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1|1 PARALLEL TRANSPORT AND CONNECTIONS

FLORIN DUMITRESCU

Abstract. In [4] we defined a notion of parallel transport along super-
paths in a supermanifold coming from a vector bundle with connection
over the supermanifold. In this note, we show that the converse is also
true, at least when the base supermanifold is a manifold.
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1. Introduction and Statement of Result

Let E be a Z/2-graded vector bundle over a compact manifold M . We
consider a notion of parallel transport along superpaths in M , generalizing
the notion of reparametrization-invariant parallel transport along paths in
M , and show that it characterizes even (grading-preserving) connections
over M .

Such a problem is motivated by obtaining a characterization of supersym-
metric one-dimensional topological field theories (abbreviated TFTs) over a
manifold. This would extend the description of one-dimensional TFTs over
a space M as vector bundles with connection over M in [5]. The equivalence
between connections and usual parallel transport also appears in [3].

For a basic introduction to the theory of supermanifolds the standard
reference is Deligne and Morgan [2]. For a brief introduction see also [6] .
The notion of 1|1 parallel transport that we use here appears in [4].

1|1 parallel transport on E over M is defined by parallel transport along
(families of) paths R× S →M in our manifold M (S denotes an arbitrary
supermanifold), as lifts of ∂t, the standard vector field on R, as well as

parallel transport along (families of) superpaths R1|1 × S → M , as lifts of
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2 FLORIN DUMITRESCU

D = ∂θ + θ∂t, the standard odd vector field on R1|1, along with a compati-
bility relation of the parallel transports given by diagrams

R1|1 × S
c̄ //

q×id %%LLLLLLLLLL
M,

R× S

c

;;wwwwwwwww

so that a section s along c is ∂t-parallel if and only if s is D-parallel along c̄.
Note that a section s of c̄∗E is of the form s = s1 + θs2, with si ∈ Γ(c∗E),
and s is D-parallel iff s = s1 ∈ Γ(c∗E), with s1 a ∂t-parallel section.

The 1|1-parallel transport is compatible under gluing of (super)paths, is
the identity on constant (super)paths and is invariant under reparametriza-

tion. The last condition means (for superpaths) that if ϕ : R1|1 × S →

R1|1×S is a family of diffeomorphisms of R1|1, parametrized by S, that pre-
serve the distribution determined by the standard vector field D = ∂θ + θ∂t
on R1|1, then a section s ∈ Γ(R1|1 × S; c∗E) is parallel along the super-
path c if and only if sϕ is parallel along the superpath cϕ. Similarly,
reparametrization-invariance for paths means that the parallel transport
is invariant under precomposition by (families of) diffeomorphisms of the
parametrizing interval R (see Section 3 of [4] for more details).

Since parallel transport along superpaths is invariant under certain dif-
feomorphisms of R1|1, and parallel transport along paths is invariant under
diffeormorphisms of R, we should have a consistency check read-off in the
diagram:

R1|1 × S
ϕ̄ //

q

�� c̄ϕ̄

��

R1|1 × S

q

��c̄

��

R× S ϕ
//________

cϕ
$$IIIIIIIII

R× S.

c
zzuuuuuuuuu

M

Here q : R1|1 → R denotes the obvious projection map. Note that not every
family of diffeomorphisms of R1|1 descends to a family of diffeomorphisms of
R. For this to happen, the even part of the family ϕ̄ should be independent
of the odd variable θ.

The above notion of parallel transport can be word-for-word extended to
vector bundles over supermanifolds. In [4] we show that a connection on a
vector bundle over a supermanifold gives rise to such a parallel transport.
This paper is concerned with showing the equivalence of the two notions
when the base space is a manifold. This is enough if we are only interested
in describing 1|1-TFTs over a manifold. The case of a base space a super-
manifold can probably be easily attained by following the steps in the proof
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below as all the appearing ingredients make sense in the supercase. Our
main result is the following

Theorem 1.1. There is a 1-1 correspondence

{
1|1 parallel transport

on E over M

}

←→

{
Even connections
on E over M

}

.

In other words, if we define 1|1-TFTs over M by the above 1|1-parallel
transport over M , we can reformulate the theorem as

1|1-TFT(M) ∼=

{
Z/2-bundles with even connections

over M

}

,

where the left-hand side denotes the space of all 1|1-TFTs over the space M
(to avoid set-theoretic issues, we require that the field theories over points are
vector spaces in a fixed infinite dimensional vector space). For a definition of
topological field theories see [1], and for a general definition of field theories
see [7].

The proof will be the result of the equivalences expressed in the diagram
below.

{1|1 transport on E }
OO

Prop 2.1
��

oo Th 1.1 //________ {even connections on E }

{1|1 o.t. transport on π∗E } oo
Prop 4.1

// {o.t. connections on π∗E }.
��
Prop 3.1

OO

The bundle π∗E is the pull-back bundle of te bundle E via the map π :
ΠTM →M from the “odd” tangent bundle of M to M , which on functions
is the inclusion of functions on M , as 0-forms, into the space of differential
forms on M . The abbreviation o.t. stands for “odd-trivial” (see below).

2. Odd-trivial connections

Proposition 2.1. Let E be a Z/2-graded vector bundle over M . There is
a 1-1 correspondence

{
Grading-preserving connections

on E over M

}

←→

{
Odd-trivial connections

on π∗E over ΠTM

}

To motivate the definition of odd-trivial connections let us begin by stat-
ing the following lemma whose proof is clear.

Lemma 2.2. Let ∇̃ denote a connection on the pullback bundle π∗E over
ΠTM via the projection map π : ΠTM →M . Then

∇̃ = π∗∇,

for some connection ∇ on the bundle E over M if and only if

< ∇̃(π∗s), ιX >= 0 and < ∇̃(π∗s),LX >∈ π∗Γ(M ;E),
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for any s ∈ Γ(M ;E) a section of E and any X a vector field on M .

Here ιX is the contraction by the vector fieldX acting on Ω∗(M) = C∞(ΠTM),
interpreted as an odd derivation (i.e. vector field) on ΠTM . Similarly, LX
acts as a derivation in the direction of X on differential forms, and interprets
as an even vector field on ΠTM . The sharp bracket stands for the pairing
between 1-forms and vector fields on ΠTM .

Remark: The zero-equality above is not true for all odd vector fields on
ΠTM , for example we have

< ∇̃(π∗s), d >= π∗(∇s),

where d is the standard odd vector field on ΠTM , inducing the exterior
derivative d on differential forms. Let us call such connections on pullback
bundles π∗E → ΠTM odd-trivial connections.

The proof of Proposition 2.1 is now clear since the lemma is a mere
reformulation of the statement. From Lemma 2.2 immediately follows

Lemma 2.3. If ∇̃ is an odd-trivial connection, then ∇̃ is flat in the odd
directions, i.e.

[∇̃X , ∇̃Y ] = ∇̃[X,Y ],

for X,Y odd vector fields on ΠTM .

Proof. It is enough to check the relation for odd vector fields of the type ιX ,
where X is a vector field on M , since arbitrary odd vector fields on ΠTM
can be written as Ω∗(M)ev-combination of these.

�

3. Odd-trivial 1|1-parallel transport

We say that the 1|1-parallel transport on a bundle π∗E over ΠTM is
odd-trivial if the parallel transport along maps

ᾱX : R1|1 ×ΠTM → ΠTM,

given by the flow of vector fields (see Section 2.6 of [4]) of the form ιX on
ΠTM , where X is a vector field on M , is the identity on sections with initial
condition of the form π∗s ∈ Γ(π∗E), for s ∈ Γ(E). Recall (see [2]) that for
such odd vector fields ιX on ΠTM that square to zero, the flow is actually
determined by an R0|1-action on ΠTM , αιX : R0|1 × ΠTM → ΠTM and
the map ᾱX factors as below

R1|1 ×ΠTM
ᾱX //

p×id ((QQQQQQQQQQQQ
ΠTM,

R0|1 ×ΠTM

αιX

88ppppppppppp

where p : R1|1 → R0|1 is the obvious projection map. The identity require-
ment above makes sense since the pullback of the bundle π∗E via the map
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ᾱX is the bundle R1|1 × π∗E over R1|1 × ΠTM , since the bundle is the
pullback bundle of the bundle α∗

ιX
π∗E via the map p × 1, and the bundle

α∗
ιXπ

∗E is the pullback bundle of E via the map p0×π : R0|1×ΠTM →M ,

i.e. it is the bundle R0|1 × π∗E.
We should also require that for parallel transport along paths given by

the flows αX : R×M →M of even vector fields LX on ΠTM , coming from
vector fields X on M , we have that

pΠTM (αX ;π∗s ∈ Γ(π∗E)) ∈ (1× π)∗Γ(α∗
XE),

where the map αX : R ×M → M is the flow of the vector field X on M .
(We use the notation pN (c; s0) for parallel sections in the space N along the
(super)path c, determined by the initial condition s0.) Note that there is a
compatibility of the flows with the projection map π, as illustrated by the
diagram

R×ΠTM

1×π

��

αX // ΠTM

π
��

R×M αX

// M,

where the vertical maps are the obvious projections.

Proposition 3.1. There is a 1-1 correspondence

{
1|1 parallel transport

on E over M

}

←→

{
1|1 odd-trivial parallel transport

on π∗E over ΠTM

}

Proof. “←−” Denote by j : R0 → R1|1 the standard inclusion of a point in
R1|1, namely mapping to (0, 0) ∈ R1|1. Consider an arbitrary superpath c
in M as below

c∗E //

��

E //

��

π∗E

��
R1|1 × S c

// M
i

// ΠTM.

To define a 1|1 parallel transport in M , we need to specify for each such
superpath c in M a parallel section pM(c;h ⊗ s) along c, for each initial
condition

h⊗ s ∈ Γ(S, c∗0E) ∼= C∞(S)⊗ Γ(M,E),

where h ∈ C∞(S) and s ∈ Γ(M,E), and c0 = c ◦ j. Define

pM (c;h ⊗ s) := pΠTM (ic;h ⊗ s),

where i : M → ΠTM denotes the standard inclusion. Note that

c∗0E
∼= c∗0i

∗π∗E,

since πi = id. Let now ϕ : R1|1 × S → R1|1 × S denote a family of dif-
feomorphisms of R1|1 preserving the conformal structure (the distribution
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determined by the standard vector field D = ∂θ + θ∂t determining the stan-
dard metric structure on R1|1) and the point (0, 0). Then

pM (cϕ;h ⊗ s) = pΠTM(icϕ;h ⊗ s)

= pΠTM(ic;h ⊗ s) ◦ ϕ

= pM (c;h⊗ s) ◦ ϕ.

The second equality holds since the 1|1-parallel transport on ΠTM is in-
variant under reparametrization. This means that the 1|1-parallel transport
on M we constructed is invariant under reparametrization. Compatibility
under glueing of superpaths and the identity on constant superpaths are
obvious properties of the constructed parallel transport.

Similarly, for a (family of) path(s) c in M as below

c∗E //

��

E //

��

π∗E

��
R× S c

// M
i

// ΠTM,

we define pM (c;h ⊗ s) := pΠTM (ic;h ⊗ s), for h ⊗ s ∈ Γ(S, c∗0E) a section
along c0 : S → M . It is clear that the parallel transport along paths is
invariant under reparametrization and compatible under glueing of paths.

“−→” Given a superpath c in ΠTM as below

c∗π∗E //

��

π∗E //

��

E

��
R1|1 × S c

// ΠTM π
// M

we need to specify a parallel section pΠTM(c;h⊗ ω ⊗ s) along c with initial
condition

h⊗ ω ⊗ s ∈ Γ(S, c∗0π
∗E)

∼= C∞(S)⊗C∞(ΠTM) Γ(ΠTM,π∗E)

∼= C∞(S)⊗C∞(ΠTM) C
∞(ΠTM)⊗C∞(M) Γ(M,E),

where h ∈ C∞(S), ω ∈ C∞(ΠTM) ∼= Ω∗(M) and s ∈ Γ(M,E). We define
such a parallel section by

pΠTM (c;h⊗ ω ⊗ s) := pM(πc; c∗0(ω)h ⊗ s),

As before, we check that

pΠTM(cϕ;h ⊗ ω ⊗ s) = pM (πcϕ; c∗0(ω)h⊗ s)

= pM (πc; c∗0(ω)h⊗ s) ◦ ϕ

= pΠTM(c;h ⊗ ω ⊗ s) ◦ ϕ,
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for ϕ an arbitrary family of diffeomorphisms of R1|1 preserving the confor-
mal structure and the point (0, 0). The second equality holds since the 1|1-
parallel transport on M is invariant under reparametrization. This means
that the 1|1-parallel transport on ΠTM we constructed is invariant under
reparametrization. Compatibility under glueing of superpaths and the iden-
tity on constant superpaths are as before obvious. Parallel transport along
paths in ΠTM is dealt with in a similar manner.

We are left to check the odd-triviality of the 1|1 parallel transport. Let
ᾱX : R1|1×ΠTM → ΠTM the flow of the odd vector field ιX on ΠTM , for
X a vector field on M . Then

pΠTM (ᾱX ;π∗s ∈ Γ(π∗E)) = pM(πᾱX ;π∗s ∈ Γ(π∗E))

= ᾱ∗
Xπ∗s,

since the map ᾱX factors through αιX : R0|1 × ΠTM → ΠTM , and the
composition πᾱX is the uninteresting projection map.

Now, it is not hard to see that if we apply the construction “−→”and
then the construction “←−”, we obtain the identity. To see that the cor-
respondence in the Proposition is one-to-one, we are left to check that the
construction “←−” is injective. This is a consequence of the following dia-
gram

{1|1-odd trivial transport in ΠTM}
OO

Prop 4.1 (to be proven)
��

// {1|1-transport in M}

{ odd-trivial connections over ΠTM} oo // {even connections over M}

OO

as well as the diagram

{even connections over M} //

**UUUUUUUUUUUUUUUU
{1|1-transport in M}

uukkkkkkkkkkkkkkk

{1-transport in M}

being commutative. Now, observe that the lower right arrow map in the last
diagram is injective which implies that the right arrow map is injective. This
further implies, by looking back at the first diagram, the required injectivity.
We conclude that the two constructions are inverses of one another, and so
obtain the Proposition.

�

4. An odd-trivial equivalence

Proposition 4.1. There is a 1-1 correspondence

{
1|1 odd-trivial parallel transport

on π∗E over ΠTM

}

←→

{
Odd-trivial connections

on π∗E over ΠTM

}



8 FLORIN DUMITRESCU

One direction of the proof is clear: connections give rise to 1|1-parallel
transport and the odd-trivilaity of a connection implies the odd-triviality of
its parallel transport. In the other direction, we start off by lifting the action
of vector fields of the type LX and ιX on ΠTM , for X vector fields on M , to
actions on the total space of the bundle π∗E, which by differentiation gives
us a compatible (under summation and function multiplication of vector
fields) family of derivations, i.e. a connection on π∗E. In order to lift such
actions we make some preliminary remarks on flows of vector fields- see
Subsection 4.1, and then combine the even-odd rules of Subsection 4.2 to
obtain the algebraic properties of a connection.

4.1. Remarks on flows of vector fields. In this subsection we find a
Trotter type formula relating the flow of the sum of two vector fields X and
Y , in terms of the flows of X and Y , as well as a relation between the flow of
X and the flow of fX, for f a function on the manifold. There is a definite
advantage to express geometrically these algebraic operations from a field
theoretic perspective.

Proposition 4.2. Let X and Y be vector fields on M , and let α, β : R ×
M → M denote the flows determined by X, respectively Y . Then the flow
γ of the vector field X + Y is given by

γt(x) = lim
n→∞

(α t
n
β t

n
) ◦ . . . ◦ (α t

n
β t

n
)

︸ ︷︷ ︸

n

(x).

Proof. Let us begin with a calculation:

d

dt

∣
∣
∣
t=0

(αt ◦ βt)(x) =
d

dt

∣
∣
∣
t=0

α(t, β(t, x))

=
∂

∂t

∣
∣
∣
t=0

α(t, x) +
n∑

i=1

∂α

∂xi
(0, x)

∂

∂t

∣
∣
∣
t=0

βi(t, x)

= (X + Y )(x).

By a similar calculation, we have

d

dt

∣
∣
∣
t=0

(α t
2

β t
2

) ◦ (α t
2

β t
2

)(x) = (X + Y )(x),

and more generally

d

dt

∣
∣
∣
t=0

(α t
n
β t

n
) ◦ . . . ◦ (α t

n
β t

n
)

︸ ︷︷ ︸

n

(x) = (X + Y )(x),

for any n. Next, we will show the group property for the family {γt}. To

simplify notation, denote f ◦ . . . ◦ f
︸ ︷︷ ︸

n

by f (n). We then have
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γ2t = lim
n→∞

(α2t/2nβ2t/2n)
(2n)

= lim
n→∞

(αt/nβt/n)
(n)(αt/nβt/n)

(n)

= γtγt.

By a similar calculation, we obtain γ3t = γtγtγt, and more generaly

γt = γ
(n)
t/n, for all n ≥ 1.

This implies that
γtγs = γt+s,

for all t, s rational numbers, and, by continuity, for all t, s real numbers.
Note that the limit in the statement of the proposition exists, as one can
check for example by a Taylor expansion in t, for a fixed x ∈M , and verifying
that the Taylor coefficients converge.

�

Remark 4.3. A word-for-word translation of the proof above shows that the
same result holds for X and Y even vector fields on a compact supermanifold
M .

Consider now X a vector field on a (compact) manifold M . This de-
termines an odd vector field ιX on ΠTM that squares to zero. Its flow is
reduced to a map α : R0|1 ×ΠTM → ΠTM given by

α∗ : Ω∗M → Ω∗M [θ] : ω 7→ ω + (ιXω)θ.

Lemma 4.4. Let X and Y be vector fields on M and ιX , ιY the correspond-
ing odd vector fields on ΠTM with flow maps R0|1×ΠTM → ΠTM denoted
by α and β. Then the flow γ of ιX + ιY is given by

γ : R0|1 ×ΠTM → ΠTM, γ = β ◦ (1× α) ◦ (∆× 1),

where ∆ : R0|1 → R0|1×R0|1 is the diagonal map. On S-points, this means

γ(θ, x) = β(θ, α(θ, x)).

Proof. We have to check that the following diagram commutes

R0|1 ×ΠTM
γ //

∆×1
��

ΠTM

R0|1 ×R0|1 ×ΠTM 1×α
// R0|1 ×ΠTM.

β

OO

This, on functions, translates into commutativity of the diagram

ω + ιXωθ + ιY ωθ ω�
γ∗

oo
_

β∗

��
ω + ιXωθ2 + (ιY ω + ιXιY ωθ2)θ1

_

θ1=θ2

OO

ω + ιY ωθ1.
�

α∗

oo
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�

Remark 4.5. The same proof shows that if X and Y are two odd vector
fields on a supermanifold that square to zero and their Lie bracket [X,Y ] is
also zero, then the sum X+Y is an odd vector field that squares to zero and
its flow (an R0|1-action) is the composition of the flows of X and Y .

Lemma 4.6. Let α : R ×M → M be the flow of a vector field X on the
compact manifold M . If f is a positive function on M then the flow of fX
is given by

β : R×M →M : (t, x) 7→ α(s(t, x), x),

where s : R×M → R is the solution to







∂s
∂t (t, x) = f(α(s(t, x), x))

s(0, x) = 0, for all x.

The proof is a routine check.

Corollary 4.7. Let X and Y be vector fields on M . Then X and Y have
the same (directed) trajectories if and only if Y = fX, for some positive
function f on M .

Corollary 4.8. If Y = fX, for some positive function f on M , and c
is an integral curve of X then c ◦ ϕ is an integral curve of Y , for some
(orientation-preserving) diffeomorphism ϕ of R.

When M is a supermanifold, the situation is more involved. We still have
as before

Lemma 4.9. Let α : R×M →M be the flow of an even vector field X on
the compact supermanifold M . If f is a positive even function on M then
the flow of fX is given by

β : R×M →M : (t, x) 7→ α(s(t, x), x),

where s : R×M → R is the solution to







∂s
∂t (t, x) = f(α(s(t, x), x))

s(0, x) = 0, for all x.

Let now f be a positive even function and X be an odd vector field with
flow α : R1|1 ×M →M on the supermanifold M . Let ϕ : R1|1 ×M → R1|1

be a family of diffeomorphisms of R1|1 parametrized by M that preserves
the 1-dimensional distribution determined by the vector field D on R1|1 so
that

(D ⊗ 1) ◦ ϕ∗ = Mfα(ϕ×1)(1×∆) ◦ ϕ
∗ ◦D.

Here fα(ϕ× 1)(1×∆) : R1|1×M → R1|1 is an even function on R1|1×M ,
andMg denotes multiplication by the function g. Then we have the following



1|1 PARALLEL TRANSPORT AND CONNECTIONS 11

Lemma 4.10. The flow of the odd vector field fX is given by the map

β : R1|1 ×M →M, β = α(ϕ× 1)(1 ×∆),

or, on S-points,
β(t, θ, x) = α(ϕ(t, θ, x), x).

Proof. This is just a calculation. We have to check that

(D ⊗ 1) ◦ β∗ = β∗ ◦ fX.

Now

LHS = (D ⊗ 1) ◦ (1⊗∆∗) ◦ (ϕ∗ ⊗ 1) ◦ α∗

= (1 ⊗∆∗) ◦ (D ⊗ 1⊗ 1) ◦ (ϕ∗ ⊗ 1) ◦ α∗

= (1 ⊗∆∗) ◦ ((D ⊗ 1) ◦ ϕ∗)⊗ 1 ◦ α∗

= (1 ⊗∆∗) ◦ (Mfα(ϕ×1)(1×∆) ◦ ϕ
∗ ◦D)⊗ 1 ◦ α∗

= Mfα(ϕ×1)(1×∆) ◦ (1⊗∆∗) ◦ ((ϕ∗ ◦D)⊗ 1) ◦ α∗.

In the fourth equality we used the defining property of the family ϕ of
diffeomorphisms of R1|1. On the other hand,

RHS = (1⊗∆∗) ◦ (ϕ∗ ⊗ 1) ◦ α∗ ◦ fX

= Mfα(ϕ×1)(1×∆) ◦ ((1⊗∆∗) ◦ (ϕ∗ ⊗ 1) ◦ α∗ ◦X)

= Mfα(ϕ×1)(1×∆) ◦ ((1⊗∆∗) ◦ (ϕ∗ ⊗ 1) ◦ (D ⊗ 1) ◦ α∗)

= Mfα(ϕ×1)(1×∆) ◦ ((1⊗∆∗) ◦ ((ϕ∗ ◦D)⊗ 1) ◦ α∗),

where in the third equality we used the fact that α is the flow of the vector
field X. The two expressions coincide, and this verifies the lemma.

�

4.2. Even-odd rules. Consider the following families of even vector fields
on ΠTM

ē = R < LX , X vector field on M >,

respectively odd vector fields on ΠTM

ō = R < ιX , X vector field on M > .

The following lemma is easy to check.

Lemma 4.11.

e · ō⊕ o · ē = X (ΠTM)odd

e · ē⊕ o · ō = X (ΠTM)ev,

where e and o denote even, respectively odd functions on ΠTM .

To define a connection on π∗E over ΠTM from an odd-trivial parallel
transport, we first define∇ē and∇ō, using the flows of these vector fields and
differentiating the parallel sections along these paths to obtain horizontal
lifts, along which we differentiate arbitrary sections. We then define

∇o·ō := o · ∇ō,
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∇o·ē := o · ∇ē.

It is not hard to check that

∇ē+ē = ∇ē +∇ē,

∇ō+ō = ∇ō +∇ō.

This is true since in both cases we can express the flow of the sum of two
vector fields in terms of the flows of each of the vector fields. If E and O
denote the even, respectively odd vector fields on ΠTM , we can check that

∇e·O = e · ∇O,

∇e·E = e · ∇E ,

using the Lemmas 4.9 and 4.12. We define

∇O+O := ∇O +∇O,

∇E+O := ∇E +∇O.

The first relation requires a consistency check. First, if
∑

ωjιXj
= 0, then

∇∑
ωjιXj

= 0,

since ∇∑
ωj ιXj

acts as the derivation
∑

ωjιXj
on Γ(ΠTM ;π∗E) = Ω∗(M)⊗

Γ(M ;E). Second, if
∑

ωjLXj
= 0,

then the Xj ’s are C
∞(M)-linearly dependent, and the two ways of defining

for example ∇LfX
= ∇fLX

, for f ∈ C∞(M), are consistent with each other.
We can summarize the above considerations in the following

Lemma 4.12. Consider the map

V ∈ X (ΠTM) 7−→ ∇V : Γ(ΠTM ;π∗E)→ Γ(ΠTM ;π∗E),

so that ∇ē and ∇ō are ē- respectively ō-derivations. Moreover, we require

∇e·ē = e · ∇ē, ∇e·ō = e · ∇ō, ∇ē+ē = ∇ē +∇ē, ∇ō+ō = ∇ō +∇ō.

Then ∇ defines a connection on π∗E over ΠTM .

We can now conclude the proof of Proposition 4.1 since an odd-trivial
parallel transport defines a map ∇ satisfying the conditions in the Lemma
4.12, so ∇ defines a connection on π∗E over ΠTM . This connection is
clearly odd-trivial. Let us remark that the Lie bracket of odd vector fields
lifts in a compatible way which is consistent with the fact that an odd-trivial
connection is flat in the odd directions. This also concludes the proof of our
Theorem 1.1, by putting together Propositions 2.1, 3.1 and 4.1.
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