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Abstract

We consider in this paper, a few important issues in non-equilibrium work fluctuations and

their relations to equilibrium free energies. First we show that Jarzynski identity can be viewed

as a cumulant expansion of work. For a switching process which is nearly quasistatic the work

distribution is sharply peaked and Gaussian. We show analytically that dissipation given by average

work minus reversible work WR, decreases when the process becomes more and more quasistatic.

Eventually, in the quasistatic reversible limit, the dissipation vanishes. However estimate of p - the

probability of violation of the second law given by the integral of the tail of the work distribution

from−∞ toWR, increases and takes a value of 0.5 in the quasistatic limit. We show this analytically

employing Gaussian integrals given by error functions and Callen-Welton theorem that relates

fluctuations to dissipation in process that is nearly quasistatic. Then we carry out Monte Carlo

simulation of non-equilibrium processes in a liquid crystal system in the presence of an electric

field and present results on reversible work, dissipation, probability of violation of the second law

and distribution of work

PACS numbers: 05.20.-y; 05.70.-a; 05.70.Ln

Keywords: Classical Statistical Mechanics; Thermodynamics; Non-equilibrium and Irreversible Thermody-

namics; Work Fluctuations; Free Energy; Liquid Crystal; Dissipation.
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I. INTRODUCTION

Non equilibrium work fluctuations and equilibrium free energy differences are related to

each other through a remarkable identity proposed and proved by Jarzynski [1, 2]. Ever since

several studies have been carried out to establish the validity and utility of the identity for

various non-equilibrium evolutions - stochastic, see e.g. [3, 4] as well as deterministic, see

e.g. [1, 5]

We show in this paper that Jarzynski identity can be viewed as a cumulant expansion.

When we retain only the first cumulant in the expansion, we get the well known thermody-

namic identity equating the work done on the system to free energy change in a quasistatic

reversible process. With only the first two cumulants in the expansion, we get Callen-Welton

theorem [6]. When we include the third and higher order cumulants we get Jarzynski iden-

tity. We derive an analytical expression for probability of violation of the second law, under

Gaussian approximation to work fluctuations. We then carry out Monte Carlo simulation

of a liquid crystal system in the presence of a varying electric field and report numerical

results on free energy changes, dissipation, probability of violation of the second law and

distribution of work.

The paper is organized as follows. We start with a brief introduction to a few relevant

basic issues of heat and work in a quasistatic reversible process. Then we consider heat and

work in the context of irreversible processes. This is followed by a discussion on the relation

between non-equilibrium work fluctuations and equilibrium free energy differences. We show

analytically that the probability of violation of the second law increases with increase of time

duration of the switching experiment and in the asymptotic limit of a quasistatic process

it goes to one-half. However dissipation defined as average work minus reversible work

becomes smaller when the duration of time of the switching process increases and in the

quasistatic limit it goes to zero. We demonstrate the usefulness of Jarzynski identity [1, 2]

on a system of liquid crystals in the presence of external electric field. We consider a lattice

model with each lattice site holding a headless spin. We calculate the work done when

the external electric field is switched from an initial value to a final value following a well

specified experimental protocol. We carry Monte Carlo simulation of the non-equilibrium

switching process and collect an ensemble of work values. From this ensemble we extract

equilibrium properties of the liquid crystalline system employing both Jarzynski identity
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and Callen-Welton theorem [6]. Principal conclusions of the study are brought out briefly

in the concluding section.

II. HEAT AND WORK : REVERSIBLE PROCESSES

Consider a closed system in equilibrium at temperature T . It draws a small quantity

d̄ Q of heat by a quasistatic reversible process at constant temperature. d̄ Q is not a perfect

differential. However,

dS =
d̄ Q

T
, (1)

is a perfect differential where S is entropy. Thus, during a quasistatic reversible process,

entropy of the system increases by d̄ Q/T .

To calculate the work done on the system, we start with the first law of thermodynamics,

stated as,

d̄ W = dU − d̄ Q, (2)

where d̄ W denotes the work done on the system and U , the internal energy. d̄ W is not a

perfect differential.

The first law is about conservation of energy and is valid for all processes, quasistatic,

non-quasistatic, reversible, irreversible or otherwise. However, if the process is quasistatic

and reversible, then we can replace d̄ Q by TdS, see Eq. (1), and write,

d̄ W = dU − TdS. (3)

If the process is also isothermal, we have

d̄ W = d(U − TS). (4)

We identify the term U − TS as Legendre transform of the fundamental equation U ≡
U(S, V ) where we transform the variable S in favor of the ‘slope’

T (S, V ) =

(

∂U

∂S

)

V

(5)

and the variable U in favor of the ‘intercept’

F (T, V ) = U(S, V )− TS. (6)
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F (T, V ) is called Helmholtz free energy or simply free energy. Thus the work done equals

free energy change :

d̄ W = dF. (7)

For purpose of distinguishing process variables (heat and work) from state variables (energy

U , entropy S and free energy F ) we have considered in the above an infinitesimal process.

d̄ Q and d̄ W are not perfect differentials; dU , dS and dF are perfect differentials. However

the relation between free energy and work, see Eq. (7), holds good for a quasistatic reversible

process that takes the system from one equilibrium state, say A to another equilibrium state,

say B. We have

W = F (B)− F (A) (8)

We call the above as reversible work and denote it by WR

III. HEAT AND WORK : IRREVERSIBLE PROCESSES

To obtain a relation between change in free energy and work done when the process is

not reversible, we start with the second law inequality, see [8] for an elegant proof, given by

dS >
d̄ Q

T
. (9)

The above implies

d̄ Q < T dS (10)

for an irreversible process. Substitute this in Eq. (2) and get,

d̄ W > dU − TdS (11)

which for an isothermal irreversible process reduces to

d̄ W > dF. (12)

Consider a process that takes the system irreversibly from an equilibrium state A to another

equilibrium state B. Let W denote the work done during the process and ∆F = F (B) −
F (A). We have

W > ∆F (13)
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The work done exceeds free energy change, if the process is not reversible. This is the best

conclusion we can draw from purely thermodynamics considerations.

A natural question that arises in this context is about the meaning of the statement

W > ∆F . A given process can be realized either in an experiment or in a computer

simulation. We recognize that work done, in general, would differ from one experiment

or computer realization of the process to another. Let us consider a process in which a

parameter of the thermodynamics system is switched from one value to another, as per a

well defined experimental protocol. For example, we can change the volume of a system from

one value to another uniformly over a fixed duration of time τ . We call this a switching

process. In general, different switching experiments, all carried out with the same protocol,

will give rise to different values of W . Only when the switching is done quasistatically and

reversibly does one get the same value of W in all experiments. Hence, in general, we have

to deal with an ensemble of values of W and not just a single value. Let us denote this

ensemble by Ω = {Wi}. It is then quite possible that there can exist realizations for which

W is less than dF , thereby violating the second law. This should not surprise us since even

in the early days of statistical mechanics, Maxwell [9] correctly recognized that the second

law is of statistical origin and hence there is a non-zero probability of it being contravened.

The demon he created to drive home this point, haunts us even today, see e.g. [10].

Let the ensemble Ω of work values be formally described by the distribution ρ(W ; τ)

where τ denotes the duration of time over which the process takes place; τ is the switching

time. Typically we switch a macroscopic parameter, denoted by the symbol Λ from an initial

value say ΛI to a final value say ΛF . This switching can be carried out in any way. The

discussions below and the Jarzynski identity described in the next section hold good for any

protocol of switching. However we consider the switching to take place at constant rate,

over a pre specified duration of time, τ . Then by considering different values of τ we can

describe different switching scenarios: if τ is small, we have fast switching; if τ is large we

have slow switching; in the limit of τ → ∞, we have a quasistatic reversible switching. Thus

Λ(t) = ΛI + (ΛF − ΛI)×
t

τ
, 0 ≤ t ≤ τ. (14)

The probability of violation of the second law, denoted by the symbol p(τ) is formally given

by the following integral.

p(τ) =
∫ WR

−∞
dW ρ(W ; τ), (15)

5



We note that for every thermodynamic variable there corresponds a random variable in

statistical mechanics. The average of the random variable over a suitable ensemble gives the

value of the thermodynamic variable. For example 〈E〉 equals the thermodynamic energy

U , where the angular brackets denote average over a canonical ensemble. Hence, strictly we

should state the second law as

〈 W 〉 ≥ dF . (16)

In the above, the angular brackets denote an average over an ensemble of switching experi-

ments, all carried out with the same protocol. In other words it is given by

〈W 〉 =
∫ ∞

−∞
dW W ρ(W ; τ) (17)

Stated thus, the second law can never be violated. We define

Wd = 〈W 〉 −WR (18)

as dissipation and state the second law as described in the next section

Wd ≥ 0 (19)

for all processes. In the above, equality obtains when the process is quasistatic and reversible.

If τ is very large but not infinity, ρ(W ; τ) would be sharply peaked and Gaussian. Consider

a process that takes a system from an equilibrium state A to another equilibrium state B.

Let the process be nearly quasistatic. We have ∆F = F (B)− F (A) = WR. The time taken

for the process, τ , is large. For such a process, dissipation is proportional to fluctuations,

and from Callen-Welton theorem [6] we get,

∆F = WR = ζ1 −
1

2
β ζ2 (20)

where

ζ1 = 〈W 〉 (21)

is the first cumulant and

ζ2 = σ2

W = 〈W 2〉 − 〈W 〉2 (22)

is the second cumulant (or variance) of W . Thus we have Wd = βζ2/2 from Eq. (20):

dissipation (Wd) is proportional to fluctuation (ζ2 or σ2
W ).
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Measuring energy in units of kBT = β−1, we get, from Eq. (20),

− β dF = (−β) ζ1 +
1

2!
(−β)2 ζ2 . (23)

The above relation is for a process which is nearly quasistatic. The distribution of work for

such a switching protocol is Gaussian. For a Gaussian, the third and higher order cumulants

are all identically zero. We contend that in a general process, which is not necessarily

quasistatic or near quasistatic, there should be additional terms in the Right Hand Side

(RHS) of the above equation involving third and higher cumulants. Once we include these

higher cumulants we get Jarzynski identity, as shown in the next section.

IV. NON-EQUILIBRIUM WORK AND EQUILIBRIUM FREE ENERGIES

Including the terms involving the third and higher order cumulants in the RHS of Eq.

(23), we get,

− β dF = (−β) ζ1 +
(−β)2

2!
ζ2 +

∞
∑

n=3

(−β)n

n!
ζn. (24)

We recognize immediately the Right Hand Side (RHS) of the above equation as the cumulant

expansion of W .

Let χ(β) denote the cumulant generating function. Thus we have,

χ(β) = −βdF (25)

or equivalently

exp(χ) = exp(−βdF ). (26)

The moment generating function of W is defined as

φ(β) =
∫

+∞

−∞
dW exp(−βW ) ρ(W ; τ)

= 〈 exp(−β W ) 〉. (27)

The moment and cumulant generating functions are related to each other. We have

χ(β) = log [φ(β)] . (28)

We see immediately that Jarzynski identity given by,

〈 exp(−βW ) 〉 = exp(−βdF ), (29)

follows naturally from this.
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V. GAUSSIAN WORK DISTRIBUTION

We shall derive an expression for the probability of violation of the second law formally

given by Eq. (15). For large τ the work distribution ρ(W ; τ) would be a sharply peaked

Gaussian with mean 〈W (τ)〉 and variance σ2
W (τ) = 〈W 2(τ)〉 − 〈W (τ)〉2. Substituting the

Gaussian in Eq. (15) for ρ(W ; τ) we get,

p(τ) =
1

σW (τ)
√
2π

∫ WR

−∞
dW exp

(

−1

2

[W − 〈W (τ)〉]2
σ2
W (τ)

)

=
1√
π

∫

WR − 〈W (τ)〉
σW (τ)

√
2

−∞
dξ exp(−ξ2)

=
1

2
− 1

2
erf

(

〈W (τ)〉 −WR

σW (τ)
√
2

)

, (30)

where, the error function is defined [11] as,

erf(x) =
2√
π

∫ x

0

dξ exp(−ξ2) (31)

For large τ , we have Callen-Welton theorem [6] which tells us

〈W (τ)〉 −WR =
1

2
βσ2

W (τ). (32)

Substituting for dissipation in terms of fluctuations in Eq. (30) we get

p(τ) =
1

2
− 1

2
erf

(

βσW (τ)

2
√
2

)

. (33)

Note erf(∞) = 1 and erf(0) = 0. From Eq. (33) we see that p(τ) increases when τ increases.

In the limit of τ → ∞, p(τ) equals one-half.

This result can be understood as follows[7]. In the quasistatic limit of τ → ∞, ρ(W ; τ)

becomes more and more sharply peaked such that 〈W 〉 → WR and σW → 0. By Callen-

Welton theorem Wd ∝ σ2
W . This implies that σW ≫ Wd as Wd → 0. Thus Wd and the

σW both tend to zero, with σW ≫ Wd. In other words Wd → 0 faster than σW → 0. This

leads to p(τ) → 1

2
in the reversible limit.

However, dissipation is defined as Wd = 〈W 〉−WR. In the reversible limit of τ → ∞, we

have 〈W 〉 = WR and hence dissipation is zero.
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VI. WORK FLUCTUATIONS IN LIQUID CRYSTALLINE SYSTEM

Let us now illustrate the above on a lattice model of a liquid crystalline system. To this

end, we consider an L × L × L cubic lattice. Each lattice site holds a headless spin. The

spins on nearest neighbor lattice sites interact with each other via Lebwohl-Lasher potential

[12] see below. Besides, each spin interacts with the external electric field, which is taken as

the switching parameter. Without loss of generality we take the external field, to be in the

z axis direction and switch its magnitude. The Hamiltonian for the nematic system is given

by,

H = −J
∑

〈i,j〉

P2(cos θi,j)−
E2

2

∑

i

P2(cos θi). (34)

In the above, the symbol 〈i, j〉 denotes that i and j are nearest neighbor lattice sites. The sum

runs over all distinct pairs of nearest neighbor sites. We have employed periodic boundary

conditions along x, y and z coordinates. θi,j denotes the angle between the spins and J

measures the strength of interaction. In the simulation we express energy in units of J

and hence set J = 1. E is the amplitude of the external electric field and θi, the angle

between the spin at lattice site i and the external electric field. P2(η) is the second Legendre

polynomial given by

P2(η) =
3 cos2(η)− 1

2
(35)

We carry out Monte Carlo simulation of the response of the system to a process of switching

E from say E0 to a value of Ef .

VII. MONTE CARLO SIMULATION OF THE SWITCHING PROCESS

Start with an arbitrary initial microstate (spin configuration) and employing Metropolis

algorithm [13], equilibrate the system at the desired value of β with E = E0. Select randomly

a microstate from the equilibrium ensemble. Calculate the energy. Keep the micro state

the same and switch the field from E0 to E1 = E0 +∆E. This is called the work step. The

resulting change in energy, called work is denoted by ω1. Then implement a heat step via

Metropolis algorithm over one Monte Carlo sweep as described below.

Select randomly a spin and change its orientation by a random amount. This can done

by the procedure suggested by Barker and Watts [14]. Call the resultant microstate as
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trial state. If the energy of the trial state is less than that of the current state accept the

trial state as the next microstate in the Markov chain. If the trial state energy is more,

then calculate p = exp[−β∆ǫ] where ∆ǫ is the energy of the trial state minus that of the

current state. Draw a random number (uniformly and independently distributed in the

range zero to unity) and if it less than p accept the trial state; otherwise reject the trial

state and take the current state as the next state in the Markov Chain. Carry out the above

rejection/acceptance step L3 number of times and this constitutes a Monte Carlo sweep.

The heat step is followed by a work step on the micro state obtained at the end of the heat

step. During the work step the field changes from E1 to E2 = E1 +∆E = E0 + 2∆E. The

work done is ω2. The work and heat steps are repeated until E attains a pre - determined

value, say Ef .

Let n be the number of work steps required to switch the field from an initial value of E0

to a final value Ef . In other words En = Ef = E0 + n ∆E, where ∆E = (Ef −E0)/n. The

switching time τ is thus given by n. We have

W =
n
∑

i=1

ωi . (36)

We carry out the simulation independently for a large number of times with the same

switching protocol and construct a work ensemble {Wi} from which all the required statistics

described below are calculated. In the simulation we have taken E0 = 0 and Ef = 2. The

results presented in this paper are for L = 3. Jarzynski identity is valid even for systems

which are small. For a small system there would be large fluctuations and hence illustrating

various issues, like relating work fluctuations to free energy differences and to dissipation

becomes an easy task. This is the reason we have kept the system size small in this work.

The size of the Monte Carlo ensemble of work values generated is one million.

VIII. RESULTS AND DISCUSSIONS

Fig. (1) depicts results on free energy difference (or reversible work) calculated from

Jarzynski identity as a function of τ with β−1 = 1.5.

We have also plotted in the same graph the free energy change from Callen-Welton theorem.

As expected Callen-Welton theorem does not predict free energy change correctly for small

switching time when the system is driven far from equilibrium. As τ increases the results

from Callen-Welton theorem converges to that from Jarzynski identity.
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FIG. 1. Free energy difference ∆F versus switching time τ . The upper curve (squares) denotes

∆F J calculated from Jarzynski identity. The lower curve (circle) denotes ∆FCW , calculated from

Callen-Welton theorem.

In Fig. (2) we have plotted dissipation given by Eq. (18) and denoted asW J
d , as a function

τ . This has been calculated from the ensemble of work values generated by the Monte Carlo

simulation of the switching process. The dissipation is large for small τ . This is because the

system is driven far from equilibrium. However as the switching time increases the process

becomes more and more quasistatic. Dissipation decreases. In the limit of τ → ∞ it goes

to zero. For large τ dissipation can also be calculated from fluctuations employing Callen-

Welton theorem. We have WCW
d = βσ2

W/2. The inset in Fig. (2) shows WCW
d −W J

d . This

quantity is large for small τ . It decreases with increases of τ and eventually goes to zero.

We have depicted in Fig. (3) the probability of violation of the second law, calculated

from the Monte Carlo ensemble of work values. Let pMC(τ) denote this quantity which is

calculated as follows.

We count how many of the switching experiments give rise to a value of W less than WR.

This number divided by the total number of switching experiments carried out gives pMC(τ).
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FIG. 2. Dissipation defined as W J
d = 〈W 〉 − WR calculated from Jarzynski identity. The inset

shows WCW
d −W J

d , where WCW
d is dissipation calculated from Callen-Welton theorem.

We find that pMC(τ) increases with increase of τ as expected from the analytical results

discussed in section V.

The work distributions for representative values of τ are depicted in Fig. (4). For small

values of τ we find the distribution is broad. As τ increases the distribution becomes more

and more sharply peaked. The distribution is expected to be Gaussian see [15, 16].

IX. CONCLUSIONS

Recent developments in non-equilibrium statistical mechanics embodied in various fluc-

tuation theorems give us an insight into the foundational aspects of statistical mechanics

and thermodynamics. There are several other methods which provide us a tool to calculate

equilibrium quantities from non-equilibrium measurements. For example Sadhukhan and

Bhattacharjee[17] have shown that Barkhausen noise process, repeated many times give ad-

equate data to construct, in conjunction with work fluctuation theorem, a special matrix
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FIG. 3. The probability of second law violation for various value of τ . calculated from the Monte

Carlo ensemble

whose principal eigenvector provides equilibrium distribution. Transient entropy-fluctuation

theorem of Evans and Searles [19], heat fluctuation theorems of Crooks[18] and the fluctu-

ations theorems of Gallavotti-Cohen [20] for steady state systems also can be employed to

estimate equilibrium quantities from non-equilibrium measurements. In this paper we have

employed work fluctuation theorem for estimating free energy differences. We have carried

out Monte Carlo simulation of the lattice model of liquid crystalline system. Monte Carlo

is best suited for lattice spin models. If the Hamiltonian involves continuous degrees of

freedom then Molecular Dynamics simulations would be appropriate. We find that dissipa-

tion defined as the excess of work done on the system over equilibrium free energy change

tends to zero in the asymptotic limit of τ → ∞. p(τ) is given by the area under the work

distribution in the tail region extending from −∞ to WR. We have shown analytically that

the value of p increases with increase of τ . In the quasistatic limit of τ → ∞, p(τ) = 1/2.
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FIG. 4. Distribution of work for τ = 1, 16, 64, 256, 800 and 3200, from right to left.
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