$-rings. Algebr. Represent. Theory 11 (2008), no. 1, 83-91.
[5] J. Cimprič, M. Marshall, T. Netzer, Closures of quadratic modules, To appear in Trans. Amer. Math. Soc.
[6] M. A. Dritschel, J. Rovnyak, The operator Fejer-Riesz theorem, arXiv:0903.3639v1.
[7] D. Handelman, Rings with involution as partially ordered abelian groups, Rocky Mountain J. Math. 11 (1981), no. 3, 337-381.
[8] T. Jacobi, A representation theorem for certain partially ordered commutative rings. Math. Z. 237 (2001), no. 2, 259-273.
[9] G.W. Johnson, The dual of $C(S, F)$, Math. Ann. 187 (1970), 1-8.
[10] I. Klep, M. Schweighofer, Pure states, positive matrix polynomials and sums of hermitian squares, arXiv:0907.2260
[11] J.-L. Krivine, Anneaux préordonnés. J. Analyse Math. 12 (1964) 307-326.
[12] M. Marshall, Positive polynomials and sums of squares. Mathematical Surveys and Monographs, 146. American Mathematical Society, Providence, RI, 2008. xii+187 pp. ISBN: 978-0-8218-4402-1; 0-8218-4402-4
[13] A. Naftalevich, B. Schreiber, Trigonometric polynomials and sums of squares. Number theory (New York, 1983-84), 225-238, Lecture Notes in Math., 1135, Springer, Berlin, 1985.
[14] M. Putinar, Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42 (1993), no. 3, 969-984.
[15] M. Putinar, F.-H. Vasilescu, Solving moment problems by dimensional extension. Ann. of Math. (2) 149 (1999), no. 3, 1087-1107.
[16] B. Reznick, Uniform denominators in Hilbert's seventeenth problem. (English) Math. Z. 220 (1995), no. 1, 75-97.
[17] C. W. Scherer, C. W. J. Hol, Matrix sum-of-squares relaxations for robust semi-definite programs. Math. Program. 107 (2006), no. 1-2, Ser. B, 189-211.
[18] K. Schmüdgen, The K-moment problem for compact semi-algebraic sets. Math. Ann. 289 (1991), no. 2, 203-206.
[19] K. Schmüdgen, Noncommutative real algebraic geometry-some basic concepts and first ideas. Emerging applications of algebraic geometry, 325-350, IMA Vol. Math. Appl., 149, Springer, New York, 2009.
[20] G. Stengle, Nullstellensatz and a positivstellensatz in semialgebraic geometry. Math. Ann. 207 (1974), 87-97.
[21] M. Takesaki, Theory of Operator Algebras I. Springer-Verlag, New YorkHeidelberg, 1979. vii+415 pp. ISBN: 0-387-90391-7
[22] I. Vidav, On some *-regular rings, Acad. Serbe Sci. Pubi. Inst. Math. 13 (1959), 73-80.

Jaka Cimprič, University of Luubljana, Faculty of Math. and Phys., Dept. of Math., Jadranska 19, SI-1000 Ljubljana, Slovenija. E-mail: CIMPRIC@FMF.UNI-LJ.SI. WWW PAGE: HTTP://WWW.FMF.UNI-LJ.SI/~CIMPRIC.

[^0]: Date: November 22nd, 2010.
 2010 Mathematics Subject Classification. 14P, 13J30, 47A56.
 Key words and phrases. real algebraic geometry, operator algebras, moment problems.

