Original Article

Self-reported hypersensitivity to exotic fruit in birch pollen-allergic patients

Nils E Eriksson,¹ Sonja Werner,² Tony Foucard,³ Christian Möller,⁴ Torsten Berg,⁵ Jaak Kiviloog,⁶ Kerstin Norrlind,⁷ Margareta Söderberg⁸ and Jan-Åke Wihl⁹

¹Lung & Allergy Clinic, County Hospital, Halmstad, ²Allergy Clinic, Heart and Lung Division, University Hospital, Lund, ³Department of Pediatrics, University Hospital, Uppsala, ⁴Department of Clinical Sciences, Pediatrics, Umeå, ⁸Lung and Allergy Clinic, Norrlands University Hospital, Umeå, ⁵Department of Pediatrics, Central Hospital, Västerås, ⁶Department of Lung Medicine, Örebro University Hospital, Örebro, ⁷Department of Medicine, Danderyd Hospital, Stockholm and ⁹Allergy Clinic, ENT Department University Hospital, Malmö, Sweden

ABSTRACT

Background: The majority of Swedish birch pollen (BP)-allergic patients report hypersensitivity to some fruits, nuts and vegetables. Some BP-allergic patients complain 'I can't tolerate any fruit'. The main aim of the present study was to answer the question, 'can BP-allergic patients tolerate some of the exotic fruit, not at present common in Sweden?'

Methods: Consecutive patients (n = 397) visiting the participating Allergy Clinics, who had a BP allergy and reported a food hypersensitivity, were asked to fill out questionnaires regarding 66 different fruits and vege-tables. Subjects had three alternatives as an answer to each of the food questions: (i) 'I tolerate it'; (ii) 'I get symptoms from it'; or (iii) 'I have not tried this food'. Skin prick tests were performed with pollen allergens.

Results: Most patients had experienced reactions to several foods; only 31 patients (8%) reported hypersensitivity to one food only. Some of the fruit had been tried by only a few patients. In addition to earlier wellknown BP-related foods, more than 40% of patients who had knowingly eaten Japanese pear and pomegranate said that they had experienced symptoms after eating the fruit. Most patients tolerated pineapple, melon, grapes and citrus fruits, as well as zucchini, lychee, rambutan, mangosteen, ugli, melon pear and cherimoya.

Conclusions: Although an allergy to fruit is common among BP-allergic patients, there are several widely available fruits that most patients tolerate; for instance, pineapple, melon, grapes and citrus fruit. Furthermore, there are many exotic fruits that most patients have not yet tried.

Key words: allergy, birch pollen, exotic fruit, food hypersensitivity, pollen-related food.

INTRODUCTION

The majority of Swedish birch pollen (BP)-allergic patients report a hypersensitivity against some fruits, nuts and vegetables.^{1,2} In pollen-related food hypersensitivity (FH), the symptoms are most often located in the mouth and the term 'oral allergy syndrome' (OAS) is used for these symptoms.³ *In vitro* studies have shown immuno-logical cross-reactions between BP and several of these foods. The major BP allergen Bet v 1, a 17 kDa protein, as well as a minor BP-allergen, the 14 kDa profilin, share common epitopes with proteins of similar size in various fruits and vegetables (for a review, see Caballero et al.⁴).

Some BP-allergic patients complain 'I don't tolerate any fruit'. The main aim of the present study was to determine whether BP-allergic patients are able to tolerate some of the exotic fruits, not so commonly eaten at present in Sweden.

Correspondence: Nils E Eriksson, Gaggegatan 17b, SE-302 37 Halmstad, Sweden. Email: nils.e@telia.com

Received 16 April 2003. Accepted for publication 15 July 2003.

Methods

Consecutive patients, having BP-allergic asthma or hay fever, attending the participating Allergy Clinics and reporting a FH, were asked to fill out questionnaires regarding 66 different fruits and vegetables. The foods listed were exotic fruits and vegetables available in Sweden, as well as some other foodstuffs known to be related to pollen allergy.^{1,2,5,6} The participants had to choose one of the following three alternatives as an answer to each of the foods: (i) 'I tolerate it'; (ii) 'I get symptoms from it'; or (iii) 'I don't know because I have not tried this food'. A booklet with photos showing the various exotic fruits was available as an aid. The specific allergic symptoms were not asked for.

A total of 397 patients (295 adults > 18 years of age and 102 children or adolescents 4–18 years old) were included in the study.

Skin prick tests (SPT) were performed in accordance with international recommendations⁷ using commercially available standardized BP, Timothy pollen and mugwort pollen extract with an activity of 10 histamine equivalent prick (HEP; Soluprick; ALK Abello, Hörsholm, Denmark). Histamine hydrochloride, 10 mg/mL, was used as a positive control. Test results were recorded in accordance with Nordic guidelines.⁸ Thus, a weal reaction the same size as that of the histamine reference was recorded as 3+. A weal with an area double that of a 3+ weal was recorded as 4+, whereas a weal that was double the size of a 4 + weal was recorded as 5 +. A weal half the size of a 3+ weal was recorded 2+ and a weal that was smaller than a 2+ weal but larger than the negative control was recorded 1+. Fourteen patients had a weak (1+) BP reaction only; 64 patients had a reaction graded as 2+, whereas 319 patients had a reaction graded as $\geq 3+$ to BP. Two hundred and seventy-four patients had positive reactions to Timothy pollen and 134 had positive reactions to mugwort pollen.

Statistics

SPSS statistical software (SPSS, Chicago, IL, USA) was used for statistical analysis. ANOVA was used for comparisons between groups. P < 0.05 was regarded as significant.

Ethics

The ethics committees in the participating centers approved the study.

RESULTS

Most patients had experienced reactions to several foods; 31 patients (8%) had reported hypersensitivity against one food only (Table 1). Nobody reported hypersensitivity against all foods listed. The mean (±SD) number of foods giving symptoms was 9.6 ± 7.2 . The number of foods giving symptoms was greater in adults and adolescents than in children (Table 2; P < 0.001). There was a non-significant (P = 0.07) tendency towards increasing number of foods giving symptoms with increasing size of the SPT with BP (Table 3). No relationship was

 Table 1
 Number of foods eliciting symptoms

No. foods	No. patients (%)
]	31 (7.8)
2	21 (5.3)
3	28 (7.1)
4	25 (6.3)
5	30 (7.6)
6–10	116 (29.2)
11–20	109 (27.4)
21–30	29 (7.3)
31–38	8 (2.0)

 Table 2
 Relationship between patient age and the number of foods eliciting symptoms

Age group (years)	No. patients	No. foods*
4-12	57	5.2 (4.2–6.3)
>18	45 295	9.5 (7.8–11) 10 (9.7–11)

*Data show the mean with 95% confidence intervals given in parentheses. P<0.001 for the difference between children and adolescents and between children and adults.

Table 3Relationship between results of the skin prick test withbirch pollen and the number of foods eliciting symptoms

SPT with birch pollen	No. patients	No. foods*
1+	14	5.6 (3.0-8.3)
2+	64	8.2 (6.8–9.7)
3+	212	9.8 (8.8–11)
4+	87	11 (9.2–13)
5+	18	11 (6.8–15)
6+	2	7 (0–76)

 $^{\ast}\textsc{Data}$ show the mean with 95% confidence intervals given in parentheses.

For the skin prick test (SPT) scores, a 3+ weal is the same size as that obtained with the histamine control (for details, see Methods).

seen between the number of foods giving symptoms and SPT results with Timothy or mugwort.

Some of the fruit in question had been tried by only a few patients. Fewer than 50% of patients had tried the fruits listed in Table 4.

Nuts, apple, pear, stone fruit and kiwi fruit were the fruits having the highest figures for 'Yes, I get symptoms' (Fig. 1). Among exotic fruits, in addition to kiwi fruit, Japanese pear, pomegranate, guava and tree tomato showed the highest proportion of 'Yes I get symptoms' responses (Table 5). Several fruits were tolerated by most patients who had tried the particular fruit (Fig. 2).

There were some differences between children and adults. Reactions to apricot, cherry, plum, potato peel and pear were more common in adults, whereas more children said that they did not tolerate peanuts (Table 6).

No significant correlation was seen between SPT results with Timothy or mugwort pollen and symptoms from any of the individual fruits and vegetables.

DISCUSSION

It should be kept in mind that the present study was based on admitted patients and, thus, it is possible that our material is not quite representative of all BP-allergic patients. However, the list of fruits and vegetables most frequently eliciting symptoms contains nuts, apple, pear and stone fruits, similar to earlier reports.^{1,2,5} Among exotic fruit, kiwi fruit is the one most often giving rise to symptoms. The considerable number of patients reporting symptoms to kiwi fruit obviously reflects the fact that kiwi fruit has become a more common Swedish everyday food. Radioallergosorbent test (RAST) inhibition studies have revealed cross-reacting antigens between BP and kiwi fruit.⁹ In vitro studies have also shown crossreactions between BP and lychee, mango, banana and orange, which are dependent on a 35 kDa protein.¹⁰

Fig. 1 Fruits and vegetables most often eliciting symptoms according to the patients' opinions. (\square) , patients who get symptoms after consuming the fruit or vegetable as a percentage of those who know; (\blacksquare) , patients who get symptoms after consuming the fruit or vegetable as a percentage of all subjects.

Table 4Fruits and vegetables that more than 50% of patientshad not eaten

Food	No. patients who have not eaten the food (%)
Salak	397 (100)
Sapodilla chicle	391 (98)
Pitaya	383 (96)
Passionfruit	380 (96)
Mangosteen	375 (94)
Okra	374 (94)
Horned melon	369 (93)
Melon pear	367 (92)
Durian	364 (92)
Guava	362 (91)
Indian fig	361 (91)
Japanese pear	360 (91)
Cherimoya	359 (90)
Rambutan	354 (89)
Tamarillo	347 (87)
Ugli	346 (87)
Pomelo	336 (85)
Kumquat	328 (83)
Ogen melon	327 (82)
Lychee	324 (82)
Kaki	285 (72)
Pomegranate	264 (66)
Cantaloupe	259 (65)
Cape gooseberry	258 (65)
Date	233 (59)
Papaya, pawpaw	231 (58)
Galia melon	213 (54)
Brazil nut	204 (51)

English name	Family	Latin name	No. patients who have eaten the food	ʻY n	es, I get symp % of those who know	toms' % of all
Chinese gooseberry, kiwi fruit	Actinidiaceae	Actinidia deliciosa	364	185	51	47
Mango	Anacardiaceae	Mangifera indica	237	49	21	12
Cherimoya/custard apple/ Jamaican apple	Annonaceae	Annona cherimola	38	4	11	1
Carrot	Apiaceae	Daucus carota	384	155	40	39
Celery or celeriac	Apiaceae	Apium graveolens	248	31	13	8
Parsnip	Apiaceae	Pastinaca sativa	237	16	7	4
Date	Arecaceae	Phoenix dactylifera	164	24	15	6
Salak	Arecaceae	Salacca edulis	0	0	0	0
Sunflower seed	Asteraceae	Helianthus annuus	266	28	11	7
Durian	Bombacaceae	Durio zibethinus	33	6	18	2
Pineapple	Bromeliaceae	Ananas comosus	354	51	14	13
Pitaya	Cactaceae	Hylocereus undatus	14	2	14	1
Indian fig	Cactaceae	Opuntia ficus-indica	36	5	14	1
Papaya, pawpaw	Caricaceae	Carica papaya	166	23	14	6
Mangosteen	Clusiaceae	Garcinia mangostana	22	2	9	1
Sweet potato	Convolvulaceae	Ipomoea batatas	229	12	5	3
Hazelnut	Corylaceae	Corylus avellana	350	292	83	74
Cantaloupe	Cucurbitaceae	Cucumis melo var. cantalupa	138	20	14	5
Galia melon	Cucurbitaceae	Cucumis melo cultivar	184	23	13	6
Honeydew melon	Cucurbitaceae	Cucumis melo cultivar	352	44	13	11
Horned melon	Cucurbitaceae	Cucumis metuliferus	28	6	21	2
Musk melon	Cucurbitaceae	Cucumis melo reticulatus	255	28	11	7
Ogen melon	Cucurbitaceae	Cucumis melo cultivar	70	10	14	3
Squash/zucchini	Cucurbitaceae	Cucurbita pepo cultivar	292	5	2	1
Watermelon	Cucurbitaceae	Citrullus lanatus	377	30	8	8
Kaki	Ebenaceae	Diospyros kaki	112	19	17	5
Peanut	Fabaceae	Arachis hypogaea	354	122	34	31
Walnut	Juglandaceae	Juglans regia	269	179	67	45
Avocado	Lauraceae	Persea americana	303	50	17	13
Brazil nut	Lecythidaceae	Bertholletia excelsa	193	130	67	33
Okra	Malvaceae	Hibiscus esculentus, Abelmoschus esculentus	23	4	17	1
Fig	Moraceae	Ficus carica	223	42	19	11
Banana	Musaceae	Musa × acuminata	392	65	17	16
Guava	Myrtaceae	Psidium guajava	35	10	29	3
Startruit/Carambola	Oxalidaceae	Averrhoa carambola	195	21	11	5
Poppy seed	Papaveraceae	Papaver somniterum	295	13	4	3
Passiontruit/yellow granadilla	Passifloraceae	Passitlora edulis t. flavicarpa	17	3	18	1
Purple granadilla	Passifloraceae	Passiflora edulis f. edulis	236	41	17	10
Pomegranate	Punicaceae	Punica granatum	133	55	41	14
Almond	Rosaceae	Prunus dulcis	358	213	59	54
Apple	Rosaceae	Malus domestica	393	302	77	76
Apricot	Rosaceae	Prunus armeniaca	286	85	30	21
Cherry	Rosaceae	Prunus avium	348	175	50	44
Japanese pear	Rosaceae	Pyrus pyrifolia var. culta	37	16	43	4
Nectarine	Rosaceae	Prunus persica var. nucipersica	341	160	47	40
Peach	Rosaceae	Prunus persica	359	210	58	53
Pear	Rosaceae	Pyrus communis	383	196	51	49
Plum	Rosaceae	Prunus domestica	359	157	44	40
Clementine	Rutaceae	Citrus × reticulata	380	55	14	14

T I I <i>C</i>	D /	1	1 1 1 1	1	rr .,		· ·	- 1	
lable 5	Patients	answers and	botanical	classification	of fruits of	and vegetables	included in	1 the	questionnaire

Table 5 cont.

English name	Family	Latin name	No. patients	'Yes, I get symptoms'		
			who have eaten the food	n	% of those who know	% of all
Grapefruit	Rutaceae	Citrus × paradisi	311	35	11	9
Kumquat	Rutaceae	Fortunella japonica	69	12	17	3
Lemon	Rutaceae	Citrus limon	368	21	6	5
Lime	Rutaceae	Citrus aurantii folia	244	13	5	3
Orange	Rutaceae	Citrus sinensis	383	84	22	21
Pomelo	Rutaceae	Citrus maxima	61	5	8	1
Satsuma	Rutaceae	Citrus reticulata cultivar unshiu	297	38	13	10
Ugli	Rutaceae	Citrus × reticulata	51	5	10	1
Lychee	Sapindaceae	Litchi chinensis	73	4	5	1
Rambutan	Sapindaceae	Nephelium lappaceum	43	3	7	1
Sapodilla chicle	Sapotaceae	Manilkara zapota	6	1	17	0
Cape gooseberry	Solanaceae	Physalis peruviana	139	21	15	5
Eggplant/aubergine	Solanaceae	Solanum melongena	232	10	4	3
Melon pear	Solanaceae	Solanum muricatum	30	3	10	1
Potato (peel)	Solanaceae	Solanum tuberosum	326	117	36	29
Tree tomato/tamarillo	Solanaceae	Solanum betaceum	50	11	22	3
Grape	Vitaceae	Vitis vinifera	380	68	18	17

 Table 6
 Differences between age groups regarding foods eliciting symptoms

	Children <13 years	Adolescents 13–18 years	Adults >18 years	Р
Peach	31	52	64	0.001
Pear	39	44	55	0.05
Cherry	15	42	57	0.001
Nectarine	29	39	51	0.05
Plum	16	43	49	0.001
Potato peel	12	30	41	0.001
Peanut	53	48	29	0.001
Apricot	7	21	34	0.01

Figures indicate percentages of patients in a particular group. P values refer to the significance of differences between children (<13 years) and adults.

Very few of these fruits were reported to elicit symptoms by BP-allergic patients in the present study. It was shown earlier that immunological cross-reactions, as indicated by results from *in vitro* tests, do not always have a clinical significance.¹¹ Such clinically irrelevant sensitization is very common with exotic fruits cross-reacting with latex.^{12,13} In contrast, clinical reactions to various exotic fruits have been reported (e.g. kiwi fruit, banana, melon, mango, passionfruit, pineapple, fig, grape, lychee, kaki, cherimoya, date, durian and tamarillo).^{13–19}

Reports of subjective FH are not equivalent to real FH. All diagnostic methods regarding FH have limitations. For example, IgE tests and SPT give many positive reactions despite negative double-blind placebo-controlled food challenge (DBPCFC),²⁰ as well as negative reactions despite positive challenges.^{20,21} It is considered that a definite diagnosis should be based upon a DBPCFC.²² It is difficult for practical reasons to perform DBPCFC with a large number of foods in hundreds of patients; a questionnaire is more practical. The diagnostic accuracy of the patient's history is very high for some fruits and nuts.²³ However, the answers to the questionnaires should be interpreted prudently, especially with regard to some of the foods whose names have similarities that may make some patients think that they are allergic to particular foods that they do, in fact, tolerate. Thus, patients may have confused Japanese pear with pear, and pomegranate (Swedish 'granat-apple') with apples. For that reason,

the high figures for symptoms in response to the consumption of Japanese pear and pomegranate should be regarded with caution and our results should be confirmed by controlled challenges.

It should be noted that self-reported hypersensitivity includes IgE-mediated reactions as well as reactions other than those mediated by IgE. Hypersensitivity reactions to oranges, identified by 84 patients in the present study, may, to some extent, be mediated by nonallergic mechanisms.

Some spices and vegetables belonging to the family Apiaceae (celery/celeriac, carrot, parsnip) have been

found to cross-react with BP.^{5,24,25} For this reason, we included these foods in our questionnaire, although they are not exotic. Of these vegetables, only carrot was a common offender among our patients. The absence of symptoms for celery/celeriac probably reflects the fact that some of these allergens are heat labile, so that BP-allergic patients tolerate them in cooked food,²⁵ and that raw celery is not often eaten in Sweden.

The number of foods causing allergy symptoms was higher in adults than in children. We did not ask patients about the duration of their hay fever. The study of Asero *et al.*²⁶ indicates that the proportion of BP-allergic patients with FH increases from 40% in patients having had hay fever for 1 year to a maximum of 85% in patients who have had hay fever for more than 15 years. Thus, the difference between children and adults in the present study may be related to differences in the duration of their BP sensitization.

Positive correlations have been shown between the degree of BP sensitization and the occurrence of FH.^{2,27} In the present study, where the inclusion criterion was the existence of a BP allergy and FH, a tendency was seen towards hypersensitivity against more foods with an increasing size of the BP skin test, although this was not statistically significant. Other studies have shown a relationship between the degree of BP sensitization and the number of foods giving symptoms.²

In conclusion, although allergy to fruit is common among BP-allergic patients, there are several commonly available fruits that most patients tolerate; for instance, pineapple, melon, grapes and citrus fruit. Furthermore, there are many exotic fruits that most patients have not tried. There is a need to expand our knowledge about these matters so that patients can be given proper advice as to which fruit may be eaten safely.

ACKNOWLEDGMENTS

Sven-Olov Strandhede (Department of Systematic Botany, Göteborgs Universitet, Göteborg, Sweden) revised the botanical names. This study was supported by the County of Halland, The Swedish Asthma and Allergy Association and The Cancer and Allergy Fund.

REFERENCES

- 1 Eriksson NE. Food sensitivity reported by patients with asthma and hay fever. A relationship between food sensitivity and birch pollen-allergy and between food sensitivity and acetylsalicylic acid intolerance. *Allergy* 1978; **33**: 189–96.
- Eriksson NE, Formgren H, Svenonius E. Food hypersensitivity in patients with pollen allergy. *Allergy* 1982; 37: 437–43.
- 3 Ortolani C, Ispano M, Pastorello E, Bigi A, Ansaloni R. The oral allergy syndrome. Ann. Allergy 1988; 61: 47–52.
- 4 Caballero T, Martin-Esteban M. Association between pollen hypersensitivity and edible vegetable allergy: A review. J. Invest. Allergol. Clin. Immunol. 1998; 8: 6–16.
- 5 Hannuksela M, Lahti A. Immediate reactions to fruits and vegetables. Contact Dermatitis 1977; **3**: 79–84.
- 6 Thiel C. Nahrungsmittelallergien bei Pollenallergikern (sogenannte pollenassoziierte Nahrungsmittelallergien)

[Food allergy in pollen allergic individuals (pollen associated food allergies)]. *Allergologie* 1988; **11**: 397–410.

- 7 Dreborg S, Backman A, Basomba A, Bousquet J, Dieges P, Malling H. Skin tests used in type I allergy testing. Position paper. Sub-Committee on Skin Tests of the European Academy of Allergology and Clinical Immunology. *Allergy* 1989; **44**: 1–59.
- 8 Aas K, Belin L. Standardization of diagnostic work in allergy. Int. Arch. Allergy Appl. Immunol. 1973; 45: 57–60.
- 9 Gall H, Kalveram KJ, Forck G, Sterry W. Kiwi fruit allergy: A new birch pollen-associated food allergy. J. Allergy Clin. Immunol. 1994; 94: 70–6.
- 10 Wellhausen A, Schoning B, Petersen A, Vieths S. IgE binding to a new cross-reactive structure: A 35 kDa protein in birch pollen, exotic fruit and other plant foods. *Z. Ernahrungswiss.* 1996; **35**: 348–55.
- 11 Bircher AJ, Van Melle G, Haller E, Curty B, Frei PC. IgE to food allergens are highly prevalent in patients allergic to pollens, with and without symptoms of food allergy. *Clin. Exp. Allergy* 1994; 24: 367–74.
- 12 Novembre E, Bernardini R, Brizzi I *et al.* The prevalence of latex allergy in children seen in a university hospital allergy clinic. *Allergy* 1997; **52**: 101–5.
- 13 Brehler R, Theissen U, Mohr C, Luger T. 'Latex-fruit syndrome': Frequency of cross-reacting IgE antibodies. Allergy 1997; 52: 404–10.
- 14 Olivieri J, Quiliquini-Chambard AM, Hauser C. Allergy to durian. *Allergy* 2002; **57**: 263.
- 15 Kelso JM, Jones RT, Yunginger JW. Anaphylaxis after initial ingestion of rambutan, a tropical fruit. J. Allergy Clin. Immunol. 1998; 102: 145–6.
- 16 Delbourg MF, Guilloux L, Moneret Vautrin DA, Ville G. Hypersensitivity to banana in latex-allergic patients. Identification of two major banana allergens of 33 and 37 kD. Ann. Allergy Asthma Immunol. 1996; **76**: 321–6.
- 17 Rodriguez A, Trujillo MJ, Matheu V, Baeza ML, Zapatero L, Martinez M. Allergy to grape: A case report. Pediatr. Allergy Immunol. 2001; 12: 289–90.
- 18 Sanchez-Guerrero IM, Escudero AI, Tortosa JA, Lombardero M. Anaphylaxis to cherimoya. Allergy 2000; 55: 976–7.
- 19 Gonzalo MA, Moneo I, Ventas P, Polo F, Garcia JM. Immediate hypersensitivity reaction to date. *Allergy* 1997; 52: 598–9.
- 20 Sampson HA, Ho DG. Relationship between foodspecific IgE concentrations and the risk of positive food challenges in children and adolescents. J. Allergy Clin. Immunol. 1997; **100**: 444–51.
- 21 Bengtsson U, Nilsson-Balknäs U, Hanson LA, Ahlstedt S. Double blind, placebo controlled food reactions do not correlate to IgE allergy in the diagnosis of staple food related gastrointestinal symptoms. *Gut* 1996; **39**: 130–5.
- 22 Bruijnzeel Koomen C, Ortolani C, Aas K et al. Adverse reactions to food. European Academy of Allergology and Clinical Immunology Subcommittee. Allergy 1995; 50: 623–35.

- 23 Anhoej C, Backer V, Nolte H. Diagnostic evaluation of grass- and birch-allergic patients with oral allergy syndrome. Allergy 2001; 56: 548–52.
- 24 Helbling A, Lopez M, Schwartz HJ, Lehrer SB. Reactivity of carrot-specific IgE antibodies with celery, apiaceous spices, and birch pollen. Ann. Allergy 1993; 70: 495–9.
- 25 Jankiewicz A, Aulepp H, Baltes W et al. Allergic sensitization to native and heated celery root in pollen-sensitive patients investigated by skin test and IgE binding. Int. Arch. Allergy Immunol. 1996; 111: 268–78.
- 26 Asero R, Massironi F, Velati C. Detection of prognostic factors for oral allergy syndrome in patients with birch pollen hypersensitivity. J. Allergy Clin. Immunol. 1996; 97: 611–16.
- 27 Fogle Hansson M, Bende M. The significance of hypersensitivity to nuts in patients with birch pollen allergy. *Allergy* 1993; **48**: 282–4.