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UNIVERSAL COVERS AND THE GW/KRONECKER
CORRESPONDENCE

JACOPO STOPPA

Abstract. The tropical vertex is an incarnation of mirror symmetry
found by Gross, Pandharipande and Siebert. It can be applied to m-
Kronecker quivers K(m) (together with a result of Reineke) to compute
the Euler characteristics of the moduli spaces of their (framed) represen-
tations in terms of Gromov-Witten invariants (as shown by Gross and
Pandharipande). Motivated by the question of whether this computa-
tion reflects an equivalence of objects, here we consider the operation of

passing to the universal cover of the quiver, K̃(m), and propose a “mir-
ror” for this. For the standard Kronecker quiver K(2) this is enough to
construct a curve from a framed representation, but the general situation
is more complicated. Additional motivation for studying the universal
cover in terms of curves comes from the physical interpretation of m-
Kronecker quivers in the context of quiver quantum mechanics.

1. Introduction

1.1. The correspondence. Them-Kronecker quiver K(m) is the bipartite
quiver with m edges directed from v1 (the source) to v2 (the sink):

v1

e1

��
e2

''

em−1

77

em

@@
... v2

A stability condition (central charge) for its dimension vectors is speci-
fied by a pair of integers (w1, w2). We will always refer to the choice
(w1, w2) = (1, 0). One can then form smooth, projective moduli spaces

M
(1,0),B
m (d) for stable representations of K(m) with dimension vector d and

a 1-dimensional framing at v1 (respectivelyM(1,0),F
m (d) for a framing at v2,

see [ER] for the general theory). By the results of Engel and Reineke we
have closed formulae for the generating functions of the topological Euler

characteristics
∑

d χ(M
(1,0),B
m (d)) xd.
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Here however we are interested in an alternative and rather surprising
way of computing these Euler characteristics, using an incarnation of mirror
symmetry known as the tropical vertex of Gross, Pandharipande and Siebert
[GPS]. It turns out that computing the generating function

∑

k≥0

χ(M(1,0),B
m (ka, kb))xkaykb

is equivalent to working out a Gromov-Witten theory for a family of alge-
braic surfaces.

Fix coprime positive integers a, b and let P(a, b, 1) be the weighted projec-
tive plane (C3\{0})/C∗, with action given by λ·(z1, z2, z3) = (λaz1, λ

bz2, λz3).
Its toric fan is given by the duals of the divisors D1, D2, Dout cut out by
z1, z2, z3. We denote by Do

1, D
o
2, D

o
out the subschemes obtained by removing

the three torus fixed points. Then roughly speaking, the relevant invariants
for us are

Na,b[(Pa, Pb)] ∈ Q

counting rational curves in the weighted projective plane P(a, b, 1) which
pass through m-tuples of distinct points x1

1, . . . , x
1
m on Do

1, respectively
x2
1, . . . , x

2
m on Do

2, with multiplicities specified by length m ordered par-
titions Pa, Pb with |Pa| = ka, |Pb| = kb and which are tangent to Do

out to
order k.
As an example N1,1(2+1, 1+1+1) = 3 counts plane rational cubics with

a prescribed node which pass through 4 other prescribed points, and with
Dout an inflectional tangent.
We refer to [GPS] Sections 0.4 and 6.4 for precise definitions and further

examples. The numbers Na,b[(Pa, Pb)] are well defined and independent of
the choice of points.

The GW/m-Kronecker correspondence is the identity in Q[[x, y]]

exp


∑

k≥1

∑

|Pa|=ka,|Pb|=kb

kNa,b[(Pa, Pb)]x
kaykb




=

(
1 +

∑

k≥1

χ(M(1,0),B
m (ka, kb))xkaykb

)m
a

=

(
1 +

∑

k≥1

χ(M(1,0),F
m (ka, kb))xkaykb

)m
b

,

(1.1)
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(summing over length m ordered partitions Pa, Pb), first written down ex-
plicitly by Gross and Pandharipande [GP] Corollary 3.
The formula (1.1) arises indirectly, by comparing two ways of comput-

ing a commutator in the tropical vertex group (also known as Kontsevich-
Soibelman group), namely either in terms of quiver representations using
Reineke’s result [Re] Theorem 2.1, or in terms of GW invariants of orbifold
surfaces using the tropical vertex. The commutator expresses a Kontsevich-
Soibelman wall-crossing ([KS] Section 1.4) for χ at different choices of the
central charge.

Gross and Pandharipande [GP] Section 3.5 and Reineke [Re] Section 6
have asked if there is actually a correspondence between curves and repre-
sentations underlying the equality (1.1). In particular one could ask how
to costruct a rational curve starting from a given framed representation of
K(m). We argue here that a first step in this direction is to understand the

universal cover K̃(m) (recalled below) in terms of curves.
We will see in Section 2.2 that for the standard Kronecker quiver K(2)

one can indeed associate a (tropical) curve with a framed finite representa-

tion of K̃(2) (which in this case is the same as the abelian universal cover

K̂(2)). By the results of Weist [We] passing to K̂(2) is the same as localising
with respect to the natural (C∗)2-action, so the Euler characteristics can be

computed already on K̃(2) (Weist proves a similar result in the general case
of K(m), as we will discuss below).
When m ≥ 3 however this approach becomes problematic. This is ex-

plained by an example in Section 2.2. Roughly speaking, if we think of

Q ⊂ K̃(m) as a localisation quiver for K(m) under the natural (C∗)m-
action, then we may say that Q is not a local enough object, and a single
framed representation can give rise to infinitely many curves.
So it seems important to shift attention to the easier question, what is

the “mirror” of passing to the universal cover K̃(m)?

Main result (very imprecise version). Passing to the universal cover

corresponds to partitioning quiver representations according to boundary

conditions, specified by a parameter d̃. Similarly, one can partition the

curves appearing in (1.1) according to boundary conditions, with a parame-

ter w. Then d̃ and w are “mirror” under (1.1).

We try to make this precise in the discussion below, and in particular
with formulae 1.4 and 1.5.



4 JACOPO STOPPA

1.2. Universal covers. Let Q be a quiver without closed loops, with ver-
tices Q0 and edges Q1.
The algebraic torus T := (C∗)|Q1| acts on the affine spaces of representa-

tions RepQ(d) for d ∈ NQ0, by scaling the linear maps in a representation.
Let us write X(T ) := Hom(T,C) ∼= ZQ1, the character group of T .
The abelian universal cover of Q (due to Reineke, see [We] Section 3) is

the quiver Q̂ with vertices Q̂0 = Q0 × X(T ) and arrows given by

(α, χ) : (i, χ)→ (j, χ + eα)

for α : i → j in Q1 and χ ∈ X(T ). Here eα is the character corresponding

to α ∈ Q1. We say d̂ ∈ NQ̂0 is compatible with d ∈ NQ0 if di =
∑

χ d̂i,χ for

all i ∈ Q0. There is an action of ZQ1 on Q̂0 defined by λ · (i, χ) = (i, χ+λ),

which extends to an action on NQ̂0 by linearity. In the following we will

denote by [ d̂ ] the equivalence class of d̂ ∈ NQ̂0.
Let now W (Q) be the group of words on Q, generated by arrows and

their formal inverses. The universal cover Q̃ of Q (see [We] Section 3.4) is

the quiver with vertices Q̃0 = Q0 ×W (Q) and arrows given by

(α,w) : (i, w)→ (j, wα)

for α : i → j in Q1 and w ∈ W (Q). As in the abelian case we have the

notion of a compatible dimension vector d̃ ∈ NQ̃0 for d ∈ NQ0 and an action

of W (Q) on NQ̃0 with equivalence classes [ d̃ ].
Weist studied the fixed locus for the torus action, proving the decompo-

sition

(Ms
Q(d))

T ∼=
⋃

[ d̂ ]

Ms

Q̂
(d̂).

In turn each of the moduli spaces Ms

Q̂
(d̂) admits a torus action, and this

gives rise to a tower of fixed loci, each described by representations of iter-
ated abelian covers, [We] Section 3.4. The main result in this connection is
[We] Theorem 3.16, stating that for fixed d these iterations stabilise to the
disjoint union over compatible dimension vectors of the universal cover,

⋃

[ d̃ ]

Ms

Q̃
(d̃).

Applying these results to K(m) gives identities for the topological Euler
characteristics,

χ(Ms
K(m)(d)) =

∑

[ d̂ ]

χ(Ms

K̂(m)
(d̂))
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and, more importantly for us,

χ(Ms
K(m)(d)) =

∑

[ d̃ ]

χ(Ms

K̃(m)
(d̃)) (1.2)

(here there is no framing, so we have to assume the dimension vector
d = (d1, d2) is coprime; the same result holds for all dimension vectors
for framed representations, by summing up over all B or F -framings on the
universal cover).

Notice that while K̂(m) cannot contain oriented cycles, it may well con-
tain unoriented ones: the first instance is the infinite hexagonal quiver with

an orientation, isomorphic to K̂(3) (see Figure 1). In general, it is much
better to work with the universal cover, which cannot contain cycles; indeed

K̃(m) can be identified with the infinite m-regular quiver with a choice of
orientation (e.g. by “opening up” the quiver in Figure 1). Then one can

Figure 1. The universal abelian cover K̂(3).

construct a representation of K(m) uniquely from a finite representation of

K̃(m) plus an admissible colouring of the arrows by {1, . . . , m}, i.e. one for
which arrows outgoing from (or incoming to) the same vertex are coloured
differently (see [We] Remark 5.13), up to symmetries of the colouring.

Next we try to find an analogue of Weist’s identity (1.2) for the GW
invariants appearing in the GW/m-Kronecker correspondence. A lot of our
motivation comes from a construction in physics which we learnt from a
paper of Denef [De].

1.3. Physical picture. We now briefly turn to the physical interpretation
of K(m), giving a very naive and imprecise account.
Let S1, S2 be two Lagrangian 3-spheres in a compact Calabi-Yau threefold

X , meeting transversely and positively in m points, so for the intersection
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product (the DSZ product in this context) we have 〈[S1], [S2]〉 = m. In the
terminology of [De] Section 3.1 S1, S2 are parton D3-branes. The generalised
Kronecker quiver K(m) with dimension vector d = (d1, d2) arises in the
study of the string theory on spacetime compactified on X with m open
strings with boundaries on one of d1 D-branes of type [S1] and one of d2
D-branes of type [S2].
The fundamental parameter in this theory is the string coupling constant

gs. For positive gs ≈ 0, and when the D-branes have small but nonvanishing
phase difference and spacetime separation, the theory becomes a quiver
quantum mechanics modelled on K(m). In particular the Witten index of
the theory can be computed as χ(MK(m)(d)).
A very different picture emerges for large coupling constant gs. In this

regime the BPS states for the theory become multi-centered, molecule-
like configurations of d1 “monopoles” with charge Q and d2 “electrons”
with charge q, with DSZ product 〈Q,q〉 = m (i.e. the “monopoles”
have magnetic charge m, the “electrons” have electric charge 1). What
(1.2) says in this regime is that we can compute the same Witten in-
dex by summing over all multi-centered BPS configurations with charges
Q1, . . . ,Qℓ1

and q1, . . . ,qℓ2
such that the DSZ product 〈Qi,qj〉 is at most

1 for i = 1 . . . , ℓ1, j = 1, . . . , ℓ2 (i.e. such that each pair of interacting parti-
cles looks like a simple monopole-electron system, corresponding to K(1)).

The K̃(m) constraint in this regime means that the splitting into charges
Qi,qj must be compatible with the original DSZ product 〈Q,q〉 = m.

From this point of view replacing K̂(m) by K̃(m) means that for these
multi-centered configurations one cannot have closed chains of interacting
monopoles-electrons.
For each of these multi-centered configurations, going back to gs ≈ 0 will

give theories based on configurations of partons, with the same total Witten
index. In other words one can compute the total Witten index by summing
up over all the ways of splitting the boundary conditions for the open strings.

Another advantage of the large gs viewpoint is an interpretation of Weist’s
gluing result [We] Corollary 5.28.
Mathematically, in its simplest form, this says that if we have two repre-

sentations R′, R′′ of K̃(m) with dimension vectors d′, d′′ and skew-symmetri-
sed Euler form 〈d′, d′′〉 = 1 (we also call this DSZ product, recalled in Section
2.1 below), we can glue them by identifying two sinks j′ ∈ R′0, j

′′ ∈ R′′0 . The
new dimension vector is d = d′ + d′′.
Now from the gs ≫ 0 perspective we are simply superimposing our two

special multi-centered configurations at two “electrons”. Weist’s gluing cor-
responds to the statement that the total configuration we obtain is BPS, as
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long as the two multi-centered configurations behave mutually like a simple
monopole-electron system,

〈
∑

i

Q′i +
∑

j

q′j ,
∑

i

Q′′i +
∑

j

q′′j 〉 = 1.

Notice that so far we have ignored the framing, but this could easily be in-
troduced by adding an additional parton D-brane S to the discussion above.

Finally we should mention that the special case m = 2 (with framing) has
a physical interpretation as a certain SU(2) Seiberg-Witten theory, as dis-
cussed in [GMN] Section 2.2. The choice of stability condition corresponds
to a choice of coupling regime. The Kontsevich-Soibelman wall-crossing
formula has been interpreted in the context of Seiberg-Witten theories by
Gaiotto, Moore and Nietzke [GMN]. In the special case m = 2 the relevant
identity is (using Kontsevich-Soibelman operators on K(2), to be recalled
below)

T1,0 ◦ T0,1 = T0,1 ◦ T1,2 ◦ T2,3 · · ·T
−1
1,1 · · ·T3,2 ◦ T2,1 ◦ T1,0

which they interpret as going from strong coupling (the only BPS states are
a single monopole and a single dyon) to weak coupling (one finds an infinite
tower of dyons plus a W boson, plus 4 hypermultiplets).
In Section 2.2, when we discuss the correspondence with curves, we will

give examples of what are the curves that carry a contribution to the oper-
ator which represents one of these states.

1.4. “Boundary conditions” (legs) for curves. What we wish to retain
from this physical picture is that passing to the universal cover for quiver
representations corresponds to splitting either boundary conditions (i.e. D-
branes, partons) for small gs or particles (for large gs) into a number of
constituents. Then we can recover χ by summing up over all configurations
of all possible types.

We now turn to the left hand side of the GW/m-Kronecker correspon-
dence (1.1), that is to curves in weighted projective planes. There is no
obvious analogue of the (C∗)m-action here, however we propose that an
analogue of the equality (1.2) is given by the formula in terms of tropical
counts ([GPS] Proposition 5.3)

Na,b[(Pa, Pb)] =
∑

w

N trop(w)

|Aut(w)|
RP |w. (1.3)

The sum is over positive, increasing weight vectors w = (w1,w2),

wi = (wi1, . . . , wili)
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that may refine the ordered partitions P = (Pa, Pb)

Pa = (pa1, . . . , paℓa)

Pb = (pb1, . . . , pbℓb).

(so we think of w as the analogue of a compatible dimension vector).
It can also be seen as a sum over refinements of P ; the multiplicity term

is contained in

RP |w =
∑

I•

l1∏

j=1

(−1)w1j−1

w2
1j

·
∑

J•

l2∏

j=1

(−1)w2j−1

w2
2j

,

where we sum over all compatible set partitions, i.e. disjoint unions

{1, . . . , l1} =
⋃

r

Ir, {1, . . . , l2} =
⋃

s

Js

such that

par =
∑

i∈Ir

w1i, pbr =
∑

j∈Js

w2j .

Here

Aut(w) = Aut(w1)×Aut(w2)

where Aut(wi) ≤ Σli is the stabiliser of (wi1, . . . , wili) in the symmetric
group, for i = 1, 2.
Later we will also need arbitrary weight vectors w = (w1, . . . ,wL), to-

gether with their stabiliser Aut(w).

The invariant N trop(w) is the number of rational tropical curves Γ →
R2 with “boundary conditions” (weighted legs) w. Namely fix general,
parallel horizontal lines {d1j} and vertical lines {d2j}. Then Γ is a tree with
unbounded edges Eij mapping to a fixed line dij, the weight is w(Eij) = wij,
and so in our case there is a single outgoing ray in the direction of (a, b) (we
emphasise that there are as many roots in Γ as parts of w). This is well
defined and independent of the choice of lines ([GPS] Section 2.3).
Remark. At least when w(Eij) = 1 we could introduce stop points along
the incoming legs of the tropical curve which would then correspond to
boundary components lying on the Lagrangian fibres of the moment map.
This justifies somewhat the terminology “boundary conditions”.

We should mention that the formula (1.3) arises in [GPS] as the combina-
tion of a degeneration formula and two equivalences, with holomorphic and
tropical counts respectively. First one performs degeneration to the normal
cone of D1 ∪D2 ∪Dout with a suitable set of sections blown-up. This gives
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(1.3) with relative GW invariants N rel
a,b(w)

∏
i,j wij in place of the tropical

counts N trop(w). The first equivalence is then with holomorphic counts,

N rel
a,b(w) = Nhol

a,b (w),

proved in [GPS] Theorem 4.4. The right hand side is a theory of maps P1 →
Xo

a,b which touch Di at li points with orders wij, j = 1, . . . , li (respectively
Dout with order ind(w)). The second equivalence is with tropical counts,

Nhol
a,b (w)

∏

i,j

wij = N trop(w),

proved in [GPS] Theorem 3.4.

The advantage of the physical point of view of the previous section is that
it suggests an analogy between the formulae (1.2) and (1.3), i.e. in both
cases we are computing our invariants (Witten indexes) by summing up over

all boundary conditions (in other words it allows us to regard [ d̃ ] as spec-
ifying boundary conditions for open strings, while w specifies “boundary
conditions” for tropical curves).
The upshot of our discussion is that the GW/Kronecker correspondence

should arise from a family of identities which relate w to d̃.

Fix a finite subquiver Q ⊂ K̃(m), and order the vertices so that sinks
come before sources. Choose a weight vector w′ = (w′1, · · · ,w

′
|Q0|

) and let

s = #{sinks} and S = #{sources}. We write

xw
′

:= x
|w′

1|
1 · · ·x

|w′

s+S
|

s+S .

Notice that w′ can be “flattened” to the weight vector w = (w1,w2) with

w1 = ((w′(s+1)j)
ls+1

j=1 , (w
′
(s+2)j)

ls+2

j=1 , . . . , (w
′
(s+S)j)

ls+S

j=1 ),

w2 = ((w′1j)
l1
j=1, (w

′
2j)

l2
j=1, . . . , (w

′
sj)

ls
j=1).

We can further reduce to a dimension vector w = (
∑

i>s |w
′
i|,
∑

i≤s |w
′
i|),

and then we define µ(w′) = µ(w). Similarly d̃ can be reduced to a dimension
vector d for K(m), and we write (NQ0)µ for the subsemigroup of dimension
vectors whose reduction has slope µ.
The identities we will find have the form

exp


 ∑

w′|µ(w′)=µ

〈ip̄,w
′〉N trop

Q (w′)

|Aut(w′)|
Rw′ xw

′


 =

∑

d̃∈(NQ0)µ

χ(MQ,ip(d̃)) x
d̃,

(1.4)
where µ = a

a+b
and we fixed a reference point ip for the framing (such that

it maps to a suitable sink ip̄). The coefficients 〈ip̄,w
′〉, N trop

Q (w′), Rw′ are
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to be determined. The number N trop
Q (w′) will have a geometric meaning as

the contribution of Q to N trop(w).
The correspondence (1.1) is then recovered in the limit as Q becomes

larger,

exp


 a

m

∑

k≥1

∑

|Pa|=ka,|Pb|=kb

kNa,b[(Pa, Pb)]x
kaykb




= lim
−→Q

exp


 ∑

w′|µ(w′)=µ

〈ip̄,w
′〉N trop

Q (w′)

|Aut(w′)|
Rw′ xw




= lim
−→Q

∑

d̃∈(NQ0)µ

χ(MQ,ip(d̃)) x
d

= 1 +
∑

k≥1

χ(M(1,0),B
m (ka, kb))xkaykb (1.5)

(we fix a representative for the W (K(m)) action by moving the framing to
the reference point).
Acknowledgements. This is an application of some of the ideas in [GPS]
and [Re]. It was motivated by conversations with So Okada and Thorsten
Weist, and I take this opportunity to thank them. I am also grateful to
Hiraku Nakajima, Markus Reineke and Richard Thomas, as well as to RIMS,
Kyoto and Trinity College, Cambridge.

2. The formulae (1.4) and (1.5)

2.1. Notation. In this section we discuss the formulae (1.4) and (1.5). We

start by fixing a finite subquiver Q ⊂ K̃(m), the infinite m-regular graph
with an orientation. We denote by Q0 the set of vertices and by Q1 the set
of arrows. The lattice of dimension vectors of Q is generated by the vertices.
We label the sinks by i1, . . . , is, the sources by is+1, . . . , is+S (so there are s
sinks and S sources). Notice that in particular Q has no oriented (or indeed
unoriented) cycles, so we can follow Reineke’s convention and fix an order
such that ik → il ⇒ k > l. For our purposes we also need that the order is
minimal, in the sense that for k = 1, . . . , s the sinks mapping to ik have the
smallest possible labels.
We denote by e(•, •) the Euler form of Q. The skew-symmetrised Euler

form 〈ik, il〉 (the DSZ product in this context) equals 0 or ±1 (a possible
source of confusion is that this is usually denoted by {•, •} in Reineke’s
notation, while 〈•, •〉 denotes the Euler form which is not skew-symmetric

in general). Recall that a representation of Q ⊂ K̃(m) (the infinite oriented
m-regular graph) plus an admissible (equivalence class of) colouring of the
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arrows by {1, . . . , m} gives back a unique representation for K(m) (this

would not be true for K̂(m), because of possible unoriented closed cycles,

e.g. for the hexagonal quiver K̂(3)).
There is a Poisson algebra modelled on Q,

B = (C[[xk]]k=1,...,s+S, 〈•, •〉),

with Poisson bracket generated by 〈xk, xl〉 = 〈ik, il〉xkxl. For any dimension
vector d ∈ NQ0 the Kontsevich-Soibelman Poisson automorphism Td ∈
Aut(B) (a version of the operators appearing in [KS] Section 1.4) is defined
by

Td(xk) = xk(1 + xd)〈d,ik〉.

The slope of dimension vectors is induced from K(m), namely

µ(d) =

∑
k>s dk∑
k dk

. (2.1)

The set of dimension vectors with slope µ forms a subsemigroup (NQ0)µ ⊂
NQ0. A dimension vector d has a reduction d ∈ NK(m)0 ∼= N×N given by

d =
(∑

i>s

di,
∑

i≤s

di
)
.

The fundamental object for us is the Poisson automorphism of B given by

Ti1 ◦ Ti2 · · · ◦ Tis ◦ Tis+1
◦ · · · ◦ Tis+S

. (2.2)

By the general theory this can be written as a product of Poisson automor-
phisms attached to each rational nonegative slope,

∏←
µ θQ,µ. The symbol←

means we are writing factors in this product in the descending slope order
from left to right.
Reineke’s theorem ([Re] Theorem 2.1) expresses θQ,µ in terms of the Euler

characteristics of moduli spaces of stable framed representations of Q:

θQ,µ(xj) = xj

∏

i∈Q0

(θQ,µ,i)
〈i,j〉, (2.3)

where

θQ,µ,i =
∑

d∈(NQ0)µ

χ(MQ,i(d)) x
d (2.4)

andMQ,i(d) is the moduli space of stable representations of Q (with respect
to the choice of slope (2.1)) with a 1-dimensional framing at i ∈ Q0.
What is missing is how to write the slope ordered product

∏←
µ θQ,µ in

terms of curves. To see how curves enter the picture we will try to factor
the product (2.2) in the opposite slope order, by naively sorting one element
at a time through the ordered product.
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Remark. The reason why the procedure we now describe converges to the
correct ordered product factorisation

∏←
µ θQ,µ is that it can be seen as a

sequence of Kontsevich-Soibelman wall-crossings converging to the single
wall-crossing from the central charge for Z− induced from (0, 1) to the one
of interest, Z+, induced from (1, 0).

2.2. The standard Kronecker quiver. To illustrate the point we focus
on the simplest example, the localisation quiver Q for K(2) given by

i1

i3

??�������

��>
>>

>>
>>

i2

(notice that K̂(m) = K̃(m) if and only if m = 2). Its contribution to
the generating function for B-framed Euler characteristics of K(2) with
dimension vector proportional to (1, 2) is xy2. Of courseM

K̂(2)
(1, 2) is just

a point, so χ(M
K̂(2)

(1, 2)) = 1. On the other hand let us consider the

product Ti1 ◦ Ti2 ◦ Ti3 . The first step, sorting Ti2 , gives

Ti1Ti2Ti3 = Ti1Ti3 [Ti2 , Ti,3]Ti2 ,

It is easy to compute such commutators.

Lemma 2.5. If 〈d, e〉 = 0 then [Td, Te] = 0; and if 〈d, e〉 = 1 then [Td, Te] =
Td+e.

Proof. Both equalities can be checked by direct computation, the second is
the “pentagon identity” [KS] Section 1.4. �

So we can continue to sort, finding

Ti1Ti2Ti3 = Ti1Ti3Ti2+i3Ti2

= Ti3Ti1+i3Ti1Ti2+i3Ti2

= Ti3Ti1+i3Ti2+i3Ti1+i2+i3Ti1Ti2 . (2.6)

Thus the unique full dimension vector here is i1 + i2 + i3. We picture the
sorting process by the tree
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Ti2

""EEE
EEE

EE
Ti3

yyssssssssss

Ti2+i3

%%KKKKKKKKK
Ti1

zzvvvvvvvvv

Ti1+i2+i3

With this tree we can associate a tropical curve in R2 (pictured on the right
hand side of Figure 2), with legs labelled by i1, i2, i3; this produces a weight
function f modelled on [GPS] Lemma 1.9 (the precise definition will be
given in the next section), easily computed as f = 1 + x1x2x3.

In general for d ∈ NQ0 and f = 1 + p(x), p(x) ∈ xdC[[xd]], we write θd,f
for the Poisson automorphism given by

θd,f (xi) = xif(x
d)〈i,d〉. (2.7)

The Poisson automorphisms θQ,µ can be computed alternatively as a com-
position of θd,f . In our special case comparing with Reineke’s theorem gives

θQ, 1
3
,i3

= θi1+i2+i3,1+x1x2x3
.

The more general functions f have a reduction f by the change of vari-
ables

x1 7→ y, . . . , xs 7→ y; xs+1 7→ x, . . . xs+S 7→ x. (2.8)

This reduction f determines the contribution to framed Euler characteristics
of K(2). We wish to compute f − 1 for the various functions f arising from

diagrams in K̃(2). For our current example (2.2) this is simple, we get the
same as the contribution of the unique point in quiver moduli, xy2, so the
basic picture becomes Figure 2.
Let us work out more examples form = 2. The only semistable dimension

vectors are multiples of (k, k+1) or (k+1, k). Let us focus on (k, k+1). The
moduli of B-framed representations is Pk−1. We have contributions given

by all torus fixed framings of the unique stable representation of K̂(2) of
dimension vector (k, k + 1), corresponding to the weight function attached
to a single tropical curve with k+1 vertical legs and k horizontal legs. This
weight function is computed as above using the DSZ product on NQ0, with
a formula modelled on [GPS] Lemma 1.9. As an example the dimension
vector i1 + i2 + i3 + i4 + i5 corresponds to the sorting diagram
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1 1

1

1

1 2

1

1

Figure 2. From a framed representation to a tropical curve.

Ti2

��

Ti4

wwpppppppppppp

Ti1

��

Ti2+i4

wwoooooooooooo
Ti3

��

Ti5

||yy
yy

yyy
y

Ti1+i2+i4

''OOOOOOOOOOOO
Ti3+i5

wwppppppppppp

Ti1+i2+i3+i4+i5

which maps to the tropical curve depicted in Figure 3. In general, for the
dimension vector

d = i1 + · · ·+ is + is+1 + . . . iS

(d̄ = (k, k+1)), the tropical curve we find is given by adjoining to the curve
for (k − 1, k) the elementary curve “W” depicted in Figure 4.
Remark. The representations for d = i1 + · · · + is + is+1 + . . . iS can be
obtained by gluing copies of d′ = i1+ i2+ i3 using Weist’s construction [We]
Corollary 5.28. The analogue of this for curves is adjoining the elementary
curve “W” as done in Figure 3.

The weight function is given by 1 +
∏2k+1

l=1 xl. For k + 2 ≤ r ≤ 2k + 1 we
have

θQ, k
2k+1

,ir
= θ∑2k+1

l=1
il,1+

∏2k+1

l=1
xl
,

so the total contribution to framed Euler characteristics ofK(2) is k(f−1) =
kxkyk+1 as expected.
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3

1

1

1

1 1

1

1

1

1

1

2

Figure 3. From a framed representation to a tropical curve,
a more complicated example (“dyon”).

Figure 4. Elementary tropical curve (“W”).

Next, suppose we wish to compute the tropical curve of the representation

of K̂(2) given by k sources and k + 1 sinks, with dimension vector

d = i1 + 2i2 + · · ·+ 2is−1 + is + is+1 + 2is+2 + · · ·+ 2iS−1 + iS

with reduction d̄ = 2(k − 1, k) (so these contribute to the higher order
corrections to the generating funtion for B-framed Euler characteristics of
K(2)). Notice that the moduli space of representations framed at one of
the sources with dimension 2 is just a point (the other framings are empty).
This is the first case in which we find a disconnected tropical curve as a
result (i.e. a map from a disconnected tree). It is simply the union of the
tropical curves for the isolated fixed points of dimension vectors

d′ = i1 + · · ·+ is−1 + is+1 + · · ·+ iS−1
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and
d′′ = i2 + · · ·+ is + is+2 + · · ·+ iS.

(see Figure 5 for the curve corresponding to i1+2i2+2i3+ i4+ i5+2i6+ i7).
The weight function is given by

f = (1 + x1 · · ·xs−1xs+1 · · ·xS−1)(1 + x2 · · ·xsxs+2 · · ·xS);

its contribution is therefore (k − 2)x2k−2y2k, which is the same as that of
the (framings of the) given representation.
We only get disconnected curves when superimposing representations of

the same slope, so the outgoing rays will always be parallel.

Figure 5. Disconnected tropical curves (with paralled out-
going rays) may arise.

In general, following the procedure described above one can construct
a (possibly disconnected) tropical curve starting with a representation of

K̂(2).

The reason why things work well for the standard Kronecker quiver is

that here the localisation quivers, i.e. finite subquivers of K̂(2), have a
finite spectrum, that is only finitely many stable dimension vectors. To

see this notice that in the quadric 1 − e(d, d) on NK̂(m)0 (which gives the
dimension of the space of semistable representations) the quadratic term
e(d, d) is always positive definite for m = 2. It follows that in sorting the

product (2.2) for a subquiver of K̂(2) the only possible values for the DSZ
product 〈•, •〉 are 0 and 1, since all other possible DSZ products would con-
tribute an infinite spectrum (see [KS] Section 1.4).

We are not so lucky for m ≥ 3. This is related to the appearence of a
dense component in the spectrum for products Tm

1,0 ◦ T
m
0,1 for m ≥ 3 (see
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e.g. [GP] Figure 1.3). From our current point of view the problem is that

in sorting the product (2.2) for a finite subquiver of K̃(m) for m ≥ 3 we
may first hit a DSZ product with value −1 at some point. Now 〈•, •〉 = −1
contributes an infinite spectrum, with first few terms

T0,1 ◦ T1,0 =

→∏

a,b

T
Ω(a,b)
a,b

≈ T1,0 ◦ T
−1
3,1 ◦ T2,1 ◦ T

2
3,2 ◦ T

−1
1,1 ◦ T

−2
2,2 ◦ T

2
2,3 ◦ T1,2 ◦ T

−1
1,3 ◦ T0,1,

(notice that a closed formula for the 〈•, •〉 = −1 spectrum is unknown at
present).

For a concrete example we look at the subquiver of K̃(3) given by

i5 //

��>
>>

>>
>>

i1

i2 i7oo

��
i6

??�������
// i3 i4

One can check that its quadratic form e(d, d) is only semidefinite, annihi-
lated by i1 + 3i2 + i3 + i4 + 2i5 + 2i6 + 2i7, so the spectrum can be infinite.
This is actually the case: in the sorting tree for the product (2.2) we find

after a few iterations a tree containing the segment

...

Ti1+i2+i5

''OOOOOOOOOOOO
Ti3+i6

wwppppppppppp

Ti1+i2+i3+i5+i6

&&NNNNNNNNNNN
Ti1+2i2+i3+i5+i6+i7

wwnnnnnnnnnnnnn

[•, •]

(the commutator of the last two leaves), and we have

〈i1 + i2 + i3 + i5 + i6, i1 + 2i2 + i3 + i5 + i6 + i7〉 = −1.

To remedy this we have to apply the factorisation-deformation technique
developed in [GPS] Section 1.4. Doing so however we lose the neat way of
constructing a tropical curve from a framed representation which we had
for m = 2; now each representation will contribute a whole spectrum of
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tropical curves, and what we can actually do is finding the contribution of
a given localisation quiver Q.

2.3. Factorisation/deformation. Thus for a fixed k ≥ 1 we consider the
product (2.2) over the ring

Rk = C[[t1, . . . , ts, ts+1, . . . , ts+S]]/(t
k+1
1 , . . . , tk+1

s , tk+1
s+1 , . . . , t

k+1
s+S),

in other words we redefine

Td(xi) = xi(1 + td xd)〈d,i〉

and work modulo (tk+1
1 , . . . , tk+1

s , tk+1
s+1 , . . . , t

k+1
s+S). Next we separate variables,

passing to a version of (2.2) which plays the same role as the “standard
scattering diagrams” of [GPS] Definition 1.10. Essentially we need to work
over a ring in which the first order approximation

Td ◦ Te ≈ Te ◦ T
〈d,e〉
d+e ◦ Te

becomes exact. Following the case of standard scattering diagrams treated
in [GPS] this is achieved by considering the ring

R̃k = C[{uij, 1 ≤ i ≤ s+ S, 1 ≤ j ≤ k}]/(u2
ij, 1 ≤ i ≤ s+ S, 1 ≤ j ≤ k).

Remark. When m ≥ 3 we always need to specify an admissible colouring
c (up to natural symmetry) in order to identify a representation of Q with
one of K(m). So we should really have separate sets of variables ti,c and uij,c

for each (equivalence class of) colouring. We suppress this in the notation
throughout this section, but one must remember to sum up over all c in the
final formulae.

There is an inclusion Rk →֒ R̃k induced by

ti 7→
k∑

j=1

uij.

We now factor each of the operators Ti in (2.2) over R̃k. First we have the
identity in Rk,

log(1 + tixi) =

k∑

j=1

(−1)j−1

j
tjix

j
i .

Now in R̃k,

tji =
∑

J⊂{1,...,k},#J=j

j!
∏

l∈J

uil.
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Therefore

log(1 + tixi) =
k∑

j=1

∑

J⊂{1,...,k},#J=j

(−1)j−1(j − 1)!
∏

l∈J

uil x
j
i ,

and since the variables uil are 2-nilpotent,

1 + tixi = 1 +
( k∑

l=1

uil

)
xi

=

k∏

j=1

∏

J⊂{1,...,k},#J=j

(
1 + (−1)j−1(j − 1)!

∏

l∈J

uil x
j
i

)
.

This leads to the factorisation

Ti ≡
∏

J⊂{1,...,k}

Ti,J mod (tk+1
1 , . . . , tk+1

s+S), (2.9)

where Ti,J = θi,fi,J with

fi,J = 1 + (−1)(#J)!−1((#J)!− 1)!
∏

l∈J

uil x
(#J)!
i . (2.10)

Notice that [Ti,J , Ti,J ′] = 0 so
∏

J Ti,J is well defined.
More generally for any subset

I ⊂ {1, . . . , s+ S} × {1, . . . , k}

we introduce the notation

uI =
∏

(i,j)∈I

uij.

We need the following lemma, an analogue of [GPS] Lemma 1.9.

Lemma 2.11. Let d1, d2 be dimension vectors. Consider the weight func-

tions

f1 = 1 + c1t1 x
d1 ,

f2 = 1 + c2t2 x
d2

for c1, c2 ∈ C. Then over C[t1, t2]/(t21, t
2
2) we have

[θd1,f1 , θd2,f2] = θd1+d2,g

with

g = 1 + c1c2〈d1, d2〉t1t2 x
d1+d2 .
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Proof. We can make the following identifications

θd1,f1 = exp(c1t1 x
d1),

θd2,f2 = exp(c2t2 x
d2),

with group elements acting by conjugation (see [KS] Section 1.4). Using
that t1, t2 are 2-nilpotent we find

θd1,f1θd2,f2 = exp
(
c1t1 x

d1 +c2t2 x
d2 +

1

2
〈c1t1 x

d1 , c2t2 x
d2〉
)

= exp
(
c1t1 x

d1 +c2t2 x
d2 +

1

2
c1c2〈d1, d2〉t1t2 x

d1+d2
)

= exp
(
c1t1 x

d1 +c2t2 x
d2
)
exp

(1
2
c1c2〈d1, d2〉t1t2 x

d1+d2
)

Similarly,

θd2,f2θd1,f1 = exp
(
c1t1 x

d1 +c2t2 x
d2
)
exp

(
−

1

2
c1c2〈d1, d2〉t1t2 x

d1+d2
)

and the result follows. �

Corollary 2.12. Over the coefficient ring R̃k, consider the weight functions

f1 = 1 + c1uI1 x
d1 ,

f2 = 1 + c2uI2 x
d2

for ci, di as above. Then

[θd1,f1 , θd2,f2] = θd1+d2,g

with

g = 1 + c1c2〈d1, d2〉uI1∪I2 x
d1+d2 .

So we recast the product (2.2) over R̃k, or rather we introduce the se-
quence

S
0
k := {

∏

J1⊂{1,...,k}

Ti1,J1, . . . ,
∏

JS⊂{1,...,k}

TiS ,JS}, (2.13)

which we regard as a finite approximation to

S∞ := Ti1 ◦ Ti2 · · · ◦ Tis ◦ Tis+1
◦ · · · ◦ Tis+S

since over C[[ti]] we have limk→∞

∏
S

0
k = S∞.

Now parallel to the scattering diagrams D̃i
k, i ≥ 0 of [GPS] Section 1,

we have instead sorting diagrams Si
k, i ≥ 0. These are simply sequences of

group elements,
S

i
k = {σ

i
k,1, . . . , σ

i
k,li,k
}.

Let us describe the procedure for going from S
i−1
k to Si

k. The sequence
S

i−1
k contains on the left a certain segment of group elements of the same
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slope; we pick the rightmost of these (say σi
k,p) and keep commuting it past

elements to its right until we meet an element with smaller slope,

µ(σi
k,p) ≥ µ(σi

k,q).

The rule for commuting elements is given by Corollary 2.12, so each element
σi
k,l is of the form θdi

k,l
,f i

k,l
with

f i
k,l = 1 + cik,luIi

k,l
xd

i
k,l . (2.14)

Going from S
i−1
k to Si

k, all the new elements which appear have strictly
larger sets I ik,l. Since uI1∪I2 = 0 if I1 ∩ I2 6= ∅, we see that the Si

k stabilise
for i > (s+ S)k.
We now associate a weighted tree Γσ with each element σ ∈ Si

k. For this,
if σ arises as the commutator of σ1, σ2 ∈ S

i−1
k , we define

Parents(σ) = {σ1, σ2}.

We then have the recursive set-valued functions

Ancestors(σ) = {σ} ∪
⋃

σ′∈Parents(σ)

Ancestors(σ′)

and
Leaves(σ) = {σ′ ∈ Ancestors(σ) : σ′ ∈ S

0
k}.

If σ′ ∈ Ancestors(σ) \ ({σ} ∪Si
k), then σ′ is parent to a unique element of

Ancestors(σ); we denote this by Child(σ′). Now given σ ∈ Si
k, we define

the set of vertices

Γ[0]
σ = {Vσ′ : σ′ ∈ Ancestors(σ) and σ′ /∈ S

0
k},

and the set of edges

Γ[1]
σ = {Eσ′ : σ′ ∈ Ancestors(σ)}.

We define the vertices of Eσ′ as follows. If σ′ /∈ {σ} ∪Si
k and µ(σ′) 6= µ(σ)

then
∂(Eσ′) = {Vσ′ , VChild(σ′)};

if σ′ = σ or more generally µ(σ′) = µ(σ) then

∂(Eσ′) = {Vσ,+∞};

if σ′ ∈ S
0
k then

∂(Eσ′) = {VChild(σ′),−∞}.

Notice that if the slope of σ equals that of its parents σ1, σ2 then the resulting
graph Γσ is simply the disjoint union of Γσ1

and Γσ2
.

The weight of an edge is defined as follows: we know σ′ ∈ Ancestors(σ)
is a group element of the form θdi

k,l
,f i

k,l
with f i

k,l given in (2.14), and we set

wΓσ
(Eσ′) = ind(d̄ik,l). (2.15)
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We now go from the graph Γσ to a tropical curve hσ. For fixed Q and k,
we pick (2k− 1)s horizontal lines dyI,i and (2k − 1)S vertical lines dxJ,j in R2,
labelled by nonempty parts of {1, . . . , k} and elements ofQ0, i ∈ {i1, . . . , is},
j ∈ {is+1, . . . , iS}. We label both vertical and horizontal lines so that they
are ordered lexicographically with respect to the fixed admissible order of
Q0 (e.g. the horizontal line d

y

{1},i1
appears on top of all others, and the

vertical line dx{1,...,k},iS
appears to the right of all others). Once we fix this

choice, there is a unique equivalence class of parametrised tropical maps
from Γσ to R2 such that the leaves of Γσ are identified with the respective
half-lines inside the lines we picked. We denote this tropical curve by hσ.
So for fixed Q and k we get a well-defined class of tropical curves

SQ,k = {hσ : σ ∈ ∪iS
i
k, 0 ≤ i ≤ k(s+ S)}.

Notice that the elements of S0
k can be labelled by σ0

iJ for i ∈ Q0 and
J ⊂ {1, . . . , k}.

Recall that the multiplicity of a rational tropical curve h : Γ → R2 at a
trivalent vertex V is given by

MultV (h) = w1w2|m1 ∧m2|

for incoming primitive directions m1, m2 with weights w1, w2, and one de-
fines

Mult(h) =
∏

V

MultV (h).

We set

δij =
〈di, dj〉

|di ∧ dj|
. (2.16)

We define the multiplicity with respect to Q by

MultQ(hσ) =
1

2#{outgoing rays}−1
Mult(hσ)

∏

i,j

δij, (2.17)

where i, j range over all the parents in Γσ.
Thus the factor δij in MultQ(h) should be seen as the density of multi-

plicity at the vertex V where i, j intersect, as detected by the quiver Q. As
an example for the simple localisation quiver of K(2) appearing in Figure
2 we have δij = 1.
Notice that the tropical curves we constructed may have a number of

parallel outgoing rays. The factor 21−#{outgoing rays} comes from the factor 1
2

in the approximation

log(TdTe) = xd+xe+
1

2
〈d, e〉 xd+e + . . . (2.18)
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which becomes exact over R̃k.

By repeatedly using Corollary 2.12 we associate a weight function fσ with
a given curve hσ ∈ SQ,k,

fσ = 1 +MultQ(h)
∏

i,J

(
(−1)(#J)!−1

#J
((#J)!− 1)!

∏

l∈J

uil

)
xdout , (2.19)

where the sum is over all i ∈ Q0 and J ⊂ {1, . . . , k} for which σ0
iJ ∈

Leaves(σ), and

dout =
∑

i,J

(#J) · i.

Let ip̄ (for some 1 ≤ p̄ ≤ s) be a sink of Q with precisely one source
mapping to it, say ip (s + 1 ≤ p ≤ s + S), which we can move to our
reference point. Then in Reineke’s theorem we find

θµ(xp̄) = xp̄ · θ
−1
Q,µ,p(x).

In general, of course, not all sources of Q map to such a sink. What we
have to do in that case is increasing the parameter m to m + 1, adding
a single sink from our reference point. This entails introducing an extra
variable xp̄. We can then compute on this larger quiver, and recover the
result we need by setting xp̄ = 0 in the weight functions we get. Thus the
general case is only notationally heavier. Since we are mostly interested in
the large Q limit, we omit the details.

We can now run an argument very similar to [GPS] Theorem 2.8. First,

thanks to the exactness of the approximation 2.18 over R̃k, we have modulo
(tk+1

1 , . . . , tk+1
s , tk+1

s+1 , . . . , t
k+1
s+S)

θµ(xp̄) = xp̄ · f |t1,...,ts+S=1

with
log f =

∑

σ∈SQ,k(µ)

〈dout(σ), ip̄〉 log fσ

where SQ,k(µ) denotes the curves in SQ,k with µ(dout(σ)) = µ. Let us fix a
curve σ ∈ SQ,k(µ). We find a weight vector

w(σ) = (w1(σ), . . . ,ws+S(σ)),

wi = wi1(σ) + · · ·+ wil1(σ),

and pairwise disjoint sets

Jij(σ) ⊂ {1, . . . , k}, i = 1, . . . , s+ S; j = 1, . . . , li,
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with

#Jij = wij,

such that

h(Leaves(σ)) = {diJij(σ)wij (σ)
| i = 1, 2; j = 1, . . . , li}.

We can rewrite (2.19) in the form

log fσ = MultQ(σ)

s+S∏

i=1

li∏

j=1


(−1)wij−1

wij

(wij − 1)!
∏

r∈Jij

uir


 xw .

Summing over all curves σ which give rise to the same weight vector w and
the same sets Jij we find a contribution to log f given by

〈ip̄,w〉N
trop
Q (w)

s+S∏

i=1

li∏

j=1


(−1)wij−1

wij

(wij − 1)!
∏

r∈Jij

uir


 xw,

where N trop
Q (w) is the number of curves σ ∈ SQ,k with the same weight

vector w and the same sets Jij, counted with the multiplicity MultQ(σ).
The notation is justified since, using Corollary 2.12 and the definition of

the sets SQ,k in terms of sorting diagrams, one can check that the number
N trop

Q (w) only depends on #Jij (and so w), not the actual Jij.
Summing up over all Jij would then give

〈ip̄,w〉N
trop
Q (w)

s+S∏

i=1

li∏

j=1

(
(−1)wij−1

wij

(wij − 1)!

)
tw xw,

but one can show that this overcounts curves by a factor
∏

i,j wij!|Aut(w)|.
Comparing with Reineke’s theorem gives

log θQ,µ,p(x) =
∑

w|µ(w)=µ

〈ip̄,w〉
N trop

Q (w)

|Aut(w)|
Rw xw,

where the “ramification” correction of a weight vector is

Rw =

s+S∏

i=1

l1∏

j=1

(−1)wij−1

w2
ij

and its slope is

µ(w) = µ(w), w := (
∑

i>s

|wi|,
∑

i≤s

|wi|).
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It follows that the contribution of Q to the B-framed Euler characteristics
for K(m) coming from the source p can be written as

θQ,µ,p = exp


 ∑

w|µ(w)=µ

〈ip̄,w〉N
trop
Q (w)

|Aut(w)|
Rw xw


 . (2.20)
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