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Gaussian Relay Channel Capacity to
Within a Fixed Number of Bits

Woohyuk Chang, Sae-Young Chung, and Yong H. Lee

Abstract— In this paper, we show that the capacity of the three- is proposed and shown to achieve the capacity to within
node Gaussian relay channel can be achieved to within 1 and 2 pijts/sec/Hz.
bit/sec/Hz using compress-and-forward and amplify-and-drward
relaying, respectively. [l. GAUSSIAN RELAY CHANNEL

We consider a Gaussian relay channel in Eig. 1. For simplic-
l. INTRODUCTION ity, we assume a full-duplex relay as in [2]-[4]. The recéive

Although both relay channels and interference channelgnals at the relay and the destination are given by
are fundamental building blocks for constructing multiuse Yo = hot Xy 4 2 (1)
networks, their single-letter capacity characterizatias been 2T inal e,
open for decades. In [1], instead of struggling to find thecexa Yy = h31. X1 + hga Xo + Z3, 2)

capacity utilizing complicated achievgble schemes, thbc_as respectively, wherés,, hs1, andhs, are complex constants,
show that a simple Han—Kobayashi scheme can achieve %eN CN(0,1) andZs ~ CA(0,1) are noises at the relay and

capacity of the two-user Gaussian interference channel fpihe destination, respectively, that are independentoh e
within 1 bit/sec/Hz for all values of the channel parametersqipar E[|X;[?] < P, andE[|X,|?] < P».

In [2], this approach is further developed and generalized.g,q [3], the upper bound on its channel capacity can be
The authors first consider a deterministic channel modg) ng as
related to a given Gaussian channel and develop a scheme
to achieve the capacity of such a deterministic channekrAft ct = Jnax min {C(p),CT(p)} 3)
getting an insight from the achievable scheme for the determ ==
istic channel, they then develop a scheme to achieve the ori§here
nal Gaussian channel capacity to within a constant number of ~+/ ) _ _ 2 2 2
bits for all values of the channel parameters. This appréach Or(p) =log, (1 =) (|h21| Il )Pl) - @
called thedeterministic approach. As an example, they showed ~ C (p) = log, (1 + |31 [PP1 + |hao|* P2

that the decode-and-forward (DF) relaying scheme oritjinal

proposed by Cover and El Gamal in [3] achieves the capacity 20y |h31|2|h32|2P1P2), ®)
of the three-node relay channel to withinbit/sec/Hz and a E [XlXQT}

simple partial DF relaying scheme achieves the capacitjef t p= , (6)
diamond Gaussian relay channel to wittirbits/sec/Hz. \/E [1X1 2] E[|X2[?]

In this paper, we first show that the compress-and-forward
(CF) relaying scheme by Cover and El Gamal in [3] cawhere X] is the complex conjugate of,. Since C; (p)
achieve the three-node Gaussian relay channel capacitydegreases whil€'y (p) increases ag increases, and; (1) <
within 1 bit/sec/Hz for all values of the channel parameter§; (1), there exist two possible cases for the optiptavalues
We also show a simple amplify-and-forward (AF) relayinglepending on whethéhz;|?P; < |h32|?> P, or not as shown
scheme where the relay amplifies and forwards the receiviedrig [2.
signal only when the channel from the source to the relay ise If |y 2Py < |hs2|>Po, Cl““(p) < C;(p) forall0 < p <
stronger than the channel from the source to the destination 1, and hence* = 0 andC+ = Cf“(()).
also achieves the Gaussian relay channel capacity to within o If |ho;|2P; > |hs|?Ps, p* is determined such th&tt =
bits/sec/Hz regardless of the channel parameters. Cf(p*) = Gj (p*).

The rest of the paper is organized as follows. In Sedfibn I,
we introduce the Gaussian relay channel. Sediidn I showsgy
that the CF relaying scheme achieves the Gaussian relay ONE BIT: CF RELAYING SCHEME
channel capacity to withinl bit/sec/Hz regardless of the

channel parameters. In Sectibnl IV, the AF relaying scheme!n [2], the authors introduce a deterministic relay channel
model corresponding to the Gaussian relay channel in $ectio
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Fig. 1. Gaussian relay channel.
Fig. 3. Deterministic relay channel.
() (b)
T ) andCt — Rpr < 1 is shown to be satisfied for all values of
= N i the channel parameters.
In [4]-[6], the achievable rate of the CF relaying scheme
for the Gaussian relay channel in Secfidn Il is explicitlyegi
—C —C; by
--CP == Cy(P)
0 0.5 1 0.5 RCF =
P P ho1|?|h32|? P, P.
log, (1—|—|h31|2P1+1 h |221|]LBQQ| Pl 2 - 2P>'
Fig. 2. Cf (p) and Cf (p): (@) [ho1|2P1 < |haa|2Po, (b) [h2,| P > + (|ha1[? + [h21]?) Py + |hs2|* Py
|h§2‘P2- (9)

Then, Rcr in (@) can be rewritten as

Specifically,n31 = HOgQ(hglPlﬂ, n3e = HOgQ(thPQﬂ and
no1 = [logy(ho1Pr)]. Then, the transmitted bits at the first
n; signal levels are received clearly through the patt the
corresponding receiver while the remaining bits at the rothe
signal levels are not delivered to the receiver through #ité p
i. This is motivated to mimic the AWGN channel since the
effect of background Gaussian noise can be simplified suphere
that the firstn; bits including the most significant bit (MSB)
are above noise level at the receiver while the remainirgy bit )
including the least significant bit (LSB) are below noiseclev

The capacity of this deterministic relay channel is th
found in [2] as

RCF = 10g2 (1 + |h31|2P1)

in {|ho1 |2 Py, |h3a|? P
mm{| 21| 17| 32| 2} (10)
1+ |hs1]2Py

+log, <1+6-

_ max{|h21|2P1, |h32|2P2}
14 (Jha1]? + |h21]?) Py + |ha2|? P2

<1, (11)

egnd 6 — 1 as max{|h21|2P1, |h32|2P2} —  o00. In-
terestingly, we can see thaf {10) is very similar (7)
such thatlog, (1 + |hs1|>Py) bits are achieved from the
@) direct path between the source and the destination while
log, (14 6 - min {|hoy > Py, |hs2|? P2} / (1 + |hs1|*Py)) bits
where [z]T = max{z,0}. (@) implies a capacity-achievingare additionally achieved through the relaying path. This
scheme such that firstiz; bits are directly delivered makes us conjecture th&i+t — Rcr < 1 is also satisfied
to the destination from the source while the remainini@r all values of the channel parameters.
[min{no1, 31} — na1] ™" bits are routed from the source to the |n this paper, we show that™ — Rer < 1 is indeed sat-
destination through the relay. This motivates the authof2]i isfied for all values of the channel parameters. For sintplici
to propose a DF-based relaying scheme such that it chooggsdefineq 2 |h31|?Py, b 2 |hsa|? P2, andc £ |hoy [P We
one of two schemes depending on whethggi |* > |h21|? O first consider the case ef< b and then the case of< c.
not as follows.
o If |h31]? > |ha1/?, the relay is ignored and the achievable
rate is equal tdOgQ(l + |h31|2P1)' A. The case of ¢ <b (|h21|2P1 < |h32|2P2)
o If |h31]? < |ho1|?, the block-Markov encoded DF scheme X . .
in [3] is used and hence its achievable rate is equal toSINCe o 57, INCreases as increases,
min{logy(1+ [ha1[*P1),1ogy (1 + [ha1|* P1 + |haa|* P2) .
Hence, the overall achievable rate is given by

Cy = min {max{no1, ns1 }, max{nsa, n31}}

= ng1 + [min{ner, naa} — na1]”

be
Ror = logy ( ot 1+a+b+c>
Rpp = max { logy (1 + |hs1|>P1), min{log, (1 + |ho1|*P1),

logy (1 + |ha1|* Py + |ha2|*P2)} }, (8)

(14 a+c)?

2
— ] =1 - (12
1—|—a—|—20) 082 1+a+2¢c (12)

> log, (1+a—|—



Defining A; £ Ct — Ror, we get

14+a+c)?
Ay <CT -1 (7
P 082 14+a+2c
(1+a+c)?

=logy (14+a+c)—log,y Py

1+a+4 2c

:1 _
062 l+a+c

<log,2 =1. (13)

Sincea + ¢ > 0 andag > 0, it is sufficient to showf(c) £
ag+2aic+axc® > 0 for all ¢ > 0. After some manipulation,
we obtain the discriminanb of f(c) as

D= a% — Qg
= —4ab{2a® 4+ (3b+ 5)a”® + (80> + 11b + 4)a

+(b+1)*(3b+1)} <0, (25)

Hence, the CF relaying scheme achieves the Gaussian reitich implies thatf(c) > 0 for all ¢ sinceas > 0. Hence,

channel capacity to within one bit when < b. Moreover,

A; < 1 whenc > b. Finally, we conclude the CF relaying

whenc = b — oo, we getA; — 1. On the other hand, when scheme achieves the Gaussian relay channel capacity tim with
b — oo only, Ay — 0, i.e., the capacity is asymptotically1 bit/sec/Hz for all values of the channel parameters.

achieved.

B. Thecaseof b < ¢ (|h32|2P2 < |h21|2P1)

Sincep* in C* is determined to satisfg'™ = O (p*) =
Gy (p"),

log, (14 (1 —p*?)(a+¢)) = log, (1 +a+b+ 2p*\/%)
= (a+c)p*? +2Vabp* +b—c=0

. Va=b+c)e—Vab
—p = )
a—+c

whereab < (a — b+ ¢)c for b < ¢. Hence,

2y/abc(a — b+ ¢) —2ab> (15)

(14)

C* =log, <1+a+b+

a—+c
Then,
(1+a+b+o) <1 +a+ b 2yobelasbie)-2ab “bc(“afjc)_zab)
Ay = log, (I+a)(l+a+b+c)+be
A
where
A=((1+a)(l+a+b+c)+bc)(a+c), 17)
B = bc — ab — abc — a®b + b*c — ab?, (18)
C =4(14a+b+c)abcla —b+c). (19)

Note that ifB+—A‘/6 <1,A; <1.Sinced > B andC > 0,
showing(A— B)?>—C > 0 is equivalent to showing””rA—\/a <
1. After some manipulation, we obtain

(A= B)? - C = (a+c)? <a0+2alc+a202+ as ),
a+c

(20)
where
ap = a* +4a*(b+1) + 6a%(b+1)* + (b* — 1)?
+4a(d® + b* + b+ 1), (21)
ar = (a+1)2+ (a®> + 1)b — (a + 1)b* — b, (22)
as = (a—0)*+2(a+0b)+1, (23)
asz = 4(ab 4+ 2a%b + 2ab® + 2a%b* + ab®). (24)

Fig.[ 4 showsA, for various|hs; |2 P, values whenP, = P,
|h31|? = 0.1|h21]? and |h3a|? = 1.5]he1|?. This explains the
gapA, is always less than one bit for the casej/of,|? P, <
|hsz|2P,. Fig.[8 showsA; for various|hy|2P; values when
P = P, |h31|2 = 0.1|h21|2 and|h32|2 = 0.8|h21|2. In this
case oflha1 |2 Py > |haz2|? P, the gapA; becomes quite close
to one aslho|? increases, but still less than one.

IV. GAUSSIAN RELAY CHANNEL CAPACITY TO WITHIN
Two BITS: AF RELAYING SCHEME

Although the DF and CF relaying schemes work well in
the Gaussian relay channel, both of them neethart relay
that can decode or compress the received signal and re-
encode it. In this section, we proposeeay simple AF-based
relaying scheme for dumb relay and show that it can achieve
the Gaussian relay channel capacity to witBirbits/sec/Hz
regardless of the channel parameters.

We first find an explicit expression for the achievable rate
of the AF relaying scheme. For simplicity, we use previously
defineda, b andc with 6, £ Zhs1, 0y 2 Zhss andf, 2 Lho;.
After the relay amplifies the received sigrial;_; at timei—1
and forwards it to the destination at timies

P
Xoy= | —2Yai
2, R EE

P2 C ]0
= —el%e X, o i , 26
\/C+1<1/P1€ 1,i—1 1+ Z2,i—1 (26)
the destination receives; ; at timei as
Y, = ie-je‘le . /iejt‘)bX2 )
K Pl K PQ K
_ Jaeita X1, bc ej(ngrgc)Xmel
RV Pl c+ 1 v P1
b
\|——e" Zy i 1+ 73, 27
+ P 18 2,i—1 + 43,i, (27)
where we assum&[|X;;?] = P and E[|X5,?] = P.

For simplicity, we normalize noise power by dividing ; by

b
\/c+1+1as

1
. Ya . _
Va2 24— ZHle,i—k + Zs

’ b
m‘i‘l k=0

(28)



where Ct — Rar < 2 is satisfied forlhs;|? > |h31]|? where we use
acr1) bo ‘ two bits instead of one bit since there is a penalty-afbit in
[Hy Hi)2 |y ———Z%ei% ,/7(33(9”90)] ,(29) (38). For|ha1|? < |hs1/|?, the capacity can be achieved within
btc+l bte+l one bit by simply ignoring the relay as in [2]. In this case,
.. A X (30) if the relay is active, then the signal-to-noise ratio (SNR)
b VP the destination becomes worse than that for the inactiagy rel
5 1 b since too much noise is amplified at the relay and forwarded to
Z3; = <\/ e Zo i1 + Zg,i> the destination. Finally, we can expect the capacity isexed
c+1 +1 ctl within 2 bits/sec/Hz regardless of the channel parameters.
~ CN(0,1). (31) Getting an insight from the above argument, we propose an

AF-based relaying scheme as follows.
Hence, the AF relying scheme turns the channel from the_ |ha1|2 > |ha1 |2, the relay is ignored and the achievable
source to the destination into a .unit-memory intersymbol rate is equal tdog, (1+|hs1|2P1). I this case, it is easily
interference channel_[4], [6]. Folloyvmg [71, [S], the aeliable shown thatC'* — log,(1 +a) < 1 as in [2] by
rate for the AF relaying scheme is then written by
2n CT < Cy(0)

=logy(1 +a+c) <logy(1+a)+ 1(39)
log, (1 + X(w) |H(w)|2) dw  (32)

o If |h31]? < |h21]?, the relay amplifieds ;; and forwards
it to the destination as

Py
Xoi= /oo Va1,
» 2P +1 271

where we assumg|[| X1 ;|%] = P, andE[| X ;|%] = P».
From now on, we show thaf™ — R r < 2 in the case of
a < c. Especially, we first consider the caseawf ¢ < b, and
en the case of < c andb < c.

max —
S(w)>0 27T
i L [3™ S(w)dw<1

where H(w) is the Fourier transform off;, given by

fa(c+1) oi0a / 5(0p+0—w)
33
b+c+1 b+c+1 (33)

and ;- o Y(w)dw < 1 is the normalized power constraint.
AIthough the optimal power allocatiol*(w) is the well-
known water-filling [6]-[8], we here assume uniform powe{h
allocation as::(w) = 1 for all w. Using

(40)

2 )
/ In(p + v - cos(x + y))dr = 2rIn %,(34) A Thecaseof a < ¢ <b (|ha1]*Py < |ha1[PPy < |ha2]* Po)
0

Defining Ay £ C*t — Rar, We get
from [ In(p + v - cosz)dx = wln [ VA \/‘2‘2"’2 for u>v>0 M
in [9, p.526], we obtain Az =1+ log, K+ VL (41)
I 1 b
T
27 Jo b+c+1 b+c+1
M=(0+a+c)(1+b+c). (42)
2y/abe(c+ 1) 0 — 0 —0))d
b+c+1 08(w + 00 — 0 — bc) |dw Since showinglogQ% < 1 is equivalent to showing
K++VL 2(K ++/L) — M > 0, we first consider
= logy ———— TThrec 0 (35)
2(K+VL) - M>2(K+
where ( ) (K +c(b—a)) -
=(1—-a+3c)b+(1- )(1+a+c) (43)
K=14a+b+c+ (a+b)c, (36) N
L—(1 1 b)2 249 D)+ 1 ' and letg(b) = (1 —a+3c)b+ (1 —¢)(1 + a+ ¢). From
T+ {(+a+h)’+((@a-b)"+2a+b)+1)c} (1 —a+3c) >0, it is notable that ifg(c) > 0, theng(b) > 0
37) for all b > c. Since

Then,Rr in (35) can be rewritten as
Rap = —1+log, (1+ |ha1|* 1)
+log, 1+ |ha2|? Py (|ho1|? = |hs1]?) PL + VL
2 (1+ |h31|2P1) (1 + |h3o|?Pa + |hoa|?2Pr) |
(38)

Interestingly, we can see that as long|asg; |2 > |hs; |2, (38)
is similar to Cy in (@) and R¢r in (I0) such thafog, (1 +

|h31|?Py) bits are directly delivered from the source to the
destination while the remaining bits are additionally deded
through the relaying path. This makes us to conjecture that

glc)=14a+c+2c(c—a) >0, (44)

Ay <2 forall a <c<b. ltis also notable whem = b =
c — 0o, We getAs; — 2.

B. Thecase of a < c and b < ¢ (|h31|*P1 < |ho1|?Py and
|hs2|?Pe < |ho1[*Py)
From [I5) and[(35)E(37), we get
P
Ay =1 +log, VQ (45)

(a—i—c)(K—l—\/z)7



where

P=(1+b+c)((1+a+b)(a+c)—2ab), (46)
Q=4(1+b+ c)zabc(a —b+c). (47)
Since
20a+c)K —P=a*(1—b+c)+a(l+b+c)?
+c(1+ (c—b)b+¢) >0, (48)

showing log, % <

where
Yo = a(a®*(5 — 2b+b%) + (1 + b)*(5 + 2b + b%)
+2a(5 + 5b — b* — b*)), (58)
v1 =5+ a*(14 — 6b) + 8b + 2b% + b* + 4a(5 + 6b + b?)

+a?(29 + 10b + 5b°), (59)
Yo = 28a* + 9a® + a(29 — 2b — 11b%)

+2(5+ 7b + 3b* + b%), (60)
v3 =5+ 14a + (a — b)* + 6b + 8a(a — b). (61)

Froma > b, t(c) £ ~o+71c+72¢2 +73c® is a cubic function

1 is equivalent to showing with v > 0. Since

2 . . .
(2(a+¢)(K+VL)—-P)"—Q > 0. Todo it, we first consider ¢(4) = 2a(5 + 2843 + 106 + 6b + 263 + a(34 + 6b)

the case ofi < b < ¢ and then the case éf< a < c.

1) The case of a < b < ¢: After some manipulation, we

obtain
(2a+ (K +VD) ~P) @
>©2>a+c) (K +cb—a)—P)°-Q
= (a+c) (Bo+ Pic+ Bac® + Bsc?) (49)
where
Bo = a(a®(5—2b+b%) + (1 +b)*(5+2b+ b?)
+2a(5 + 5b— b* — b%)), (50)

B1=05+8b+2b% +b* +2a3(3 +b) + a*(21 + 2b — 11b%)

+4a(5 + 8b + 5b% + 2b?), (51)
By =10+ a® + a*(12 — 8b) + 22b + 6b* — 6b°

+a(21 + 14b + 13b%), (52)
B3 =5+6a+ (a—b)?+14b + 8b(b — a). (53)

Sinces(c) = By + Bic+ B2c? + Bac is a cubic function with
B3 > 0, it is notable that ifs(b) > 0, s'(b) > 0 ands” (b) > 0,
thens(c) > 0 for all ¢ > b. Fromb > a, we get

s(b) = a®(5 + 4b) + a*(10 + 31b + 12b%)
+b(5 + 18b + 29b* + 200°) + a(5 + 32b + 63b? + 44b%)
+4ab*(a — b)? + 463 (b* + 2ab — 3a?) > 0, (54)
s'(b) = 5+ 6a® + 28b + 61b% + 54b + a*(21 + 26b)
+a(20 + 74b + 66b°) + 4ab(a — b)* + 166 (b* — a?)

>0, (55)
s"(b) = 20 + 24a® + 74b + 96b> + a(42 + 64b)
+2a(a — b)? + 6b(76* — 6ab — a?) > 0. (56)
Hence, we havé\, < 2 for all ¢ > b > a.
2) The case of b < a < ¢: Similarly, we obtain
2
(2(a+ ¢)(K + VL) — P) —Q
> (2(a +¢)(K + c(a — b)) — P)* = Q
=(a+¢c)(vo+mnc+ Yoc? + 7303) ) (57)

+4a(5 4 6b 4 b?)) + 2a(a® — b*)? + 16a*(a — b)

>0, (62)
t'(a) =5+ 112a® + 8b + 2b* + 6a*(17 + 4b)

+4a(10 + 13b + 4b%) + 2b*(a — b)?

+37a* — 36a%b — b* > 0, (63)

t"(a) = 4(5 4 35a* 4 Tb + 3b> + a(22 + 8b)) + 4b(a — b)*
+8a(9a* — 8ab — b*) > 0, (64)

t(c) > 0 for all ¢ > a. Hence,Ay, < 2 for all ¢ > a >

b. Finally, we conclude the proposed AF relaying scheme
achieves the Gaussian relay channel capacity to within
bits/sec/Hz regardless of the channel parameters. Morgove
whena = b — oo andc — oo, we haveA, — 2.

Fig.[d showsA, for various|hs; |2 P, values whenP, = P,
|h31|? = 0.1|ha1)? and |h32|? = 1.5]ha1|?. This explains the
gapA; is always less than two bits for the case/fof; |2 P, <
|ho1 2Py < |ha2|?P,. Fig.[@ showsA, for various|ha |2 Py
values whenP; = P,, |h3i|? = 0.48|ho1|? and |haz|? =
0.5|h21|2. In this case 0fh31|2P1 < |h21|2P1 and|h32|2P2 <
|ha1|? Py, since|hs;|? Py is quite close tdhsz| Ps, the gapAs
also becomes quite close to two j@s;|? increases, but still
less than two.
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