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THE ORBIFOLD COHOMOLOGY OF MODULI OF HYPERELLIPTIC

CURVES

NICOLA PAGANI

Abstract. We study the inertia stack of [M0,n/Sn], the quotient stack of the moduli

stack of smooth genus 0 curves with n marked points via the action of the symmetric

group Sn. Then we see how from this description we can obtain a description of the

inertia stack of Hg , the moduli stack of hyperelliptic curves of genus g. From this, we can

compute additively the Chen–Ruan (or orbifold) cohomology of Hg .

1. Introduction

A hyperelliptic curve of genus g is a smooth algebraic curve that admits a 2 : 1 map to P1,

and thus has 2g+2 branch points. From its very definition, it is clear that the moduli stack

of genus g hyperelliptic curves Hg admits a map onto the moduli stack [M0,2g+2/S2g+2],

which is an isomorphism at the level of coarse moduli spaces. The foundations for moduli

of hyperelliptic curves, as well as the precise definition of the previous map, can be found

in [LK79] (in particular Theorem 5.5).

The last decade has seen tremendous improvements in our understanding of the moduli

space of hyperelliptic curves Hg. We mention here some of the recent achievements that

are relevant to the present work. In the paper [AV04], Hg is described as a moduli stack

of cyclic covers of the projective line. As a consequence of this description, the authors

are able to determine its Picard group. Along these lines, the Picard group of the Deligne-

Mumford compactification Hg was computed in [C07], and very recently the whole integral

Chow ring of Hg was computed in [FV10] (see also [EF09], [GV08]). In the last years,

much effort was also made in studying the automorphism groups of hyperelliptic curves

[GSS], [GD05], [Sh03], [MSSV].

In this paper we deal with rational cohomology and Chow group with rational coeffi-

cient. From both these points of view, the moduli stacks Hg are trivial. The triviality of

H∗(Hg,Q) follows from [KL02, Theorem 2.13], while the triviality of A∗
Q(Hg) follows from

its description as finite quotient of the affine variety M0,n. Still some non-triviality can be

measured with rational coefficients, but one has to consider instead the orbifold cohomology

or the stringy Chow group. The orbifold cohomology as a vector space (or Chen–Ruan co-

homology) of an orbifold X , is obtained by adding to the usual cycles of X the cycles of all
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the twisted sectors of X . The twisted sectors are orbifolds that parametrize couples (x, g)

where x is a point of X and g ∈ Aut(x). The new cycles are then given an unconventional

degree, which is the sum of their original degree as cycles inside their twisted sector Y ,

plus a rational number (called age or degree shifting number) that depends on the normal

bundle NY X .

The orbifold cohomology of moduli spaces of curves is studied in [Pa08], [Pa10], [Sp06]

(see also the PhD thesis [Pa09], [Sp04]). The present work has some nontrivial intersection

with [Pa10] and [Sp06], since in these two papers in particular the orbifold cohomology

and stringy Chow group of M2 = H2 are described.

The main result of this paper is Theorem 5.1, where we give a closed formula for the orb-

ifold Poincaré polynomial of Hg, i.e. a “polynomial”1, whose coefficient of qi corresponds

to the dimension of the group H i.

To achieve this result, we first describe the cohomology of the twisted sectors of

[M0,n/Sn], in Section 3 as quotients of certain M0,k modulo a subgroup of Sk.

Then, in Section 4, we study the twisted sectors of Hg. If g is odd, we see that the

twisted sectors of Hg are simply the twisted sectors of [M0,2g+2/S2g+2] repeated twice. If

g is even, the same happens for the twisted sectors of [M0,2g+2/S2g+2] whose distinguished

automorphism is not an involution. The remaining few twisted sectors are still described

as quotients of moduli of genus 0, pointed curves modulo the action of a certain subgroup

of the symmetric group on markings.

Finally, in Section 5 we compute all the degree shifting numbers, and we write the

explicit results by recollecting the results of the previous sections.

1.a. Acknowledgments. The author is grateful to Gilberto Bini, Torsten Ekedahl, Carel

Faber and Barbara Fantechi, for useful discussions and help.

This project was supported by the Wallenberg foundation, and took place at the Kung-

liga Tekniska Högskolan and was partly supported by prin “Geometria delle varietà alge-

briche e dei loro spazi di moduli”, by Istituto Nazionale di Alta Matematica.

1.b. Notation. We work over C, cohomologies and Chow groups are taken with rational

coefficients. Orbifold for us means smooth Deligne–Mumford stack, and we always work

within the category of Deligne–Mumford stacks. If a finite group G acts on a scheme

(stack) X, [X/G] is the stack quotient and X/G is the quotient as a scheme. We call

µN := Z∨
N the group of characters of ZN , and µ∗

N the subgroup whose elements are the

injective characters. We make an implicit use of the relative language of schemes. For

instance, when no confusion can arise, we speak of a genus g smooth curve, meaning a

family of genus g smooth curve over a certain base S.

1We call it polynomial in analogy with the ordinary Poincaré polynomial, although the exponents of the

variable q are not natural but rational.
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2. Definition of Orbifold Cohomology

In this section we define orbifold cohomology. For a more detailed study of this topic,

we address the reader to [AGV08, Section 3] for the various inertia stacks, and to [AGV08,

Section 7.1] for the degree shifting number (the original reference is [CR04]). What we call

orbifold cohomology is the graded vector space underlying the Chen–Ruan cohomology

ring (or algebra): the latter is a more refined object that we will not introduce in this

work.

We introduce the following natural stack associated to a Deligne–Mumford stack X,

which points to where X fails to be an algebraic space.

Definition 2.1. ([AGV02, 4.4], [AGV08, Definition 3.1.1]) Let X be an algebraic stack.

The inertia stack I(X) of X is defined as:

I(X) :=
∐

N∈N

IN (X)

where IN (X)(S) is the following groupoid:

(1) The objects are pairs (ξ, α), where ξ is an object of X over S, and α : µN → Aut(ξ)

is an injective homomorphism,

(2) The morphisms are the morphisms g : ξ → ξ′ of the groupoid X(S), such that

g · α(1) = α(1) · g.

We also define ITW (X) :=
∐

N>1 IN (X), in such a way that:

I(X) = I1(X)
∐

ITW (X)

The connected components of ITW (X) are called twisted sectors of the inertia stack of

X, or also twisted sectors of X. The inertia stack comes with a natural forgetful map

f : I(X) → X.

We observe that, by our very definition, IN (X) is an open and closed substack of I(X),

but it rarely happens that it is connected. One special case is when N equals to 1: in

this case the map f restricted to I1(X) induces an isomorphism of the latter with X. The

connected component I1(X) will be referred to as the untwisted sector.

We also observe that given a generator of µN , we obtain an isomorphism of I(X) with

I ′(X), where the latter is defined as the (2-)fiber productX×X×XX where both morphisms

X → X ×X are the diagonals.

Remark 2.2. There is an involution ι : IN (X) → IN (X), which is induced by the map

ι′ : µN → µN , that is ι′(ζ) := ζ−1.

Proposition 2.3. [AGV08, Corollary 3.1.4] Let X be a smooth algebraic stack. Then the

stacks IN (X) (and therefore I(X) itself) are smooth.

We now study the behaviour of the inertia stack under arbitrary morphisms of stacks.
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Definition 2.4. Let f : X → Y be a morphism of stacks. We define f∗(I(Y )) as the stack

that makes the following diagram 2−cartesian:

f∗(I(Y ))
I(f)

//

��

�

I(Y )

��

X
f

// Y

and I(f) as the map that lifts f in the diagram. Obviously, there is an induced map that

we call I ′(f), which maps I(X) → f∗(I(Y )).

We now define the degree shifting number for the twisted sectors of the inertia stack of

a smooth stack X. With RµN , we denote the representation ring of µN .

Definition 2.5. [AGV08, Section 7.1] Let ρ : µN → C∗ be a group homomorphism. It is

determined by an integer 0 ≤ k ≤ N − 1 as ρ(ζN ) = ζkN . We define a function age:

age(ρ) = k/N

This function extends to a unique group homomorphism:

age : RµN → Q

We now define the age of a twisted sector Y .

Definition 2.6. ([CR04, Section 3.2], [AGV08, Definition 7.1.1]) Let Y be a twisted sector

and g : SpecC → Y a point. Then the pull-back via g of the tangent sheaf, g∗(TX), is a

representation of µN on a finite dimensional vector space. We define:

a(Y ) := age(g∗(TX))

We can then define the orbifold, or Chen–Ruan, degree.

Definition 2.7. ([CR04, Definition 3.2.2]) We define the d−th degree orbifold cohomology

group as follows:

Hd
CR(X,Q) :=

⊕

i

Hd−2a(Xi,gi)(Xi,Q)

where the sum is over all twisted sectors. The orbifold Poincaré polynomial of X is:

PCR
X (q) :=

∑

i∈Q+

dim
(
H i

CR(X)
)
qi

Remark 2.8. One can also define the stringy Chow group and its unconventional grading

in complete analogy with the above definition. See [AGV08, Section 7.3] for this construc-

tion.
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3. The inertia stack of the configuration of unordered points on the

Riemann sphere

In this section, we study the cohomology of the inertia stack of [M0,n/Sn] (also known

in the literature as M̃0,n). For this, it is enough to give a description of the coarse moduli

spaces of the twisted sectors of the inertia stack of [M0,n/Sn]. We thus describe the coarse

moduli spaces of the twisted sectors of the latter stack as quotients of the kind M0,k/S,

for S a certain subgroup of Sk. The cohomology of these quotients is well-known. The

cohomology of M0,n was first computed as a representation of the symmetric group Sn by

Getzler [Ge94, 5.6] (see also [KL02]).

In particular, we shall use the following result:

Proposition 3.1. The Poincaré polynomial of M0,n+2/Sn is:

P 0
n+2;n,1,1(q) =

n−1∑

i=0

qi

The Poincaré polynomial of M0,n+2/Sn × S2 is:

P 0
n+2;n,2(q) =

{
1 n = 1
∑⌊n−2

4
⌋

i=0 qi + qi+1 n > 1

Proof. It follows from [KL02, Theorem 2.9]. �

It will be convenient to have a definition for the set where each injective character of

ZN is identified with its inverse:

Definition 3.2. We define µ̃N
∗ as the quotient set µ∗

N/Z2 where 1(ζN ) := ζ−1
N . If N is

even, we define µ∗
N to be the quotient set µ∗

N/Z2 where the action of 1 is defined to be:

1(ζN ) := −ζ−1
N .

The following proposition describes the inertia stack of [M0,n/Sn].

Proposition 3.3. We describe the coarse moduli space of the inertia stack of [M0,n/Sn].

(1) if N > 2, let n = kN + a where a ∈ {0, 1, 2}. Then:

IN ([M0,n/Sn]) =

{∐
χ∈µ̃N

∗ (M0,k+2/Sk × S2, χ) a = 0, 2
∐

χ∈µ∗

N
(M0,k+2/Sk, χ) a = 1

(2) if n is even, n =: 2g + 2:

I2([M0,n/Sn]) = (M0,g+2/Sg × S2,−1)
∐

(M0,g+3/Sg+1 × S2,−1)

(3) if n is odd, n =: 2g + 1:

I2([M0,n/Sn]) = (M0,g+2/Sg,−1)
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Proof. Let C be a smooth genus 0 curve and α an automorphism of finite order N of it.

From the Riemann–Hurwiz formula, α has at least two fixed points, and if it had more it

would be the identity. We can choose coordinates on C in such a way that the two fixed

points are 0 and ∞, and α is the multiplication by a primitive N−th root of unity. Now

let C ′ = C/〈α〉 be the quotient curve. Upon a suitable choice of coordinates on C and C ′,

the quotient map C → C ′ becomes the map z → zN .

Let us first deal with the case when N > 2. In this case there is exactly one choice of

k ∈ N+ and a ∈ {0, 1, 2} such that n = kN + a. The set of n = kN + a marked points

corresponds to a set of k + a marked points on C ′, where the a points are a subset of the

branch divisor.

If a is equal to 1, there is a choice of a point p in C that is the only point that is both

in the set of n points, and a fixed point for α. Then α determines a χ ∈ µ∗
N : the character

of the representation of α on TpC.

If a equals 0 or 2, there is no such a choice. Then α acts on the set of two fixed points,

thus determining two inverse characters in µN . In the same way as before, α then gives an

equivalence class in the set µ̃N
∗ (see Definition 3.2).

If N is equal to 2, the argument is the same, the only difference being that µ̃2
∗ = µ∗

2. �

Remark 3.4. In [AGV08], the authors introduce two notions related to the inertia stack:

the stack of cyclotomic gerbes ([AGV08, Definition 3.3.6]) and the rigidified inertia stack

([AGV08, 3.4]), showing in [AGV08, 3.4.1] that they are equivalent. By substituting

M0,k+2/Sk × S2 with the stack quotient [M0,k+2/Sk × S2] (respectively, M0,k+2/Sk with

[M0,k+2/Sk]) one obtains a stacky description of the rigidified inertia stack of [M0,n/Sn].

We have stated the above proposition in this simplified way because this is enough for our

purposes, and in this way we could avoid having to introduce the whole theory of inertia

stack and its variants (see [AGV08, Section 3]).

4. The inertia stack of moduli of smooth hyperelliptic curves

In this section we study the inertia stack of Hg. We will implicitly use the fact that any

family of hyperelliptic curves has a globally defined hyperelliptic involution, a result that

follows from [LK79, Theorem 5.5]. Let:

f : Hg → [M0,2g+2/S2g+2] = M̃0,2g+2

be the map that associates to every hyperelliptic genus g curve, the corresponding genus

0 curve, together with the degree 2g + 2 étale Cartier divisor D obtained by considering

the branch locus of the hyperelliptic involution. This map is well defined on families as a

consequence of [LK79, Theorem 5.5].

Let C → C ′ = C/〈τ〉 be a hyperelliptic curve, and α an automorphism of it. Then α

induces an automorphism αred of C ′. If D is the degree 2g + 2 branch divisor of C → C ′,

then αred induces a bijection on the set of reduced points of D.
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Definition 4.1. Let IredN (Hg) be the open and closed substack of I(Hg) whose objects

correspond to couples (C,α), where C is an object of Hg and αred : µN → Aut(C/τ) is an

injective homomorphism.

For our purposes, it is more convenient to work with IredN (Hg) than with the usual

IN (Hg). Note that of course we have in the end that:

I(Hg) =
∐

N∈N

IN (Hg) =
∐

N∈N

IredN (Hg)

but with the latter decomposition, we have that the natural map of 2.4, I ′(f) : I(Hg) →

f∗ (I([M0,2g+2/S2g+2])) induces maps:

I ′(f)N : IredN (Hg) → f∗ (IN ([M0,2g+2/S2g+2]))

This is not the case for the standard decomposition of the inertia stacks, since an auto-

morphism of order N of the genus 0 curve can lift to an automorphism of order N or to

an automorphism of order 2N on the corresponding hyperelliptic curve.

Let n = 2g+2 be the number of Weierstrass points, and N = ord(αred). It is convenient

to write n = kN + a for k ∈ N+, a ∈ {0, 1, 2} (following the results of Section 3). If N > 2

such a decomposition of n is unique. The number a is the number of Weierstrass points

whose image in the quotient via the hyperelliptic involution is a branch point for αred.

We label each twisted sector by a character. If a is equal to zero, then there are four

points in C whose image in C/τ consists of the two points fixed by αred. In this case the

automorphism α can:

(1) fix the four points;

(2) exchange them two-by-two;

(3) fix two of them and exchange the other two.

In the first two cases, we label the twisted sectors by a couple (χ, 1) or (χ,−1) respectively.

Theorem 4.2. We describe the coarse moduli space of the inertia stack of the moduli stack

of smooth hyperelliptic curves of genus g: Hg.

(1) if N > 2, let n = kN + a where a ∈ {0, 1, 2}. Then:

IredN (Hg) =





∐
χ∈µ̃N

∗,λ∈±1 (M0,k+2/Sk × S2, (χ, λ)) a = 0, k even
∐

χ∈µN
∗ (M0,k+2/Sk × S2, χ) a = 0, k odd

∐
χ∈µN

∗⊔µ∗

2N
(M0,k+2/Sk, χ) a = 1

∐
χ∈µ̃2N

∗ (M0,k+2/Sk × S2, χ) a = 2, k even, Neven
∐

χ∈µ̃N
∗⊔µ̃2N

∗ (M0,k+2/Sk × S2, χ) a = 2, k even, Nodd
∐

χ∈µ∗

2N
(M0,k+2/Sk × S2, χ) a = 2, k odd
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(2) if g is odd:

Ired2 (Hg) = (M0,g+2/Sg × S2, ζ4)
∐(

M0,g+2/Sg × S2, ζ
3
4

)∐

∐
(M0,g+3/Sg+1 × S2, (−1, 1))

∐
(M0,g+3/Sg+1 × S2, (−1,−1))

where {ζ4, ζ
3
4} = µ∗

4 = µ∗
4.

(3) if g is even:

Ired2 (Hg) = (M0,g+2/Sg,−1)
∐

(M0,g+3/Sg+1,−1)

Proof. First we observe that the morphism of 2.4:

I(f)N : f∗ (IN ([M0,2g+2/S2g+2])) → IN ([M0,2g+2/S2g+2])

is a µ2-gerbe, and as such it induces an isomorphism at the level of coarse moduli spaces.

Let us consider then:

I ′(f)N : IredN (Hg) → f∗ (IN ([M0,2g+2/S2g+2]))

This map is a 2 : 1 étale cover, because every automorphism of a genus 0 curve with

an invariant divisor of degree 2g + 2 can be lifted exactly to two automorphisms of the

corresponding hyperelliptic curve. To prove the two points (1) and (2), we prove that this

is the trivial cover, and then apply the result of Proposition 3.3. To prove point (3), we

show that in the particular case when N = ord(αred) = 2 and g is even, a lifting of αred

corresponds to a choice of a distinguished point p in D, the branch divisor of C → C ′.

Let C be a hyperelliptic curve, α an automorphism of it, and τ the hyperelliptic involu-

tion. We have the two projections on the quotient:

C
π

// C/〈τ〉
pN

// C/〈τ, αred〉

After choosing suitable coordinates on C/〈τ〉 ∼= P1 and C/〈τ, αred〉 ∼= P1, the map pN is

simply the map z → zN . Let R be the set of ramification points of pN . The number of

points in R that are branch points for π is then a, by its very definition.

Now we study separately the three cases a = 0, 1, 2.

If a is equal to 0, then a hyperelliptic curve C that admits an automorphism α of reduced

order N can be written as:

y2 = (xN − α1)(x
N − α2) . . . (x

N − αk)

with the automorphism α: {
x → ζ iNx

y → ±y
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Exchanging the coordinates 0,∞, the action of α becomes:
{
x → ζ−i

N x

y → ±(ζN )i(g+1)y

If k is odd, then α fixes two of the points in π−1(R) and exchanges the other two. The

action of α on the two fixed fibers determines the same character in µ∗
N . If k is even, then

α can either fix the four points of π−1(R) or exchange them two-by-two. In both the cases,

the action of α or ατ on the four fixed points determines an element of µ̃N
∗.

If a is equal to 1, then a hyperelliptic curve C that admits an automorphism α of reduced

order N can be written as:

y2 = x(xN − α1)(x
N − α2) . . . (x

N − αk)

with the automorphism α: {
x → ζ iNx

y → ±ζ i2Ny

In this case, if we call p the point in R that is also a branch point of π, then the action of

α on Tπ−1(p) determines a well-defined element of µ∗
N or µ∗

2N .

If a is equal to 2, then a hyperelliptic curve C that admits an automorphism α of reduced

order N can be written as:

y2 = x(xN − α1)(x
N − α2) . . . (x

N − αk)

with the automorphism α: {
x → ζ iNx

y → ±ζ i2Ny

Exchanging the coordinates 0,∞, the action of α becomes:
{
x → ζ−i

N x

y → ±ζ−i
2N (ζN )igy

In this case, the action of α fixes the two points in π−1(R). Then α induces a well-defined

element of µ̃2N
∗ when k is even and N is even, of µ̃N

∗ ⊔ µ̃2N
∗ when k is even and N is

odd, and of µ∗
2N when k is odd (and therefore N is even).

Now for the point (2), it is enough to check that our separate study in the different cases

a = 0, 1, 2 carries on also when N = ord(αred) = 2, if g is odd.

The two remaining cases are when g is even, N = 2; therefore a is equal to zero (then

k = g + 1 is odd), or a is equal to two (then k = g is also even). We have that µ∗
2 =

µ̃4
∗ = µ̃2

∗. In these cases, the action of α on π−1(R) distinguishes the two points of R. For

example, if a = 2, k even, then α acts on the two points of π−1(R), on one of them with
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character ζ4 and on the other with character ζ34 . In these cases therefore, the two 2 : 1

étale covers, at the level of coarse moduli spaces, are the two quotient maps:

M0,g+2/Sg → M0,g+2/Sg × S2 and M0,g+3/Sg+1 → M0,g+3/Sg+1 × S2

�

Remark 4.3. The above theorem could be restated as a stack-theoretic description of

the rigidified inertia stack of Hg (cfr. Remark 3.4), by substituting each occurrence of a

quotient M0,k+2/S (S a subgroup of the symmetric group Sn), with the stack quotient

[M0,k+2/S].

Remark 4.4. As a consequence of [AV04, Section 4], one can see that the µ2-gerbe:

Hg → [M0,2g+2/S2g+2]

is trivial when g is odd. Therefore, when g is odd, the map:

I ′(f)N : IredN (Hg) → f∗ (IN ([M0,2g+2/S2g+2]))

is the trivial µ2-torsor, so that Theorem 4.2 follows from Proposition 3.3 in the odd genus

case. Our explicit study permits however a unified description of the inertia stack of Hg

in terms of moduli of genus 0 pointed curves regardless of the parity of g.

5. The Orbifold cohomology of smooth hyperelliptic curves

Here we compute the orbifold Poincaré polynomial for moduli of smooth hyperelliptic

curves (see Definition 2.7).

Let us fix a hyperelliptic curve C of genus g. A basis for the cotangent space (TCHg)
∨

is given by: (
dX

Y

)2

X

(
dX

Y

)2

. . . X2g−2

(
dX

Y

)2

If α is an automorphism of C, it is straightforward to compute its action on each element of

such a basis. What we have done so far gives us the possibility of writing a closed formula

for PCR
Hg

for fixed g ≥ 2.

Theorem 5.1. The orbifold Poincaré polynomial of moduli of smooth hyperelliptic curves

is given by the formula:

PCR
Hg

(q) =
∑

(k,N,i)∈A2g+2

qag(i,N)P 0
k+2;k,2(q) +

∑

(k,N,i)∈A2g+1

2qbg(i,N)P 0
k+2;k,1,1(q)+

+
∑

(k,N,i)∈A2g

qbg(i,N)P 0
k+2;k,2(q) + 2 +

{
q

g−1

2 P 0
g+3;g+1,1,1(q) + q

g

2P 0
g+2;g,1,1(q) if g is even

2q
g−1

2 P 0
g+3;g+1,2(q) + 2q

g

2P 0
g+2;g,2(q) if g is odd

Where the sets of indices are defined as:

An :=
{
(k,N, i) ∈ N2 × Z∗

N | N > 2, kN = n
}
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and the exponents are:

ag(i,N) := 2


2g − 1−

2g−1∑

j=1

{
i(j + 1)

N

}


bg(i,N) := 2


2g − 1−

2g−1∑

j=1

{
ij

N

}


Remark 5.2. By substituting all the Poincaré polynomials on the right hand side of

Theorem 5.1 with 1, one gets the “polynomial” whose coefficients in degree i ∈ Q≥0 are

the dimensions of the stringy Chow group of degree i (cfr. Remark 2.8). This is so because

all the twisted sectors of Hg have trivial Chow group, since their coarse moduli spaces are

quotients of affine sets.

In particular, we can write closed formulas for the total dimensions of the orbifold

cohomology of Hg. Let us define:

hhCR(g) := dimH∗
CR(Hg)

We denote with φ the Euler totient function. Then we can give a corollary of Theorem 4.2:

Corollary 5.3. The following explicit formula for the function just introduced hold:

(1) If g is even, n = 2g + 2:

hgCR(n) = 3 + 2g + 2
∑

N>2| n=kN+1

kφ(N) + 2
∑

N>2| n=kN,or n=kN+2

⌊
k − 2

4
⌋φ(N)

(2) If g is odd, n = 2g + 2:

hgCR(n) = 2+4

(
⌊
n− 2

4
⌋+ ⌊

n− 1

4
⌋

)
+2

∑

N>2| n=kN+1

kφ(N)+2
∑

N>2| n=kN,or n=kN+2

⌊
k − 2

4
⌋φ(N)
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KTH Matematik, Lindstedtsvägen 25, S-10044 Stockholm

e-mail: pagani@kth.se

http://arxiv.org/abs/1003.4091
http://arxiv.org/abs/0810.2744
http://arxiv.org/abs/1005.0725

	1. Introduction
	1.a. Acknowledgments
	1.b. Notation

	2. Definition of Orbifold Cohomology
	3. The inertia stack of the configuration of unordered points on the Riemann sphere
	4. The inertia stack of moduli of smooth hyperelliptic curves
	5. The Orbifold cohomology of smooth hyperelliptic curves
	References

