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Abstract

The construction of creation operators of exact strings in eigenvectors of the eight vertex model at

elliptic roots of unity of the crossing parameter which allow the generation of the complete set of

degenerate eigenstates is based on the conjecture that the ’naive’ string operator vanishes. In this

note we present a proof of this conjecture. Furthermore we show that for chains of odd length the

string operator is either proportional to the symmetry operator S or vanishes depending on the precise

form of the crossing parameter.

1 Introduction

The eight-vertex model of Baxter is a lattice model whose transfer matrix is given by

T8(v)|µ,ν = TrW (µ1, ν1)W (µ2, ν2) · · ·W (µN , νN) (1)

where µj , νj = ±1 and W (µ, ν) is a 2× 2 matrix whose non vanishing elements are given as

W (+1,+1)|+1,+1 =W (−1,−1)|−1,−1 = ρΘ(2η)Θ(λ− η)H(λ+ η) = a(λ)

W (−1,−1)|+1,+1 =W (+1,+1)|−1,−1 = ρΘ(2η)H(λ− η)Θ(λ+ η) = b(λ)

W (−1,+1)|+1,−1 =W (+1,−1)|−1,+1 = ρH(2η)Θ(λ− η)Θ(λ + η) = c(λ)

W (+1,−1)|+1,−1 =W (−1,+1)|−1,+1 = ρH(2η)H(λ− η)H(λ+ η) = d(λ) (2)

where H(u) and Θ(u) are Jacobi’s Theta functions defined in appendix A. There are several paths leading
to its solution. All have been either developed or at least initiated by Baxter in a series of famous papers
[1]-[4]. The range of validity of the solutions depends on several parameters of the model: It turns out
to be essential whether the size N of the lattice is even or odd. Furthermore it is important whether
the crossing parameter is generic or restricted to elliptic ’root of unity’ values. For details see [1]-[4] and
[5]-[8]. We only mention that the TQ equation determines the eigenvalues of transfer matrix T for even
N and unrestricted crossing parameter η [2]. There exist well developed methods for the determination
of eigenvectors of T for even N and ’root of unity’ values of η

η = 2m1K/L+ im2K
′/L (3)
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See [4],[9],[10]. Concerning the problem to obtain eigenvectors at generic η information is given in [11],
footnote 18, in [9] after equ. (5.15) and in [10] on page 497. In the following we restrict the crossing
parameter η to elliptic roots of unity and for simplicity to the case m2 = 0. Like in the six vertex model
at root of unity the transfer matrix of the eight-vertex model and the Hamiltonian of the related XY Z
spin chain have numerous degenerate multiplets of eigenvalues. The symmetry algebra responsible for
the degeneracies is well understood in the six vertex model where it is the sl2 loop algebra [12]. The
problem to construct the operators which create the degenerate eigenvectors has been solved in the six
vertex model in [13]. This solves simultaneously the problem to construct the current of the sl2 loop
symmetry studied in [12]. The question arises if a similar construction is necessary in the eight vertex
model where the eigenvectors depend on free parameters s, t which have no influence on singlet states
but affect the degenerate states. Eigenvectors of the transfer matrix are given by [9]

ψk =
L−1
∑

l=0

exp(2πilk/L)
n
∏

m=1

Bl+m,l−m(λm, s, t)Ω
l−n
N (s) (4)

where λ1, · · · , λn are Bethe roots. Do eigenvectors obtained by variation of s and t span a complete
degenerate subspace? That the answer is no has been shown in [14]. To generate the full degenerate
multiplet a new string operator is needed: the creation operator of a complete B-strings is

BLs,1
l (λc) =

Ls
∑

j=1

Bl+1,l−1(λ1) · · ·

(

∂Bl+j,l−j

∂η
(λj)− Ẑj

∂Bl+j,l−j

∂λ
(λj)

)

· · ·Bl+Ls,l−Ls
(λLs

) (5)

where the arguments λk form an exact string of length Ls

λk = λc − 2(k − 1)η, k = 1, · · ·Ls (6)

λc is the string center.This is in addition to s and t a third free parameter.
Ẑ1(λc) is defined in appendix C.
This problem has also been studied in the framework of the Felder-Varchenko [10] formalism by Deguchi
[16].
We note that the string length Ls and the integer L occurring in (3) and (4) are related by the rule [14]

Ls = L for odd L, Ls = L/2 for even L (7)

We now turn to the precise topic of this paper. The construction of the string operator in [14] rests on
the conjecture that the ’naive’ string operator vanishes :

Bs = Bl+1,l−1(λ1) · · ·Bl+Ls,l−Ls
(λLs

) = 0 (8)

In the six vertex model the equivalent relation is (see [15])

B(λ1) · · ·B(λLs
) = 0 (9)

We intend to fill this gap by showing that (8) is satisfied for evenN in the eight vertex model. Furthermore
we find that for odd N Bs does NOT vanish but is given by a symmetry operator of the model. It is
proportional to

S = σ3 ⊗ σ3 ⊗ · · · ⊗ σ3 (10)

provided that 2Lsη is an odd multiple of 2K.If η is an even multiple of 2K Bs vanishes also for odd N .
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2 The formalism.

In the following we work in the framework of the algebraic Bethe ansatz for the eight vertex model by
Takhtadzhan and Faddeev [9] and use their notation. For convenience some of their basic tools are listed
in appendix B.
We shall study the action of operators of type

ON
j+1,l−1 = BN

j+1,l−1(λ1) · · ·B
N
j+Ls,l−Ls

(λLs
) (11)

on vectors denoted by ΩN . The arguments λk are defined in (6). The superscript N indicates the size of
the one dimensional system. This is needed because our result will be established recursively by relating
systems of sizes N and N − 1. ΩN is any element of the set of 2N independent basis vectors

ΩN = Zl1 ⊗ Zl2 ⊗ · · · ⊗ ZLN
(12)

where Zl stands for Xl(η) or Yl(η). Xk(λ) and Yk(λ) are defined in appendix B in equs. (104) and (105).
We note that in the algebraic Bethe-Ansatz [9] the eigenvectors of the transfer matrix are obtained by
the action of Bk,l operators on the system of generating vectors defined in [9] equ. (4.18) and (112).
The necessity to work in our case with more general basis vectors arises from the intention to prove the
operator relation (8). This set of basis vectors is described in detail in (44).
In order to demonstrate the formalism to be used transparently we display the string operator acting on
a basis element of the space of states as (in this example for a system of size N = 4).

Oj+1,l−1Ω
N =

Zl+2,σ1
Zl+1,σ2

Zl,σ3
Zl−1,σ4

m(λLs
)−1Ỹ ρ1

j+Ls
(λLs

) Lσ1,ρ2

δ1,ρ1
Lσ2,ρ3

δ2,ρ2
Lσ3,ρ4

δ3,ρ3
Lσ4,ρ5

δ4,ρ4
Yl−Ls,ρ5

(λLs
)

.......... .......... .......... .......... .......... ..........

m(λ2)
−1Ỹ ν1

j+2(λ2) Lγ1,ν2
β1,ν1

Lγ2,ν3
β2,ν2

Lγ3,ν4
β3,ν3

Lγ4,ν5
β4,ν4

Yl−2,ν5(λ2)

m(λ1)
−1Ỹ µ1

j+1(λ1) Lβ1,µ2

α1,µ1
Lβ2,µ3

α2,µ2
Lβ3,µ4

α3,µ3
Lβ4,µ5

α4,µ4
Yl−1,µ5

(λ1)

(13)

The L matrices appearing in the k th row (counted from the bottom) depend on λk. This is a detailed
representation of the expression defined in (11) acting on a state vector ΩN . A single row enclosed between
Ỹ and Y represents a B operator written explicitly in terms of local transition matrices as defined in
equ. (115). The leftmost operator in (11) appears in the lowest row, the basis vector ΩN in the top
row. Expression (13) can be either understood as row operators acting on the upper direct product of Zl

vectors or as column operators which act on the direct product of Yl vectors appearing in the rightmost
column. We prefer the second choice as it takes from the outset into account that the spectral parameters
λk form a complete string which leads to considerable simplifications. The local transition matrix L is
related to the R matrix by

Lβ,ν
α,µ(λ) = Rν,β

α,µ(λ, η) (14)

where α, β are quantum indices and µ, ν auxiliary indices in the terminology introduced in [9]. To apply
the method of intertwining vectors we rewrite (13) in terms of the R matrix R

Oj+1,l−1 =

Zl+2,σ1
Zl+1,σ2

Zl,σ3
Zl−1,σ4

m(λLs
)−1Ỹ ρ1

j+Ls
(λLs

) Rρ2,σ1

δ1,ρ1
Rρ3,σ2

δ2,ρ2
Rρ4,σ3

δ3,ρ3
Rρ5,σ4

δ4,ρ4
Yl−Ls,ρ5

(λLs
)

.......... .......... .......... .......... .......... ..........

m(λ2)
−1Ỹ ν1

j+2(λ2) Rν2,γ1

β1,ν1
Rν3,γ2

β2,ν2
Rν4,γ3

β3,ν3
Rν5,γ4

β4,ν4
Yl−2,ν5(λ2)

m(λ1)
−1Ỹ µ1

j+1(λ1) Rµ2,β1

α1,µ1
Rµ3,β2

α2,µ2
Rµ4,β3

α3,µ3
Rµ5,β4

α4,µ4
Yl−1,µ5

(λ1)

(15)

Note that the R matrices in the k-th row (counted from the bottom) depend on λk. For an application
of a similar technique see [18].
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3 Reduction of a column.

We derive a relation between ON
k,l and ON−1

k,l . To accomplish this we remove the last column of (15) by
making use of (126)-(137). Concentrating on this last column we find

Xl−Ls+1,σ

Rρ′,σ
τ,ρ Yl−Ls,ρ′(λLs

)
...

R
ν′

3
,ǫ

δ,ν3
Yl−k−1,ν′

3
(λk+1)

R
ν′

2
,δ

γ,ν2Yl−k,ν′

2
(λk)

R
ν′

1
,γ

β1,ν1
Yl−k+1,ν′

1
(λk−1)

...

Rµ′,β
α,µ Yl−1,µ′(λ1)

=

Ls
∑

k=1

fk

























Yl+1−Ls,ρ(λLs
)

...
Yl−k,ν3 (λk+1)
Xl+1−k,ν2(λk)
Yl−k,ν1 (λk−1)
...
Yl−2,µ(λ1)

























Yl−1,α(η)+f0X

























Yl+1−Ls,ρ(λLs
)

...
Yl−k,ν3 (λk+1)
Yl−k+1,ν2 (λk)
Yl−k+2,ν1 (λk−1)
...
Yl,µ(λ1)

























Xl+1,α(η)

(16)

We note that on the left hand side α is the only free quantum index, all the other from β to σ are
summed over whereas there are Ls free auxiliary indices from µ to ρ. This simplifies on account of the
intertwining relations (126)-(133) to the direct products on the right side here written as columns in order
to show clearly the origin of each factor Y . The coefficients fk, k = 0, · · ·Ls follow after repeated use of
(126)-(133), but we will obtain them more transparently from (16). To extract fm multiply (16) by

X̃l(λ1)⊗ X̃l−1(λ2)⊗ · · · Ỹl+1−m(λm) · · · ⊗ X̃l+1−L−1(λL) (17)

Note that all components are of type X̃ except Ỹl−1+m. Applying (108) and (109) we find

Xl−Ls+1,σ

X̃ρ
l+1−Ls

(λLs
) Rρ′,σ

τ,ρ Yl−Ls,ρ′(λLs
)

...

X̃ν3
l−m(λm+1) R

ν′

3
,ǫ

δ,ν3
Yl−k−1,ν′

3
(λk+1)

Ỹ ν2
l−m+1(λm) R

ν′

2
,δ

γ,ν2 Yl−k,ν′

2
(λk)

X̃ν1
l−m+2(λm−1) R

ν′

1
,γ

β1,ν1
Yl−k+1,ν′

1
(λk−1)

...

X̃µ
l (λ1) Rµ′,β

α,µ Yl−1,µ′(λ1)

= fm
∏m−2

r=0 (X̃l−r(λr+1)Yl−r−2(λr+1))

×
∏Ls

s=mm(λs)Yl−1,α(η)
(18)

The left hand side follows after repeated application of equs. (123)-(125) in appendix B.1. We find

Xl−Ls+1,σ

X̃ρ
l+1−Ls

(λLs
) Rρ′,σ

τ,ρ Yl−Ls,ρ′(λLs
)

...

X̃ν3
l−m(λm+1) R

ν′

3
,ǫ

δ,ν3
Yl−k−1,ν′

3
(λk+1)

Ỹ ν2
l−m+1(λm) R

ν′

2
,δ

γ,ν2 Yl−k,ν′

2
(λk)

X̃ν1
l−m+2(λm−1) R

ν′

1
,γ

β1,ν1
Yl−k+1,ν′

1
(λk−1)

...

X̃µ
l (λ1) Rµ′,β

α,µ Yl−1,µ′(λ1)

=
∏m−1

j=1 h(λj + η)
∏Ls

j=m+1 h(λj − η)

×
∏m−2

r=0 (X̃l−r(λr+1)Yl−r−2(λr+1))

×
∏Ls

s=1m(λs)Yl−1,α(η)

(19)

4



Result:

fk(l) = h(2η)
g(τl−k+1 + λk − η)

g(τl−k+1)

k−1
∏

j=1

h(λj + η)

Ls
∏

j=k+1

h(λj − η) (20)

f0X =

Ls
∏

j=1

h(λj − η) (21)

To proceed further we insert (16) into (15).

BN
j+1,l−1(λ1)B

N
j+2,l−2(λ2) · · ·B

N
l+Ls,l−Ls

(λLs
)ΩN =

Ls
∑

k=1

fkB
N−1
j+1,l−2(λ1) · · ·B

N−1
j+k−1,l−k(λk−1)A

N−1
j+k,l−k+1(λk)B

N−1
j+k+1,l−k(λk+1) · · ·B

N−1
j+Ls,l+1−Ls

(λLs
)ΩN−1 ⊗ Yl−1(η)

+f0XB
N−1
j+1,l(λ1)B

N−1
j+2,l−1(λ2) · · ·B

N−1
j+Ls,l−Ls+1(λLs

)ΩN−1 ⊗Xl+1(η)

(22)

We commute the operator A using relations (140) and (142) until it is positioned directly in front of Ω.

BN
j+1,l−1(λ1)B

N
j+2,l−2(λ2) · · ·B

N
l+Ls,l−Ls

(λLs
)ΩN =

{

Ls
∑

k=1

(−1)Ls−kfk

Ls−1
∏

m=k

βl−m(λm, λm+1)

}

BN−1
j+1,l−2(λ1) · · ·B

N−1
j+Ls−1,l−Ls

(λLs−1)A
N−1
j+Ls,l−Ls+1(λLs

)ΩN−1 ⊗ Yl−1(η) +

f0XB
N−1
j+1,l(λ1)B

N−1
j+2,l−1(λ2) · · ·B

N−1
j+Ls,l−Ls+1(λLs

)ΩN−1 ⊗Xl+1(η)

(23)

The observation that the expression in braces vanishes is fundamental to that what follows. This will
allow us to obtain our result recursively. So we prove that

F =

Ls
∑

k=1

(−1)Ls−kfk(l)

Ls−1
∏

m=k

βl−m(λm, λm+1) = 0. (24)

We obtain from (142) that

F = g(τl−Ls
)

Ls
∑

k=1

fk(l)

g(τl−k)
(25)

and after insertion of (20)

F = h(2η)g(τl−Ls
)

Ls
∑

k=1







k−1
∏

j=1

h(λj + η)







g(τl−k+1 + λk − η)

g(τl−k+1)g(τl−k)







Ls
∏

j=k+1

h(λj − η)







(26)

F

Ls−1
∏

r=0

g(τl−r) = h(2η)

Ls
∑

k=1

k−1
∏

j=1

h(λj+η)

Ls
∏

j=k+1

h(λj−η)

k−2
∏

j=0

h(τl−r)

L
∏

j=k+1

h(τl−r)h(τl−k+1+λk−η) (27)
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We now insert (6) to make use of the fact that the arguments λk form an exact string.

F

Ls−1
∏

r=0

g(τl−r) = h(2η)

Ls
∑

k=1

h(τl + λc − (4k − 3)η)× (28)







k−1
∏

j=1

h(λc − (2j − 3)η))













Ls
∏

j=k+1

h(λc − (2j − 1)η)













k−2
∏

j=0

h(τl − 2rη))













Ls
∏

j=k+1

h(τl − 2rη)







We write this as

F

Ls−1
∏

r=0

g(τl−r) =

Ls
∑

k=1

pk(λc) (29)

A close inspection reveals that if for example λ0 is a zero of p1(λc) then λ0 is also a zero of
∑Ls

k=2 pk(λc).
One finds that if λ0 is a zero of p1 all but two of the other pk have the same zero λ0 and that the remaining

two terms cancel for λc = λ0. Then
∑Ls

k=2
pk(λc)
p1(λc)

is doubly periodic and does not have poles. It follows

that it is a constant. It is easily shown that this constant is −1. This proves that

F = 0 (30)

The corresponding column acting on a Y -type vector is

Yl−Ls−1,σ

Rρ′,σ
τ,ρ Yl−Ls,ρ′(λLs

)
...

R
ν′

3
,ǫ

δ,ν3
Yl−k−1,ν′

3
(λk+1)

R
ν′

2
,δ

γ,ν2Yl−k,ν′

2
(λk)

R
ν′

1
,γ

β1,ν1
Yl−k+1,ν′

1
(λk−1)

...

Rµ′,β
α,µ Yl−1,µ′(λ1)

= f0Y

























Yl−1−Ls,ρ(λLs
)

...
Yl−k−2,ν3 (λk+1)
Yl−k−1,ν2 (λk)
Yl−k,ν1 (λk−1)
...
Yl−2,µ(λ1)

























Yl−1,α(η) (31)

f0Y =

Ls
∏

j=1

h(λj + η) (32)

We note that

Ls
∏

j=1

h(λj + η) = ±

Ls
∏

j=1

h(λj − η) (33)

where the minus sign holds if 2Lsη is an odd multiple of 2K and the plus sign if 2Lsη is a multiple of
4K. Because of (24) equ. (23) is considerably simplified:

BN
j+1,l−1(λ1)B

N
j+2,l−2(λ2) · · ·B

N
j+Ls,l−Ls

(λLs
)ΩN−1 ⊗Xl+1−Ls

(η) = (34)

f0XB
N−1
j+1,l(λ1)B

N−1
j+2,l−1(λ2) · · ·B

N−1
j+Ls,l−Ls+1(λLs

)ΩN−1 ⊗Xl+1,α(η)

(35)
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and from (31) follows directly

BN
j+1,l−1(λ1)B

N
j+2,l−2(λ2) · · ·B

N
j+Ls,l−Ls

(λLs
)ΩN−1 ⊗ Yl−1−Ls

(η) = (36)

f0YB
N−1
j+1,l−2(λ1)B

N−1
j+2,l−3(λ2) · · ·B

N−1
j+Ls,l−Ls−1(λLs

)ΩN−1 ⊗ Yl−1,α(η)

(37)

We have found that the string operator acting on a chain of length N is related to a string operator
acting on a chain of length N − 1. This happens because the first column on the right hand side of (16)
which would destroy this simple relationship does not contribute on account of (24).

4 The recursion process.

To continue we introduce a shorter notation. For a column headed by an X vector we write

CX(l) = R(λ1)
ν1β1

αµ1
R(λ2)

ν2β2

β1µ2
· · · R(λLs

)
νlβLs

βLs−1µLs
XlβLs

(η) (38)

and for a column headed by a Y vector

CY (l) = R(λ1)
ν1β1

αµ2
R(λ1)

ν2β2

β1µ2
· · ·R(λLs

)
νlβLs

βLs−1µLs

YlβLs
(η) (39)

The direct products of Y and X as occurring in (16) will be abbreviated by

VY (l) = Yl(λ1)⊗ Yl−1(λ2)⊗ · · · ⊗ Yl−Ls+1(λLs
) (40)

VY 1X(l, k) = Yl(λ1)⊗Yl−1(λ2)⊗· · ·⊗Yl+2−k(λk−1)⊗Xl+3−k(λk)⊗Yl+2−k(λk+1)⊗· · ·⊗Yl+3−Ls
(λLs

) (41)

where k marks the position of X . In this notation equs. (16) and (31) read

CX(l − Ls + 1)VY (l − 1) =

Ls
∑

k=1

fkVY 1X(l − 2, k)⊗ Yl−1(η) + f0XVY (l)⊗Xl+1(η) (42)

CY (l − Ls − 1)VY (l − 1) = f0Y VY (l − 2)⊗ Yl−1(η) (43)

We use the results obtained in the last section to study the action of B-strings on the set of vectors
described in (12). These states have the local structure

· · · ⊗Xl+1(η) ⊗Xl(η)⊗ · · · (44)

· · · ⊗ Yl−1(η)⊗Xl(η) ⊗ · · ·

· · · ⊗Xl+1(η) ⊗ Yl(η) ⊗ · · ·

· · · ⊗ Yl−1(η)⊗ Yl(η)⊗ · · ·

i.e. the indices of neighboring vectors differ by ±1 depending on their order as shown in (44). This rule
for the indices of consecutive X and Y guarantees that relation (127) is in all cases applicable. In a
system of length N these vectors span a linear space of dimension 2N . They are obviously closely related
to the family of vectors introduced by Baxter in [4] equ. (1.3). Then

(

Ls
∏

k=1

m(λk)

)

BN
l+1,l−1(λ1)B

N
l+2,l−2(λ2) · · ·B

N
l+Ls,l−Ls

(λLs
)ΩN = (45)

VỸ (l + 1)CZ1
(l1) · · · CZN−1

(lN−1)CX(l − Ls + 1)VY (l − 1)

7



if ΩN = ΩN−1 ⊗Xl+1−Ls
(η) and

(

Ls
∏

k=1

m(λk)

)

BN
l+1,l−1(λ1)B

N
l+2,l−2(λ2) · · ·B

N
l+Ls,l−Ls

(λLs
)ΩN = (46)

VỸ (l + 1)CZ1
(l1) · · · CZN−1

(lN−1)CY (l − Ls − 1)VY (l − 1)

if ΩN = ΩN−1 ⊗ Yl−1−Ls
(η)

We have shown (see equs. (23) and (24)) that equs. (42) and (43) if inserted into B-strings effectively
read

CX(l − Ls + 1)VY (l − 1) = f0XVY (l)⊗Xl+1(η) (47)

CY (l − Ls − 1)VY (l − 1) = f0Y VY (l − 2)⊗ Yl−1(η) (48)

where f0Y = ±f0X

4.1 The leftmost column.

The last step in the recursive determination is the treatment of the first column.
Case a:

If

ΩN = Xl+nx−ny−Ls
⊗ · · · ⊗Xl+1−Ls

or ΩN = Xl+nx−ny−Ls
⊗ · · · ⊗ Yl−1−Ls

(49)

the first column is

CX(l + nx − ny − Ls)VY (l + nx − ny − 2) (50)

Case b:

and if

ΩN = Yl+nx−ny−Ls
⊗ · · · ⊗Xl+1−Ls

or ΩN = Yl+nx−ny−Ls
⊗ · · · ⊗ Yl−1−Ls

(51)

the first column is

CY (l + nx − ny − Ls)VY (l + nx − ny) (52)

In (49) and (51) the gap between the leading and the trailing X or Y is filled with vectors having indices
according to the rule illustrated by (44).

4.1.1 Case a.

From (42) follows

VỸ (l + 1)CX(l + nx − ny − Ls)VY (l + nx − ny − 2) = (53)

Ls
∑

k=1

fk(l +M − 1)(VỸ (l + 1)VY 1X(l +M − 3, k))⊗ Yl+M−2(η)

+f0X(VỸ (l + 1)VY (l +M − 1))⊗Xl+M (η)
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where M = nx − ny

(VỸ (l + 1)VY 1X(l +M − 3, k)) = (54)
{

k−1
∏

m=1

Ỹl+m(λm)Yl+M−2−m(λm)

}

Ỹl+k(λm)Yl+M−k(λk)

{

Ls
∏

m=k+1

Ỹl+m(λm)Yl+M−m(λm)

}

This expression is most conveniently handled once we recognize that it is

(VỸ (l + 1)VY 1X(l +M − 3, k)) =

Ls
∏

k=1

m(λk) (55)

{

k−1
∏

m=1

B
(0)
l+m,l+M−2−m(λm)

}

A
(0)
l+k,l+M−k(λm)

{

Ls
∏

m=k+1

B
(0)
l+m,l+M−m(λm)

}

(56)

for a chain of length zero and that the permutation relations for A and B still hold in this case (see (144)
in Appendix B.3 ).

(VỸ (l + 1)VY 1X(l +M − 3, k)) =

Ls
∏

k=1

m(λk) (57)

(−1)Ls−k
Ls
∏

k+1

βl+M−m(λm−1, λm)

Ls−1
∏

m=1

B
(0)
l+m,l+M−2−m(λm)A

(0)
l+Ls,l+M−Ls

(λLs
) (58)

Insert βl+M−m(λm−1, λm) using (142)

(VỸ (l + 1)VY 1X(l +M − 3, k)) =

Ls
∏

k=1

m(λk) (59)

g(τl+M−Ls−1)

g(τl+M−k−1)

Ls−1
∏

m=1

B
(0)
l+m,l+M−2−m(λm)A

(0)
l+Ls,l+M−Ls

(λLs
) (60)

It follows for the first term on the right hand side of (54)

Ls
∑

k=1

fk(l +M − 1)(VỸ (l + 1)VY 1X(l +M − 3, k))⊗ Yl+M−2(η) =

Ls
∏

k=1

m(λk) (61)

Ls
∑

k=1

fk(l +M − 1)
g(τl+M−Ls−1)

g(τl+M−k−1)

Ls−1
∏

m=1

B
(0)
l+m,l+M−2−m(λm)A

(0)
l+Ls,l+M−Ls

(λLs
)

We have already shown that (see equ.(25))

Ls
∑

k=1

fk(l +M − 1)
g(τl+M−Ls−1)

g(τl+M−k−1)
= 0 (62)

Therefore equ. (54) is reduced to

VỸ (l+ 1)CX(l+ nx − ny − Ls)VY (l+ nx − ny − 2) = f0X(VỸ (l+ 1)VY (l+M − 1))⊗Xl+M (η) (63)
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We claim that for even N

(VỸ (l + 1)VY (l +M − 1)) =

Ls
∏

k=1

Ỹ µ
l+k(λk)Yl+M−k,µ(λk) = 0 (64)

The last expression vanishes if for some 1 ≤ k ≤ Ls

2kη = (M − k)2η + 4rK (65)

or

k =M/2 + r1Ls (66)

For even N also M is even and by appropriately adjusting r1 an integer k is found which satisfies (65).

4.1.2 Case b.

From (43) follows

VỸ (l + 1)CY (l +M − L)VY (l +M) =

f0Y (VỸ (l + 1)VY (l +M − 1))⊗ Yl+M (η) (67)

In the same manner as above we can show that this is zero if M is even.
This completes the proof of equation (8) for even N .

Bl+1,l−1(λ1) · · ·Bl+Ls,l−Ls
(λLs

) = 0 (68)

5 Chains of odd length.

We remark that in the algebraic Bethe Ansatz eigenvectors are obtained for even N . The eight vertex
model for chains of odd length N is nevertheless interesting as demonstrated in [17], [19], [20]. We
therefore present also our result for odd N which surprisingly shows that the string operator does not
vanish but is proportional to a simple symmetry operator. In this case we have to collect the contributions
of each column in the stepwise reduction of a system of size = N to a system of size = 1 and to multiply
finally by the result for the remaining system of size = 1 obtained in the preceeding section. We observe
that the explicit form of X and Y given in (104) and (105) shows that for integer m

Xl−Ls
(η) = −σ3Xl(η) Yl−Ls

(η) = σ3Yl(η) if 2Lsη = (2m+ 1)2K (69)

Xl−Ls
(η) = Xl(η) Yl−Ls

(η) = Yl(η) if 2Lsη = m4K (70)

We first treat the case that 2Lsη = (2m+ 1)2K . We conclude from equs. (34), (36),(54),(67) and (69)
that the action of the string operator Bs on a state Ω(nX , nY ) characterized in (12) and (44) where nX

and nY denote the number of X- and Y -vectors is given by

Bl+1,l−1(λ1) · · ·Bl+Ls,l−Ls
(λLs

)Ω(nX , nY ) = −

(

Ls
∏

k=1

m(λk)
−1

)

C(λc,M)fN
0Xσ3⊗σ3⊗· · ·⊗σ3Ω(nX , nY )

(71)
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where

C(λc,M) = (VỸ (l + 1)VY (l +M − 1)) =

Ls
∏

k=1

Ỹ µ
l+k(λk)Yl+M−k,µ(λk) (72)

and where (69) and f0Y = −f0X as well as nX +nY = N and that N is odd have been taken into account.
If 2Lsη = m4K we use (70) and f0Y = +f0X :

Bl+1,l−1(λ1) · · ·Bl+Ls,l−Ls
(λLs

)Ω(nX , nY ) =

(

Ls
∏

k=1

m(λk)
−1

)

C(λc,M)fN
0XΩ(nX , nY ) (73)

We claim that C(λc,M) does not depend on M = nX − nY .
Proof: From (72) and appendix B follows

C(λ,M) =

Ls
∏

k=1

1

g(τl+k)g(τl+M−k)
(Θ(u)H(v)− H(u)Θ(v)) (74)

with

u = t+ 2(l + k)η + λk v = t+ 2(l+M − k)η + λk λk = λc − 2(k − 1)η (75)

We rewrite this by using the relations of appendix A

C(λ,M) =
2

H(K)Θ(K)

Ls
∏

k=1

1

g(τl+k)g(τl+M−k)
H((M/2− k)2η)Θ((M/2− k)2η)×

H(t+ λc + (l + 1 +M/2− k)2η +K)Θ(t+ λc + (l + 1 +M/2− k)2η +K) (76)

We compare C(λ,M) with C(λ,M + 2). If η = 2m1K/L

Ls
∏

k=1

g(τl+M+2−k) =

Ls−2
∏

k=−1

g(τl+M−k) =

Ls
∏

k=1

g(τl+M−k) (77)

as an even number of shifts by 2K occur. Similarly a shift of M by 2 is compensated by a shift of k by
1 in

Ls
∏

k=1

H((M/2−k)2η)Θ((M/2−k)2η)H(t+λc+(l+1+M/2−k)2η+K)Θ(t+λc+(l+1+M/2−k)2η+K) (78)

It follows

C(λc,M + 2) = C(λc,M) (79)

and as M is odd the simplest choice ist

C(λc,M) = C(λc,−1) =

Ls
∏

k=1

Ỹ µ
l+k(λk)Yl−1−k,µ(λk) (80)

Because of the presence of H((M/2 − k)2η) in (78) C(λ,M) vanishes if 2Lsη = m4K for integer m.
However it does not vanish if 2Lsη = (2m+ 1)2K This means that for odd N
Bl+1,l−1(λ1) · · ·Bl+Ls,l−Ls

(λLs
) is proportional to the operator S = σ3 ⊗ σ3 · · · ⊗ σ3.
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6 Summary of Results

We have studied the properties of the operator

Bs(λc) = Bl+1,l−1(λ1) · · ·Bl+Ls,l−Ls
(λLs

) (81)

at roots of unity

η = 2m1K/L (82)

1. For even N : Bs = 0.

2. For odd N and 2Lsη ≡ 0 (mod 4K): Bs = 0

3. For odd N and 2Lsη ≡ 2K (mod 4K):

Bl+1,l−1(λ1) · · ·Bl+Ls,l−Ls
(λLs

)Ω(nX , nY ) = f(λc)σ3 ⊗ σ3 ⊗ · · · ⊗ σ3Ω(nX , nY ) (83)

f(λc) = −

(

Ls
∏

k=1

m(λk)
−1

)

fN
0X

Ls
∏

k=1

Ỹ µ
l+k(λk)Yl−1−k,µ(λk) (84)

To clarify what happens for odd N we give some examples.
If η = K/3 then because of (82) L = 6 and Ls = 3, 2Lsη = 2K and (83) applies.
If η = 2K/3 then L = 3 and Ls = 3, 2Lsη = 4K and Bs = 0
If η = K/2 then L = 4 and Ls = 2, 2Lsη = 2K and (83) applies.

7 Conclusions

A common feature of the six vertex model and the eight vertex model for crossing parameters at roots
of unity is the occurrence of degneracies in the eigenvalues of the transfer matrix T and the Hamiltonian
H . This is by no means an exceptional case, because analytic solutions of the eight-vertex model which
include the eigenvectors of the transfer matrix T exist only for root of unity η. For the six vertex model
the underlying symmetry algebra is fairly well understood. It has been shown in [12] that the sl2 loop
algebra symmetry is responsible for the degeneracies of eigenvalues and its Chevalley generators have
been explicitly constructed. The picture was completed by the construction of the generating function of
the operators in the mode basis (the current) in [13] which allowed the determination of the evaluation
parameters. This current plays two different roles: it generates the sl2 loop algebra operators in the
mode basis and it is the operator which creates exact Bethe strings in the algebraic Bethe ansatz. It
turns out that the set of B operators is itself not complete in the sense that it is not capable of creating
the complete eigenstate of T . To achieve this the current operators have to be incorporated.
We now turn to the eight vertex model. The result of this paper given in the summary completes the
construction of the operator which generates complete Bethe strings and is in this respect a generalization
of the six vertex current operator introduced in [13]. Expression (5) is certainly a symmetry operator
as it maps degenerate subspaces onto itself. But the symmetry operators which generalize the Chevalley
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operators found and studied in [12] are still elusive.
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A Theta functions

The definition of Jacobi Theta functions of nome q (see (21.62) [21]) is

H(v) = 2

∞
∑

n=1

(−1)n−1q(n−1/2)2 sin[(2n− 1)πv/(2K)] (85)

Θ(v) = 1 + 2
∞
∑

n=1

(−1)nqn
2

cos(nvπ/K)

(86)

where K and K ′ are the standard elliptic integrals of the first kind and

q = exp−πK ′/K. (87)

These theta functions satisfy the quasi periodicity relations

H(v + 2K) = −H(v) H(v + 2iK ′) = −q−1 exp(−πiv/K)H(v) (88)

Θ(v + 2K) = Θ(v) Θ(v + 2iK ′) = −q−1 exp(−πiv/K)Θ(v). (89)

Θ(v) and H(v) are related by

Θ(v + iK ′) = iq−1/4 exp−
πiv

2K
H(v) H(v + iK ′) = iq−1/4 exp−

πiv

2K
Θ(v). (90)

They satisfy the addition theorem

H(u)Θ(v)−Θ(u)H(v) = 2H((u−v)/2)Θ((u−v)/2)H((u+v)/2+K)Θ((u+v)/2+K)/(H(K)Θ(K)) (91)

B The algebraic Bethe ansatz

We only list those definitions and identities which we make use of. We follow the formalism of [9]. The
monodromy matrix is defined as

T = LN · · · L1 =

(

A B
C D

)

(92)

where Ln is a 2× 2 matrix in auxiliary space with entries which are 2× 2 matrices in spin space acting
on the n th spin in the spin chain and A,B,C,D are 2N × 2N matrices in spin space.

Ln =

(

αn βn
γn δn

)

(93)
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αn =

(

a 0
0 b

)

, βn =

(

0 d
c 0

)

γn =

(

0 c
d 0

)

, δn =

(

b 0
0 a

)

(94)

a, b, c and d are defined in equ.(2). The R matrix is

Rρ,β
α,κ(λ, µ) =

1

2
(aR+bR)E⊗E+

1

2
(aR−bR)σ

3⊗σ3+cR(σ
−⊗σ++σ+⊗σ−)+dR(σ

+⊗σ++σ−⊗σ−) (95)

where on the right hand side the first factor of the direct products carries the indices α, ρ and the second
factor κ, β.

aR = Θ(2η)Θ(λ− µ)H(λ − µ+ 2η) (96)

bR = H(2η)Θ(λ− µ)Θ(λ− µ+ 2η) (97)

cR = Θ(2η)H(λ− µ)Θ(λ− µ+ 2η) (98)

dR = H(2η)H(λ− µ)H(λ − µ+ 2η) (99)

a = aR(λ, η) b = cR(λ, η) c = bR(λ, η) d = dR(λ, η) (100)

and the local transition matrix (93),(94) is

Lβ,ρ
α,κ(λ) = Rρ,β

α,κ(λ, η) (101)

In order to construct a generating vector suitable for the eight-vertex model a gauge transformed
monodromy matrix is defined as

Tk,l =M−1
k (λ)T (λ)Ml(λ) =

(

Ak,l Bk,l

Ck,l Dk,l

)

. (102)

where the matrices Mk introduced by Baxter [3] are

Mk =

(

x1k y1k
x2k y2k

)

M−1
k =

1

m(λ)

(

y2k −y1k
−x2k x1k

)

(103)

The columns of M and rows of M−1 , called intertwining vectors ([18]) are of central importance:

Xk(λ) =

(

x1k(λ)
x2k(λ)

)

=

(

H(s+ 2kη − λ)
Θ(s+ 2kη − λ)

)

(104)

Yk(λ) =

(

y1k(λ)
y2k(λ)

)

=
1

g(τk)

(

H(t+ 2kη + λ)
Θ(t+ 2kη + λ)

)

(105)

g(u) = H(u)Θ(u), τl = (s+ t)/2 + 2lη −K (106)

Ỹk(λ) = ( y2k(λ),−y
1
k(λ)) X̃k(λ) = (−x2k(λ), x

1
k(λ)) (107)

(X̃µ
k (λ)Xk,µ(λ)) = 0 (Ỹ µ

k (λ)Yk,µ(λ)) = 0 (108)

(X̃µ
k (λ)Yk,µ(λ)) = m(λ) (Ỹ µ

k (λ)Xk,µ(λ)) = m(λ) (109)

m(λ) =
2g(λ+ (t− s)/2)

g(K)
(110)
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The local vectors Xk defined in (104) generalize the local vacuum of the six vertex model

e+ =

(

1
0

)

(111)

to the eight vertex model and build up the generating vectors (4.18) in [9]

Ωl
N = ωl

1 ⊗ · · · ⊗ ωl
N (112)

ωl
k = Xk+l(η) (113)

The elements of Tk,l are

Ak,l(λ) =
1

m(λ)
Ỹk(λ)T (λ)Xl(λ) (114)

Bk,l(λ) =
1

m(λ)
Ỹk(λ)T (λ)Yl(λ) (115)

Ck,l(λ) =
1

m(λ)
X̃k(λ)T (λ)Xl(λ) (116)

Dk,l(λ) =
1

m(λ)
X̃k(λ)T (λ)Yl(λ) (117)

The gauge transformed local transition matrix is

Ll =M−1
l (λ)L(λ)Ml−1(λ) =

(

αl βl

γl δl

)

. (118)

αl(λ) =
1

m(λ)
Ỹ µ
l (λ)Lβ,ν

α,µ(λ)Xl−1,ν(λ) =
1

m(λ)
Ỹ µ
l (λ)R(λ, η)ν,βα,µXl−1,ν(λ) (119)

βl(λ) =
1

m(λ)
Ỹ µ
l (λ)Lβ,ν

α,µ(λ)Yl−1,ν (λ) =
1

m(λ)
Ỹ µ
l (λ)R(λ, η)ν,βα,µYl−1,ν(λ) (120)

γl(λ) =
1

m(λ)
X̃µ

l (λ)L
β,ν
α,µ(λ)Xl−1,ν(λ) =

1

m(λ)
X̃µ

l (λ)R(λ, η)ν,βα,µXl−1,ν(λ) (121)

δl(λ) =
1

m(λ)
X̃µ

l (λ)L
β,ν
α,µ(λ)Yl−1,ν (λ) =

1

m(λ)
X̃µ

l (λ)R(λ, η)ν,βα,µYl−1,ν(λ) (122)

B.1 Action of αl, βl, γl, δl

To compute the left hand side of equ. (18) we need the relations

δl(λ)Xl(η) = h(λ− η)Xl+1(η) (123)

βl(λ)Xl(η) = h(2η)
g(τl + λ− η)

g(τl)
Yl−1(η) (124)

δl(λ)Yl−2(η) = h(λ+ η)
(X̃µ

l (λ)Yl−2,µ(λ))

m(λ)
Yl−1(η) (125)

They follow from equs. (126)-(137). Equ. (123) is identical with equ. (4.16) of [9].
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B.2 Intertwining vectors

We make extensive use of the following powerful relations describing the action of the R-matrix on
intertwining vectors [3], [9].

R(λ, µ)(Xl(λ)⊗Xl+1(µ)) = h(λ− µ+ 2η)Xl(µ)⊗Xl+1(λ) (126)

R(λ, µ)(Yl+1(λ) ⊗ Yl(µ)) = h(λ− µ+ 2η)Yl+1(µ)⊗ Yl(λ) (127)

R(λ, µ)(Yk(λ) ⊗Xl(µ)) = fYX
1,k,l(λ− µ)Yk(µ)⊗Xl(λ) + fYX

2,k,l(λ− µ)Xl+1(µ)⊗ Yk+1(λ) (128)

R(λ, µ)(Xk(λ)⊗ Yl(µ)) = fXY
1,k,l(µ− λ)Xk(µ)⊗ Yl(λ) + fXY

2,k,l(λ− µ)Yl−1(µ)⊗Xk−1(λ) (129)

(Ỹl(µ)⊗ Ỹl+1(λ))R(λ, µ) = h(λ− µ+ 2η)Ỹl(λ)⊗ Ỹl+1(µ) (130)

(X̃l+1(µ)⊗ X̃l(λ))R(λ, µ) = h(λ− µ+ 2η)X̃l+1(λ)⊗ X̃l(µ) (131)

(X̃k(µ)⊗ Ỹl(λ))R(λ, µ) = fYX
1,l,k(λ− µ)X̃k(λ) ⊗ Ỹl(µ) + fYX

2,l,k(λ− µ)Ỹl+1(λ)⊗ X̃k+1(µ) (132)

(Ỹk(µ)⊗ X̃l(λ))R(λ, µ) = fXY
1,l,k(µ− λ)Ỹk(λ)⊗ X̃l(µ) + fXY

2,l,k(λ− µ)X̃l−1(λ)⊗ Ỹk−1(µ) (133)

with

fYX
1,k,l(λ− µ) =

h(2η)g(τ(k+l+1)/2 + λ− µ)

g(τ(k+l+1)/2)
(134)

fYX
2,k,l(λ− µ) =

h(λ− µ)g(τ(k+l−1)/2)g(τk+1)

g(τ(k+l+1)/2)g(τk)
(135)

fXY
1,k,l(µ− λ) =

h(2η)g(τ(k+l−1)/2 + µ− λ)

g(τ(k+l−1)/2)
(136)

fXY
2,k,l(λ− µ) =

h(λ− µ)g(τ(k+l+1)/2)g(τl−1)

g(τ(k+l−1)/2)g(τl)
(137)

B.3 Permutation relations for Ak,l, · · · , Dk,l

T and R defined in (92) and (95) satisfy the RTT equation

R(λ, µ)(T (λ)⊗ T (µ)) = (T (µ)⊗ T (λ))R(λ, µ) (138)

which combined with equs. (126)-(133) leads to the following fundamental permutation relations:

Bk,l+1(λ)Bk+1,l(µ) = Bk,l+1(µ)Bk+1,l(λ) (139)

Ak,l(λ)Bk+1,l−1(µ) = α(λ, µ)Bk,l−2(µ)Ak+1,l−1(λ) − βl−1(λ, µ)Bk,l−2(λ)Ak+1,l−1(µ) (140)

Dk,l(λ)Bk+1,l−1(µ) = α(µ, λ)Bk+2,l(µ)Dk+1,l−1(λ) + βk+1(λ, µ)Bk+2,l(λ)Dk+1,l−1(µ) (141)

where

α(λ, µ) =
h(λ− µ− 2η)

h(λ− µ)
, and βk(λ, µ) =

h(2η)h(τk + µ− λ)

h(τk)h(µ− λ)
(142)

and where

h(u) = Θ(0)Θ(u)H(u) (143)

As follows from (126)-(137) these relations continue to be formally valid for a chain of length zero. We
will need equ. (140) in this limit:

(Ỹk(λ)Xl(λ))(Ỹk+1(µ)Yl−1(µ)) = (144)

α(λ, µ)(Ỹk(µ)Yl−2(µ))(Ỹk+1(λ)Xl−1(λ)) − βl−1(λ, µ)(Ỹk(λ)Yl−2(λ))(Ỹk(µ)Xl−1(µ))
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C The string operator.

The string operator (5) found in [14] is written in terms of the quantities

Ẑ1(λc) =
X̂(λc)

Ŷ (λc)
(145)

with

X̂(λc) = −2

Ls−1
∑

k=0

k
ω−2(k+1)ρk+1

PkPk+1
(146)

Ŷ (λc) =

Ls−1
∑

k=0

ω−2(k+1)ρk+1

PkPk+1
(147)

and

Ẑj(λc) = Ẑ1(λc − (j − 1)2η) (148)

where ω = e2πim/L is a L th root of unity.

ρk = hN (λc − (2k − 1)η) Pk =

nr
∏

m=1

h(λc − λrm − 2kη). (149)

λrm,m = 1, · · · , nr denote regular Bethe-roots, λc denotes the string center.
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