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In this paper, we study the weak convergence of the integrated periodogram indexed by classes of
functions for linear processes with symmetric α-stable innovations. Under suitable summability
conditions on the series of the Fourier coefficients of the index functions, we show that the weak
limits constitute α-stable processes which have representations as infinite Fourier series with
i.i.d. α-stable coefficients. The cases α ∈ (0,1) and α ∈ [1,2) are dealt with by rather different
methods and under different assumptions on the classes of functions. For example, in contrast
to the case α ∈ (0,1), entropy conditions are needed for α ∈ [1,2) to ensure the tightness of
the sequence of integrated periodograms indexed by functions. The results of this paper are of
additional interest since they provide limit results for infinite mean random quadratic forms
with particular Toeplitz coefficient matrices.

Keywords: asymptotic theory; empirical spectral distribution; entropy; infinite variance
process; integrated periodogram; linear process; random quadratic form; spectral analysis;
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1. Introduction

Over the last decades, efforts have been made to get a better understanding of non-
Gaussian time series in the time and frequency domains. In particular, time series whose
marginal distributions exhibit power law behavior have attracted a lot of attention. The
need for such models arises from applications in areas as diverse as insurance, geophysics,
finance and telecommunications. Infinite fourth moments are not untypical for series
of daily log-returns from exchange rates, stock indices, and other speculative prices,
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whereas infinite second moments can be observed in time series from insurance such
as for windstorm, industrial fire and earthquake insurance [10, 11, 13, 26]. Infinite first
moments are typical for the marginal distribution of the magnitudes of earthquakes [17].
Infinite variances are observed for the sizes of teletraffic data in the World Wide Web
[6, 7, 14, 24, 38]; see also the recent books [1, 33].
Classical time series analysis deals with the second (or higher) order moment structure

of a stationary sequence. Heavy-tailed modeling requires, in addition, that one takes into
account the interplay between the dependence structure and the tails of the series. An
important task is to understand the classical statistical estimators and test procedures
when big shocks to the underlying system are present. When the marginal distributions
have infinite variance, the notions of autocovariance, autocorrelation and spectral dis-
tribution lose their meaning. However, various studies over the last twenty years have
shown that the analysis of linear processes Xt =

∑∞
j=−∞ψjεt−j , t ∈ Z, with heavy-tailed

i.i.d. innovations (εj)j∈Z and constant coefficients (ψj)j∈Z is very similar to classical
(finite variance) time series analysis, where notions such as autocovariances and spec-
tral density are defined only in terms of the ψj ’s and the innovation variance σ2

ε . Most
estimators and test statistics from classical time series analysis can be modified inso-
far that one considers self-normalized (or studentized) versions of them and for these
versions, an asymptotic theory exists which parallels the classical theory with Gaussian
limit processes. In contrast to the latter theory, the limits involve infinite variance stable
distributions and processes [13, 21, 25].
One of the main goals of classical (finite variance) time series analysis is to study the

spectral properties of the linear process (Xt). In this context, the periodogram

In,X(λ) =

∣∣∣∣∣
1√
n

n∑

t=1

e−iλtXt

∣∣∣∣∣

2

, λ ∈ [0,π],

plays a prominent role as an estimator of the spectral density. Numerous estimation and
test procedures are based on this statistic and integrated versions of the form Jn,X(f) =∫
π

0
In,X(λ)f(λ) dλ for appropriate classes of real-valued functions f ∈ F on [0,π]. In

applications, the class FI = {I[0,x]: x ∈ [0,π]} is most important. The resulting integrated
periodogram is a process indexed by x ∈ [0,π]. Under general conditions, Jn,X(I[0,·])

converges uniformly with probability 1 to the function σ2
ε

∫ ·

0 |ψ(e−iλ)|2 dλ, where

ψ(e−iλ) =

∞∑

j=−∞

ψje
−iλj , λ ∈ [0,π],

and |ψ(e−iλ)|2 is the corresponding power transfer function. The latter is one of the
essential building blocks of the spectral density of the stationary process (Xt):

fX(λ) =
σ2
ε

2π
|ψ(e−iλ)|2 = 1

2π

∞∑

h=−∞

e−ihλγX(h), λ ∈ [0,π].
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This is the Fourier series based on the autocovariance function

γX(h) = cov(X0,Xh) = σ2
ε

∞∑

j=−∞

ψjψj+|h|, h ∈ Z.

Since Jn,X(I[0,·]) estimates the spectral distribution function of the stationary process
(Xt), it has been used for a long time as the empirical spectral distribution function,
both as an estimator and a basic tool for constructing goodness-of-fit tests for the un-
derlying spectral distribution function [4, 16, 32]. Since the limit process of the properly
centered and normalized process Jn,X(I[0,·]) depends on the (in general unknown) spec-
tral density fX , Bartlett [2] proposed to consider the integrated periodogram based on
FB = {I[0,x]/fX(x): x ∈ [0,π]}. Under general conditions, this process converges uni-
formly, with probability 1, to the function f(x)≡ x and the limit process can be shown
to be independent of the coefficients of the linear process, but depends on the fourth
moment of ε1. More generally, weighted integrated periodograms based on the classes
Fg = {I[0,x]g(x): x ∈ [0,π]} for suitable functions g are used to estimate the spectral
density or to perform various tests concerning the spectrum of the underlying stationary
sequence [32].
The weighted integrated periodogram is also the basis of one of the classical estimators

for fitting ARMA and fractional ARIMA models. This method goes back to early work by
Whittle [37]. In this context, one considers the functional Jn,X(1/fX(·; θ)), fX(·; θ) ∈FW,
where FW is a class of spectral densities indexed by a parameter θ ∈Θ⊂Rd. The Whittle
estimator θ̂n of the true parameter θ0 ⊂Θ is the minimizer of Jn,X(1/fX(·; θ)) over Θ.
This estimation technique is one of the backbones of quasi-maximum likelihood estima-
tion in parametric time series modeling. The Whittle estimator is known to be asymp-
totically equivalent to the corresponding least-squares and Gaussian quasi-maximum
likelihood estimators [4]. When proving the asymptotic normality and consistency of θ̂n,

one has to study the properties of the sequence (Jn,X(1/fX(·; θ̂n))) which, again, can be
considered as a weighted integrated periodogram indexed by a class of functions.
The above examples have in common that one always considers a stochastic process

(Jn,X(f))f∈F for some class of functions. In all cases, one is interested in the asymptotic
behavior of the process Jn,X , uniformly over the class F . This is analogous to the case
of the empirical distribution function indexed by classes of functions. General references
in this context are the monographs [31, 36]. Early on, this analogy was discovered by
Dahlhaus [8], who gave the uniform convergence theory for Jn,X under entropy and
exponential moment conditions. The almost sure and weak convergence theory under
entropy and power moment conditions was given in [28]. A recent survey of nonparametric
statistical methods related to the empirical spectral distribution indexed by classes of
functions is [9].
It is the aim of this paper to develop an analogous weak convergence theory for heavy-

tailed stationary processes. We will understand ‘heavy-tailedness’ in the sense of infinite
variance of the marginal distributions. Our focus will be on linear processes (Xt) with
i.i.d. symmetric α-stable (SαS) innovations (εt) for some α ∈ (0,2). Recall that a random
variabl Yα has a symmetric stable distribution (Yα ∼ Sα(σ,0,0)) if there are parameters
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0<α≤ 2, and σ ≥ 0 such that its characteristic function has the form EeitYα = e−σ
α|t|α .

For convenience, we also assume that σ = 1 for the distribution of ε1. For α < 2, the
random variable ε1 is known to have infinite variance [15, 35]. Much of the theory given
below depends on tail estimates for random quadratic forms in i.i.d. infinite variance
random variables. Such results are available for i.i.d. stable sequences. Although it seems
feasible that the theory can be extended to the more general class of processes whose
innovations have regularly varying tails, we do not attempt to achieve this goal. The
price would be more technicalities and the gain would be negligible.
We intend to show how the classical (finite variance) tools and methods have to be

modified in the infinite variance stable situation which can be considered as a boundary
case of the classical one when some of the innovations assume extremely large values. By
now, there exists quite a clear picture concerning the asymptotic theory of the sample au-
tocovariances, the periodogram and its integrated versions when the innovation sequence
in a linear process has infinite variance; see [13], Chapter 7. In addition to the latter refer-
ence, goodness-of-fit tests for heavy-tailed processes (corresponding to the class FI) were
considered for short- and long-memory linear processes [18, 20], and Whittle estimation
for infinite variance ARMA and FARIMA processes was also studied [19, 27].
The paper is organized as follows. In Section 2, we introduce some useful notation

for the integrated periodogram. Our main goal is to prove the weak convergence of the
integrated periodograms indexed by suitable classes of functions. We achieve this goal for
an i.i.d. sequence in Section 3, first by showing the convergence of the finite-dimensional
distributions (Section 3.1), then the tightness. The conditions and methods are rather
different in the cases α ∈ (0,1) (Section 3.2) and α ∈ [1,2) (Section 3.3). The case α ∈
(0,1) is treated in the more general context of random quadratic forms with Toeplitz
coefficient matrices satisfying some summability condition. The case α ∈ [1,2) requires
entropy conditions and the corresponding techniques. In Section 4, we extend the limit
theory for the integrated periodograms from an i.i.d. sequence to linear processes. The
Appendix contains some auxiliary results concerning tail estimates of random quadratic
forms in stable random variables. The weak convergence results of this paper might also
be of separate interest in the context of infinite variance random quadratic forms. The
theory for such quadratic forms is not well studied. We also refer to an extended version
of this paper [5] which covers the class of stochastic volatility processes with regularly
varying marginal distributions.

2. Preliminaries on the periodogram

The following decomposition of the periodogram is fundamental:

In,X(λ) = γn,X(0) + 2
n−1∑

h=1

cos(λh)γn,X(h), (2.1)

where γn,X(h) = 1
n

∑n−|h|
t=1 XtXt+h, h ∈ Z, denotes the sample autocovariance function of

the sample X1, . . . ,Xn. Note that the definition of γn,X deviates slightly from the usual
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one where the Xt’s are centered by the sample mean. However, for the theory given
below, this centering is not essential. Centering with the sample mean Xn is not the
most natural choice when dealing with infinite variance processes. In what follows, we
will frequently make use of the self-normalized periodogram

Ĩn,X(λ) =
In,X(λ)

γn,X(0)
= ρn,X(0) + 2

n−1∑

h=1

cos(λh)ρn,X(h),

where ρn,X(h) = γn,X(h)/γn,X(0), h ∈ Z, denotes the sample autocorrelation function of
X1, . . . ,Xn. In view of (2.1), we can rewrite Jn,ε(f) as follows:

Jn,ε(f) = γn,ε(0)a0(f) + 2

n−1∑

h=1

ah(f)γn,ε(h), (2.2)

where

ah(f) =

∫
π

0

cos(λh)f(λ) dλ, h ∈ Z, (2.3)

are the Fourier coefficients of f . We also introduce the self-normalized version of Jn,ε:

J̃n,ε(f) = ρn,ε(0)a0(f) + 2

n−1∑

h=1

ah(f)ρn,ε(h). (2.4)

3. The i.i.d. case

In this section, we study the limit behavior of the integrated periodograms Jn,ε indexed
by classes of functions for an i.i.d. SαS sequence with α ∈ (0,2). In Section 3.1, we
consider the convergence of the finite-dimensional distributions. In Sections 3.2 and 3.3,
we prove the tightness of the processes in the cases α ∈ (0,1) and α ∈ [1,2), respectively.
In the case α ∈ (0,1), we solve a more general weak convergence problem for random
quadratic forms in the i.i.d. sequence (εt); the convergence of the integrated periodograms
indexed by classes of functions is only a special case. The case α ∈ [1,2) is more involved.
Among others, entropy conditions will be needed and we only prove results on the weak
convergence of the empirical spectral distribution, that is, we focus on random quadratic
forms with Toeplitz coefficient matrices given by the Fourier coefficients ah(f) defined in
(2.3).

3.1. Convergence of the finite-dimensional distributions

A glance at decomposition (2.2) is enough to see that the convergence of the finite-
dimensional distributions of Jn,ε is essentially determined by the weak limit behavior of
the sample autocovariances γn,ε(h). For this reason, we recall a well-known result due to
Davis and Resnick [12]; see also [4], Section 13.3.
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Lemma 3.1. For every m≥ 1,
(
nγn,ε(0)

n2/α
,
nγn,ε(h)

(n logn)1/α
, h= 1, . . . ,m

)
=⇒ (Y0, Y1, . . . , Ym), (3.1)

where =⇒ denotes weak convergence, the Yh’s are independent, Y0 is Sα/2(σ1,1,0) and
(Yh)h=1,...,m are i.i.d. Sα(σ2,0,0) for some σi = σi(α), i= 1,2. In particular,

(n/ logn)1/α(ρn,ε(h))h=1,...,m =⇒ (Yh/Y0)i=1,...,m. (3.2)

The latter result is an immediate consequence of (3.1) and the continuous mapping
theorem. Lemma 3.1 yields the weak convergence for any finite linear combination of the
sample autocovariances and autocorrelations. It also suggests that the weak limit of the
standardized process Jn,ε(f) will be determined by the infinite series

∑∞
h=1 ah(f)Yh. But

this also means that we need to require additional assumptions on the sequence (ah(f)).
We will treat this problem in a more general context. Consider a sequence

a= (a1, a2, . . .) ∈ ℓα,

that is, a satisfies the summability condition
∑
h |ah|α <∞. For such an a, we define the

sequences of processes





Xn(a) = (n logn)−1/α
n−1∑

k=1

ak[nγn,ε(k)], Y (a) =

∞∑

k=1

akYk,

X̃n(a) = (n/ logn)1/α
n−1∑

k=1

akρn,ε(k), Ỹ (a) = Y (a)/Y0.

(3.3)

Here, Y0, Y1, Y2, . . . are independent stable random variables, as described in Lemma 3.1.
The 3-series theorem [30] implies that a ∈ ℓα is equivalent to the a.s. convergence of the

infinite series Y (a) in (3.3). However, for the weak convergence of (Xn) and (X̃n), we
need a slightly stronger assumption:

a ∈ ℓα log ℓ=
{
a= (a1, a2, . . .) ∈ ℓα:

∞∑

k=1

|ak|α log+
1

|ak|
<∞

}
.

This assumption ensures the weak convergence of the random quadratic forms in (3.3);
see the proof of Theorem 3.2 below. Assumptions of this type frequently occur in the
literature on infinite variance quadratic forms (e.g., [22]). They appear in a natural way
in tail estimates for quadratic forms in i.i.d. stable random variables; see the Appendix.
We can now formulate our result concerning the convergence of the finite-dimensional

distributions.

Theorem 3.2. For any α ∈ (0,2),

(Xn(a))a∈ℓα log ℓ
fidi−→ (Y (a))a∈ℓα log ℓ and (X̃n(a))a∈ℓα log ℓ

fidi−→ (Ỹ (a))a∈ℓα log ℓ.
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Proof. Using a Cramér–Wold argument, it suffices to prove the convergence of the one-
dimensional distributions. From (3.1) and the continuous mapping theorem, it immedi-
ately follows that for every m≥ 1,

(n logn)−1/α
m∑

k=1

ak[nγn,ε(k)] =⇒ Ym(a) =

m∑

k=1

akYk,

where =⇒ denotes weak convergence. Since a ∈ ℓα, Ym(a) =⇒ Y (a) as m→∞ follows
from the 3-series theorem. According to [3], Theorem 4.2, it remains to show that

lim
m→∞

lim sup
n→∞

P

(
(n logn)−1/α

∣∣∣∣∣

n−1∑

k=m+1

ak[nγn,ε(k)]

∣∣∣∣∣> ǫ

)
= 0

for every ǫ > 0 and a ∈ ℓα log ℓ. We write pn,m(a; ǫ) for the above probabilities. Applying
Lemma A.1 in the Appendix and the fact that a ∈ ℓα log ℓ, we conclude that

pn,m(a; ǫ)≤ const

∞∑

k=m+1

|ak|α
[
1 + log+

1

|ak|

]
→ 0 as m→∞.

(The constant on the right-hand side depends on ǫ.) This proves the theorem for (Xn);

the convergence of (X̃n) can be shown analogously by utilizing (3.2). �

As an immediate corollary of Theorem 3.2, we obtain the following result which solves
the problem of finding the limits of the finite-dimensional distributions for the integrated
periodogram Jn,ε in (2.2) and its self-normalized version J̃n,ε in (2.4).

Corollary 3.3. Let α ∈ (0,2) and

F = {f ∈ L2[0,π]: a(f) = (a1(f), a2(f), . . .) ∈ ℓα log ℓ},

where a(f) is specified in (2.3). We then have

n(n logn)−1/α[Jn,ε(f)− a0(f)γn,ε(0)]f∈F
fidi−→ 2[Y (a(f))]f∈F ,

(n/ logn)1/α[J̃n,ε(f)− a0(f)]f∈F
fidi−→ 2[Ỹ (a(f))]f∈F .

Remark 3.4. The condition a(f) ∈ ℓα log ℓ is, in general, not easily verified. However, if
f represents the spectral density of a stationary process (Xn) with absolutely summable
autocovariance function γX , then, up to a constant multiple, f is represented by the
Fourier series of γX , and the rate of decay of γX(h) → 0 as h→∞ is well known for
numerous time series models. For example, if f is the spectral density of an ARMA
process, γX(h)→ 0 at an exponential rate and then a(f) ∈ ℓα log ℓ is satisfied for every
α> 0.
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Conditions ensuring that a(f) ∈ ℓα can be found in the literature on Fourier series, for
example, in [39]. Theorem (3.10) on page 243 in Volume I of that reference yields, for Lip-
schitz continuous functions f with exponent β ∈ (0,1], that a(f) ∈ ℓα for α > 2/(2β+1),
but not necessarily for α= 2/(2β + 1). This means, in particular, that Lipschitz contin-
uous functions do not necessarily satisfy a(f) ∈ ℓα for small values α < 1. Zygmund’s
Theorem (3.13), [39], page 243, Volume I, states that a(f) ∈ ℓα if f is of bounded varia-
tion and Lipschitz continuous with exponent β ∈ (0,1] such that α > 2/(2 + β), but this
statement is not necessarily valid for α= 2/(2 + β).
We also note that a(f) /∈ ℓα for f(x) = I[0,x], x ∈ (0,π] and α≤ 1. Indeed, then ak(f) =

k−1 sin(xk), k = 1,2, . . . and
∑

k |ak(f)|α =∞. The latter condition implies that the series
Y (a(f)) diverges a.s. by the 3-series theorem and the 0–1 law. Hence, Corollary 3.3 does
not apply to the important class of indicator functions when α < 1. Moreover, (Jn,ε(f))
is not tight. Indeed, it follows from the argument above and from [22], Theorem 6.2.1
that for some δ > 0, for every K > 0,

δ ≤ lim
m→∞

lim
n→∞

P

(
(n logn)−1/α

∣∣∣∣∣

m∑

k=1

ak(f)[nγn,ε(k)]

∣∣∣∣∣>K

)

≤ const lim inf
n→∞

P (n(n logn)−1/α|Jn,ε(f)− a0(f)γn,ε(0)|>K).

3.2. Tightness and weak convergence in the case α ∈ (0,1)

In order to derive a full weak convergence counterpart of the convergence in terms of the
finite-dimensional distributions in Corollary 3.3, it remains to establish tightness of the
corresponding family of laws. We start, once again, in the more general context of random
fields indexed by sequences in ℓα log ℓ. Since we are dealing with the weak convergence
of infinite-dimensional objects, we may expect difficulties which are due to the geometric
properties of the underlying path spaces. It is also not completely surprising that the case
α ∈ (0,1) is the ‘better one’ in comparison with α ∈ [1,2); see, for example, the results on
boundedness, continuity and oscillations of α-stable processes in [35], Chapter 10. Note,
however, that the constraint a(f) ∈ ℓα log ℓ is harder to satisfy for smaller α than for
larger α; see also Remark 3.4.
In the present case α ∈ (0,1), we introduce the function

h(x) =

{
|x|α log(b+ |x|−1), x 6= 0,
0, x= 0,

where b is chosen so large that h is concave on (0,∞). Note that

ℓα log ℓ=

{
a:

∞∑

k=1

h(ak)<∞
}

and this set is a linear metric space when endowed with the metric d(a,b) =
∑∞

k=1 h(ak−
bk).
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Assume that A is a compact set of ℓα log ℓ with the additional property that

∞∑

k=1

sup
a∈A

h(ak)<∞. (3.4)

Observe thatA is then also a compact subset of ℓα and (Y (a))a∈A is sample-continuous as
a random element with values in C(A), the space of continuous functions on A equipped
with the uniform topology; see [35], Section 10.4. The following is our main result on the

weak convergence of the sequences (Xn) and (X̃n) of infinite variance random quadratic
forms in the case α ∈ (0,1).

Theorem 3.5. Assume α ∈ (0,1). For a compact set A of ℓα log ℓ satisfying (3.4), the
following weak convergence result holds in C(A):

(Xn(a))a∈A =⇒ (Y (a))a∈A and (X̃n(a))a∈A =⇒ (Ỹ (a))a∈A,

where Xn, X̃n, Y and Ỹ are defined in (3.3) and the processes Y and Ỹ are sample-
continuous.

Proof. We restrict ourselves to showing that Xn =⇒ Y . In view of Theorem 3.2, it suf-
fices to prove the tightness of the processes Xn in (C(A), dA), where dA is the restriction
of d to A. We have, for positive ǫ and δ,

P
(

sup
dA(a,b)<δ

|Xn(a)−Xn(b)|> ǫ
)

(3.5)

≤ P

(
n−1∑

k=1

sup
dA(a,b)<δ

|ak − bk|[nγn,|ε|(k)]> ǫ(n logn)1/α

)
= Pn(ǫ, δ).

We want to show that Pn(ǫ, δ) can be made arbitrarily small for all n, provided that δ
is small. We solve this problem in a modified form: let C = (C0,Cs,t, s, t = 1,2, . . .) be
a sequence of i.i.d. S1(1,0,0) random variables, independent of (εt), and (bs,t) a double
array of real numbers. We then have

C0

∑

1≤s<t≤n

|bs,t||εsεt| d=
∑

1≤s<t≤n

bs,tCs,t|εsεt| d=
∑

1≤s<t≤n

bs,tCs,tεsεt.

By virtue of this argument, it suffices to replace the products |εtεs| in the quadratic form
in (3.5) with the products Cs,tεtεs. This means that it suffices to show that

P ′
n(ǫ, δ) = P

(
n−1∑

k=1

ck(δ)

n−k∑

j=1

Cj,j+kεjεj+k > ǫ(n logn)
1/α

)
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can be made arbitrarily small for all n, provided that δ is small, where ck(δ) =
supdA(a,b)<δ |ak − bk|. Now, first apply Lemma A.2 to the P ′

n’s and then condition (3.4):

P ′
n(ǫ, δ)≤ const

1 + log+ |ǫ|
|ǫ|α

1 + logn

n logn

n−1∑

i=1

n∑

k=i+1

|ck(δ)|α
(
1+ log+

1

|ck(δ)|

)

≤ const

∞∑

k=1

h(ck(δ))→ 0 as δ→ 0.
�

Theorem 3.5 provides the limit process for a very general class of random quadratic
forms with infinite first moments. The coefficient matrices of these quadratic forms are
given by Toeplitz matrices. The conditions on the parameter setA are nothing but restric-
tions on the infinite Toeplitz matrices (ai−j)i,j=1,2,.... When specified to the particular
case of Fourier coefficients, as in (2.3), Theorem 3.5 yields the following.

Corollary 3.6. Assume that α ∈ (0,1) and let

F = {f ∈ L2[0,π]: a(f) = (a1(f), a2(f), . . .) ∈A},

where A is a compact set of ℓα log ℓ satisfying (3.4) and a(f) is specified in (2.3). We
then have

{
n(n logn)−1/α[Jn,ε(f)− a0(f)γn,ε(0)]f∈F =⇒ 2[Y (a(f))]f∈F ,

(n/ logn)1/α[J̃n,ε(f)− a0(f)]f∈F =⇒ 2[Ỹ (a(f))]f∈F ,
(3.6)

where the convergence holds in C(F).

Proof. Let T :F →A be defined by Tf = a(f). We claim that TF ⊂A is closed, hence
compact. Indeed, if (fn)⊂F is such that Tfn converges in ℓα log ℓ to some point a ∈A,
then (as 0<α< 1), the sequence

fn(λ) =
1

π

∞∑

j=−∞

a|j|(fn) cos jλ, λ ∈ [0,π],

n= 1,2, . . . converges in L1[0,π] to some function f that must necessarily be in F . There-
fore, a= Tf ∈ TF , and the latter set is compact. The above argument shows that L2[0,π]
convergence in F is equivalent to ℓα log ℓ convergence in TF . Since Theorem 3.5 implies
weak convergence of the left-hand side of (3.6) to its right-hand side in C(A) (when each
function f ∈ F is identified with Tf ∈ A), we conclude that weak convergence in (3.6)
also holds in C(F). �
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3.3. Tightness and weak convergence in the case α ∈ [1,2)

Establishing full weak convergence in the case α ∈ [1,2) is more difficult than in the case
α ∈ (0,1). Indeed, for α ∈ (0,1), we were allowed to switch from the random variables εt
to their absolute values, due to the specific geometry of the spaces ℓα and, in particular,
ℓα log ℓ. The spaces ℓα, α ∈ [1,2), have a much more complicated structure and, therefore,
the particular geometry of these spaces will be need to be invoked in proving tightness for
the random quadratic forms Xn and X̃n. The requirements prescribed by the geometry
are usually given by entropy conditions; see [23] for a general treatment of random
elements with values in Banach spaces. Entropy conditions are typically needed when
α-stable processes with α ∈ [1,2) appear; see the discussion in [35], Chapter 12.
In this section, we only consider vectors a ∈ ℓα log ℓ of the form (2.3), that is, they

are the Fourier coefficients of some functions f . Corollary 3.3 determines the structures
of the limit processes of the quadratic forms Jn,ε via the convergence of their finite-
dimensional distributions. It hence suffices to show the tightness in C(F) for suitable
classes F . [20] considered the special case of the one-dimensional class FI of indicator
functions on [0,π]. We extend their approach to more general classes of functions, using
an entropy condition.
For f, g ∈ F , let

dj(f, g) = j|aj(f)− aj(g)|, j ≥ 1.

Each dj defines a pseudo-metric on F . Let

ρk(f, g) = max
2k≤j<2k+1

dj(f, g), k ≥ 0.

Recall that the ǫ-covering number N(ǫ,F , ρk) of (F , ρk) is the minimal integer m for
which we can find functions f1, . . . , fm ∈ F such that supf∈F mini=1,...,m ρk(f, fi)< ǫ.

Theorem 3.7. Assume that α ∈ [1,2), define a(f) as in (2.3) and let F be a subset of
L2[0,π] satisfying:

(i) a(f) ∈ ℓα log ℓ for all f ∈F ;
(ii) ∃β ∈ (0, α) such that

N(ǫ,F , ρk)≤ const [1 + (2k/ǫ)β], ǫ > 0, k ≥ 0. (3.7)

The weak convergence result (3.6) then holds in C(F).

In contrast to the finite variance case [8, 28], the entropy condition (3.7) is a rather
strong one. Indeed, in the papers mentioned, integrability of some power of logN(ǫ) in
a neighborhood of the origin suffices. However, conditions such as (3.7) are common in
problems of continuity and boundedness for stable processes; see [35], Chapter 10.

Proof of Theorem 3.7. The convergence of the finite-dimensional distributions follows
from Theorem 3.2. We restrict ourselves to proving tightness for Jn,ε, which follows by
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proving that

lim
m→∞

lim sup
n→∞

P

(∥∥∥∥∥

n∑

j=m

aj γ̂n,ε(j)

∥∥∥∥∥
F

> ǫ

)
= 0 for every ǫ > 0, (3.8)

where ‖g‖F = supf∈F |g(f)| and

γ̂n,ε(j) = (n logn)−1/α[nγn,ε(j)], j = 1,2, . . . .

As in [20], (6.4), one can argue that it suffices in (3.8) to consider m and n of some
specific form. Let a < b be two positive integers, m= 2a and n= 2b+1 − 1, and consider
numbers ǫk = 2−kθ , k ≥ 1, with θ > 0. For θ sufficiently small and a large enough, we
have

P

(∥∥∥∥∥

n∑

j=m

aj γ̂n,ε(j)

∥∥∥∥∥
F

> ǫ

)
≤

b∑

k=a

P

(∥∥∥∥∥

2k+1−1∑

j=2k

aj γ̂n,ε(j)

∥∥∥∥∥
F

> ǫk

)
=

b∑

k=a

pk. (3.9)

Consider an array (ǫk,l) of positive numbers such that ǫk,l → 0 as l→∞ for each k ≥ 0.
Then,

pk ≤N(ǫk,0,F , ρk)pk,0 +
∞∑

l=1

N(ǫk,l,F , ρk)pk,l,

where

pk,0 = sup
f∈F

P

(∣∣∣∣∣

2k+1−1∑

j=2k

aj(f)γ̂n,ε(j)

∣∣∣∣∣> ǫk/2

)
,

pk,l = sup
f,g∈F ,ρk(f,g)≤ǫk,l−1

P

(∣∣∣∣∣

2k+1−1∑

j=2k

[aj(f)− aj(g)]γ̂n,ε(j)

∣∣∣∣∣> 2−(l+1)ǫk

)
.

By virtue of Lemma A.1, we have, for all f, g ∈ F ,

P

(∣∣∣∣∣

2k+1−1∑

j=2k

[aj(f)− aj(g)]γ̂n,ε(j)

∣∣∣∣∣> 2−(l+1)ǫk

)
≤ const bk,l,

where

bk,l = ǫ−αk 2αl
2k+1−1∑

j=2k

|aj(f)− aj(g)|α[1 + log+(1/|aj(f)− aj(g)|)].



Weighted periodogram for infinite variance processes 1007

Assuming that ρk(f, g)≤ ǫk,l−1, we have

bk,l ≤ const ǫ−αk 2αlǫαk,l−1

2k+1−1∑

j=2k

j−α[1 + log j log+ ǫ−1
k,l−1]

≤ const ǫ−αk 2αlǫαk,l−12
−k(α−1)[1 + k log+ ǫ−1

k,l−1].

Hence, we are left to consider

b∑

k=a

∞∑

l=1

N(ǫk,l,F , ρk)ǫ−αk 2−k(α−1)+αlǫαk,l−1[1 + k log+ ǫ−1
k,l−1]

=
b∑

k=a

2−k(α−1−αθ)
∞∑

l=1

N(ǫk,l,F , ρk)ǫαk,l−1[1 + k log+ ǫ−1
k,l−1]2

αl (3.10)

≤ const

b∑

k=a

2−k(α−1−αθ)
∞∑

l=1

[
1+

(
2k

ǫk,l

)β]
ǫαk,l−1[1 + log+ ǫ−1

k,l−1]2
αl.

Assume that θ is so small that (3.9) holds. Define the numbers ǫk,l = 2−γ1l−γ2k, k, l ≥
0 with γ1, γ2 > 0 such that 1 + γ2 > (1 + αθ)/(α − β) and γ1 > α/(α − β). For these
parameter choices, it is not difficult to see that (3.10) converges to zero by first letting
n→∞ (i.e., b→∞) and thenm→∞ (i.e., a→∞). This proves (3.8), hence the tightness
of the processes considered in C(F). �

In what follows, we give examples of function spaces F satisfying condition (ii) of
Theorem 3.7.

Example 3.8. Consider a space of indexed functions GΘ = {gθ: θ ∈Θ} that are defined
on [0,π] such that (Θ, τ) is a compact metric space, the mapping θ 7→ gθ is Hölder
continuous with exponent b > 0 and constant K > 0, that is,

sup
0≤x≤π

|gθ1(x)− gθ2(x)| ≤K(τ(θ1, θ2))
b for all θ1, θ2 ∈Θ,

and the number of balls (in metric τ ) of radius at most ǫ necessary to cover Θ is of
the order ǫ−a for some 0< a< bα. Then, GΘ satisfies N(ǫ,GΘ, ρk)≤ const (2k/ǫ)a/b with
a/b∈ (0, α). Indeed, let ǫ > 0, k≥ 0. We can find N ≤ c((Kπ2k+1)/ǫ)a/b balls of radius at
most (ǫ/(Kπ2k+1))1/b covering Θ. Call them B1, . . . ,BN , with centers θ1, . . . , θN . Now,
given θ ∈Θ, we have θ ∈Bi for some i ∈ {1, . . . ,N} and

ρk(gθ, gθi) = max
2k≤j<2k+1

j

∣∣∣∣
∫

π

0

cos(jx)(gθ(x)− gθi(x)) dx

∣∣∣∣

≤ 2k+1
π sup

0≤x≤π

|gθ(x)− gθi(x)| ≤ 2k+1
πKτ(θ, θi)

b ≤ ǫ.
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The desired bound now follows since N(ǫ,GΘ, ρk)≤N ≤ const (2k/ǫ)a/b.

Example 3.9. Consider a Vapnik–Červonenkis (VC) class G of functions defined on
[0,π] with VC index V (G) = 2; see [36], Section 2.6.2 for more information on VC classes
of functions. Given ǫ > 0 and k ≥ 0, we can find N ≤ c(π2k+1)/ǫ balls of radius at most
ǫ/(π2k+1) that cover G in the norm 1

π

∫
π

0
| · |dx; see, for example, [36], Theorem 2.6.7.

Therefore, there exist g1, . . . , gN ∈ G such that for any g ∈ G,

min
1≤i≤N

1

π

∫
π

0

|g(x)− gi(x)|dx <
ǫ

π2k+1
.

We then have

min
1≤i≤N

ρk(g, gi) = min
1≤i≤N

max
2k≤j<2k+1

j

∣∣∣∣
∫

π

0

cos(jx)(g(x)− gi(x)) dx

∣∣∣∣

≤ min
1≤i≤N

2k+1

∫
π

0

|g(x)− gi(x)|dx≤ ǫ.

It follows that N(ǫ,G, ρk)≤N ≤ const 2k/ǫ.

4. The linear process case

It is the aim of this section to show that the results for the case of an i.i.d. sequence (εt)
translate to the linear process case. The following decomposition will be crucial:

In,X(λ) = In,ε(λ)|ψ(e−iλ)|2 +Rn(λ). (4.1)

This decomposition is analogous to the decomposition fX(λ) = fε(λ)|ψ(e−iλ)|2 of the
spectral density fX of a linear process. We will show that the normalized integrated
remainder term

∫
π

0 Rn(λ)f(λ) dλ is negligible, uniformly over the class of functions F ,
in comparison to the normalized main part

∫
π

0

In,ε(λ)|ψ(e−iλ)|2f(λ) dλ, f ∈ F ,

which can be treated by the methods of the previous section. Note that, for a given
sequence of coefficients (ψj)j∈Z, the functions |ψ(e−i·)|2f constitute just another class of
functions on [0,π], Fψ say, and therefore we will study the process Jn,ε(f), f ∈ Fψ , for
suitable classes Fψ .

Lemma 4.1. Let Rn be the remainder term appearing in the decomposition (4.1) of the
periodogram In,X . Suppose that the linear filter (ψj) of the process X satisfies

∞∑

j=−∞

|ψj ||j|2/α(1 + log+ |j|)(4−α)/(2α)+τ <∞ (4.2)
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for some τ > 0 and F is a collection of real-valued functions defined on [0,π] such that
supf∈F ‖f‖2 <∞. We then have

n

(n logn)1/α
sup
f∈F

∣∣∣∣
∫

π

0

f(x)Rn(x) dx

∣∣∣∣
P−→ 0.

Proof. From [27], Proposition 5.1, substituting n1/2 for an, we have the following de-
composition for Rn:

Rn(x) = n−1(ψ(eix)Ln(x)Kn(−x) + ψ(e−ix)Ln(−x)Kn(x) + |Kn(x)|2), (4.3)

where ψ is the transfer function as defined before and

Ln(x) =

n∑

t=1

εte
−ixt, Kn(x) =

∞∑

j=−∞

ψje
−ixjUnj(x),

Unj(x) =

(
n−j∑

t=1−j

−
n∑

t=1

)
εte

−ixt.

We first show that

1

(n logn)1/α
sup
f∈F

∣∣∣∣
∫

π

0

f(x)|Kn(x)|2 dx
∣∣∣∣
P−→ 0. (4.4)

Note that

∣∣∣∣
∫

π

0

f(x)|Kn(x)|2 dx
∣∣∣∣ ≤

∫
π

0

|f(x)|
(

∞∑

j=−∞

|ψj ||Unj(x)|
)2

dx

≤ const

(
−1∑

j=−∞

+
∞∑

j=1

)
|ψj |

∫
π

0

|f(x)||Unj(x)|2 dx.

The convergence in (4.4) will follow if we can show that the suprema over f ∈ F of the
two infinite sums in the last expression are bounded in probability as n→∞. We will
prove this for the second sum; the first one can be handled analogously.
We have, by definition of the terms Unj(x), the Cauchy–Schwarz inequality and the

fact that, by assumption, supf∈F ‖f‖2 <∞,

sup
f∈F

∞∑

j=1

|ψj |
∫

π

0

|f(x)||Unj(x)|2 dx

≤ sup
f∈F

n∑

j=1

|ψj |
∫

π

0

|f(x)|
∣∣∣∣∣

0∑

t=1−j

εte
−ixt−

n∑

t=n−j+1

εte
−ixt

∣∣∣∣∣

2

dx
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+ sup
f∈F

∞∑

j=n+1

|ψj |
∫

π

0

|f(x)|
∣∣∣∣∣

n−j∑

t=1−j

εte
−ixt−

n∑

t=1

εte
−ixt

∣∣∣∣∣

2

dx

≤ c[I1(n) + I2(n) + I3(n) + I4(n)],

where

I1(n) =
n∑

j=1

|ψj |
(∫

π

0

∣∣∣∣∣

0∑

t=1−j

εte
−ixt

∣∣∣∣∣

4

dx

)1/2

,

I2(n) =

n∑

j=1

|ψj |
(∫

π

0

∣∣∣∣∣

n∑

t=n−j+1

εte
−ixt

∣∣∣∣∣

4

dx

)1/2

,

I3(n) =

∞∑

j=n+1

|ψj |
(∫

π

0

∣∣∣∣∣

n−j∑

t=1−j

εte
−ixt

∣∣∣∣∣

4

dx

)1/2

,

I4(n) =

∞∑

j=n+1

|ψj |
(∫

π

0

∣∣∣∣∣

n∑

t=1

εte
−ixt

∣∣∣∣∣

4

dx

)1/2

.

It remains to show that each sequence Ik(n), k = 1,2,3,4, is tight. Now,

I1(n)
d
=

n∑

j=1

|ψj |
(∫

π

0

∣∣∣∣∣

j∑

m=1

εmeixm

∣∣∣∣∣

4

dx

)1/2

.

Let ǫ > 0. Choose M > 0 so large that the following holds, for δ = 2α
4−ατ :

P (|εm|>Mm1/α(1 + logm)1/α+δ for some m≥ 1)≤ ǫ/2.

Write

Jm = εmI{|εm|≤Mm1/α(1+logm)1/α+δ}.

Then, for k > 0, we have, for δ chosen as above,

P (I1(n)> k)− ǫ/2

≤ P

(
n∑

j=1

|ψj |
(∫

π

0

∣∣∣∣∣

j∑

m=1

εmeitx

∣∣∣∣∣

4

dx

)1/2(∫
π

0

∣∣∣∣∣

j∑

m=1

Jmeitx

∣∣∣∣∣

4

dx

)1/2

> k

)

≤ k−1
n∑

j=1

|ψj |
(∫

π

0

E

∣∣∣∣∣

j∑

m=1

Jmeitx

∣∣∣∣∣

4

dx

)1/2
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= k−1
n∑

j=1

|ψj |
[∫

π

0

(
j∑

m=1

E(J4
m)

+ 6

j∑

m1=1

j∑

m2=m1+1

E(J2
m1

)E(J2
m2

) cos((m1 −m2)x) dx

)]1/2

≤ c

k

n∑

j=1

|ψj |
[(

j∑

m=1

(m1/α(1 + logm)1/α+δ)
4−α

)1/2

+

([
j∑

m=1

(m1/α(1 + logm)1/α+δ)
2−α

]2)1/2]

≤ c

k

∞∑

j=1

|ψj |j2/α(1 + log j)(4−α)/(2α)+τ .

By virtue of (4.2), the last expression can be made smaller than ǫ/2 by choosing k

large enough, which proves the tightness of I1(n). Similar arguments show that Ij(n),

j = 2,3,4, are tight sequences as well. The convergence in (4.4) follows.

By the decomposition (4.3), the proof will be finished if we can also establish that

1

(n logn)1/α
sup
f∈F

∣∣∣∣
∫

π

0

f(x)ψ(eix)Ln(x)Kn(−x) dx
∣∣∣∣
P−→ 0. (4.5)

We have, by the Cauchy–Schwarz inequality and the identity |Ln(x)|2 = nIn,ε(x),

∣∣∣∣
∫

π

0

f(x)ψ(eix)Ln(x)Kn(−x) dx
∣∣∣∣

≤ c‖f‖2
(∫

π

0

|Ln(x)Kn(−x)|2 dx
)1/2

≤ c‖f‖2n1/2
(

sup
0≤x≤π

In,ε(x)
)1/2(∫ π

0

|Kn(−x)|2 dx
)1/2

.

We therefore see that

1

(n logn)1/α
sup
f∈F

∣∣∣∣
∫

π

0

f(x)ψ(eix)Ln(x)Kn(−x) dx
∣∣∣∣

≤ c

n1/α−1/2

(sup0≤x≤π
In,ε(x))

1/2

(logn)1/α

(∫
π

0

|Kn(−x)|2 dx
)1/2

.
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Similar arguments as for (4.4) ensure the tightness of the sequence
∫
π

0
|Kn(−x)|2 dx. The

tightness of the term

(sup0≤x≤π
In,ε(x))

1/2

(logn)1/α

follows from [29] Theorem 2.1 (for 0<α< 1) and Proposition 3.1 (for 1≤ α < 2). Thus,
we conclude that (4.5) holds, and Lemma 4.1 is proved. �

Remark 4.2. A referee kindly pointed out that Lemma 4.1 remains valid under the
following condition, which is weaker than (4.2): assume that there exists a sequence (ωn)
of positive numbers such that

(n logn)−1/α

(
n∑

k=1

ω−α
k

)2/α−1/2 ∑

|j|≤n

|ψj |
(

j∑

l=1

ω4−α
l

)1/2

→ 0.

Condition (4.2) follows by taking ωn = n1/α(1 + logn)1/α+δ for some positive δ.

By (4.1), we may write, for each f ,

Jn,X(f)− a0(f |ψ|2)γn,ε(0) = Jn,ε(f |ψ|2)− a0(f |ψ|2)γn,ε(0)

+

∫
π

0

f(x)Rn(x) dx,

where |ψ|2 stands for |ψ(e−i·)|2. Combining this decomposition with Lemma 4.1, we can
now state the following analogs to Corollary 3.6 and Theorem 3.7.

Corollary 4.3. Assume that α ∈ (0,1) or α ∈ [1,2) and let F be as defined as in Corol-
lary 3.6 or Theorem 3.7, respectively. Suppose that the set {f : [0,π]→R: f |ψ|2 ∈ F}=
Fψ satisfies supf∈Fψ ‖f‖2 <∞ and (4.2) holds for some τ > 0. We then have

{
n(n logn)−1/α[Jn,X(f)− a0(f |ψ|2)γn,ε(0)]f∈Fψ =⇒ 2[Y (a(f |ψ|2))]f∈Fψ ,

(n/ logn)1/α[J̃n,X(f)− a0(f |ψ|2)]f∈Fψ =⇒ 2[Ỹ (a(f |ψ|2))]f∈Fψ ,
(4.6)

where the convergence holds in C(Fψ).

Appendix

For an array b= (bs,t) of real numbers, define the quadratic forms

Qn,ε(b) =
∑

1≤s6=t≤n

bs,tεsεt
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and

Γn(b) =
∑

1≤s6=t≤n

|bs,t|α
(
1 + log+

1

|bs,t|

)
.

The following lemma is a consequence of [34], Theorem 3.1; see also [22].

Lemma A.1. For α ∈ (0,2), there exists a positive constant Dα such that for all x > 0,

P (Qn,ε(b)> x)≤Dα
1 + log+ x

xα
Γn(b).

Now, let C = (C0,Cs,t, s, t = 1,2, . . .) be a sequence of i.i.d. S1(1,0,0) random vari-
ables, independent of (εt), and let b be as above. The following lemma is a consequence
of Lemma A.1.

Lemma A.2. For α ∈ (0,1), there exists a positive constant D′
α such that for all x > 0,

In(x) = P

( ∑

1≤s<t≤n

bs,tCs,tεsεt > x

)
≤D′

α

1+ log+ x

xα
Γn(b). (A.1)

Proof. Apply Lemma A.1 to In(x), conditionally on C:

In(x) = P

( ∑

1≤s<t≤n

bs,tCs,tεsεt > x

)

= ECP

( ∑

1≤s<t≤n

bs,tCs,tεsεt > x
∣∣∣C
)

(A.2)

≤ const
1 + log+ x

xα

n∑

s=1

n∑

t=i+1

|bs,t|αE|C0|α
(
1 + log+

1

|bs,tC0|

)
,

Because α ∈ (0,1), we also have, for x > 0,

E|C0|α
(
1+ log+

1

|xC0|

)
≤ const

(
1 + log+

1

|x|

)
, (A.3)

and combining (A.2) and (A.3), we thus obtain (A.1). �
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