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Gaussian Relay Channel Capacity to
Within a Fixed Number of Bits

Woohyuk Chang, Sae-Young Chung, and Yong H. Lee

Abstract— In this paper, we show that the capacity of the three-
node Gaussian relay channel can be achieved to within 1 and 2
bit/sec/Hz using compress-and-forward and amplify-and-forward
relaying, respectively.

I. I NTRODUCTION

Although both relay channels and interference channels
are fundamental building blocks for constructing multiuser
networks, their single-letter capacity characterizationhas been
open for decades. In [1], instead of struggling to find the exact
capacity utilizing complicated achievable schemes, the authors
show that a simple Han–Kobayashi scheme can achieve the
capacity of the two-user Gaussian interference channel to
within 1 bit/sec/Hz for all values of the channel parameters.

In [2], this approach is further developed and generalized.
The authors first consider a deterministic channel model
related to a given Gaussian channel and develop a scheme
to achieve the capacity of such a deterministic channel. After
getting an insight from the achievable scheme for the determin-
istic channel, they then develop a scheme to achieve the origi-
nal Gaussian channel capacity to within a constant number of
bits for all values of the channel parameters. This approachis
called thedeterministic approach. As an example, they showed
that the decode-and-forward (DF) relaying scheme originally
proposed by Cover and El Gamal in [3] achieves the capacity
of the three-node relay channel to within1 bit/sec/Hz and a
simple partial DF relaying scheme achieves the capacity of the
diamond Gaussian relay channel to within2 bits/sec/Hz.

In this paper, we first show that the compress-and-forward
(CF) relaying scheme by Cover and El Gamal in [3] can
achieve the three-node Gaussian relay channel capacity to
within 1 bit/sec/Hz for all values of the channel parameters.
We also show a simple amplify-and-forward (AF) relaying
scheme where the relay amplifies and forwards the received
signal only when the channel from the source to the relay is
stronger than the channel from the source to the destination
also achieves the Gaussian relay channel capacity to within2
bits/sec/Hz regardless of the channel parameters.

The rest of the paper is organized as follows. In Section II,
we introduce the Gaussian relay channel. Section III shows
that the CF relaying scheme achieves the Gaussian relay
channel capacity to within1 bit/sec/Hz regardless of the
channel parameters. In Section IV, the AF relaying scheme

Woohyuk Chang is with the Center for High-Performance Inte-
grated Systems, KAIST, Daejeon 305-701, Republic of Korea (e-mail:
whchang@kaist.ac.kr). Sae-Young Chung and Yong H. Lee are with the
Dept. of EE, KAIST, Daejeon 305-701, Republic of Korea (e-mail: {sychung,
yohlee}@ee.kaist.ac.kr).

is proposed and shown to achieve the capacity to within2
bits/sec/Hz.

II. GAUSSIAN RELAY CHANNEL

We consider a Gaussian relay channel in Fig. 1. For simplic-
ity, we assume a full-duplex relay as in [2]–[4]. The received
signals at the relay and the destination are given by

Y2 = h21X1 + Z2, (1)

Y3 = h31X1 + h32X2 + Z3, (2)

respectively, whereh21, h31, andh32 are complex constants,
Z2 ∼ CN (0, 1) andZ3 ∼ CN (0, 1) are noises at the relay and
at the destination, respectively, that are independent of each
other,E[|X1|2] ≤ P1, andE[|X2|2] ≤ P2.

From [3], the upper bound on its channel capacity can be
found as

C+ = max
0≤ρ≤1

min
{

C+
1 (ρ), C+

2 (ρ)
}

(3)

where

C+
1 (ρ) = log2

(

1 + (1− ρ2)
(

|h21|2 + |h31|2
)

P1

)

, (4)

C+
2 (ρ) = log2

(

1 + |h31|2P1 + |h32|2P2

+2ρ
√

|h31|2|h32|2P1P2

)

, (5)

ρ =
E

[

X1X
†
2

]

√

E
[

|X1|2
]

E[|X2|2
]

, (6)

where X†
2 is the complex conjugate ofX2. Since C+

1 (ρ)
decreases whileC+

2 (ρ) increases asρ increases, andC+
1 (1) ≤

C+
2 (1), there exist two possible cases for the optimalρ∗ values

depending on whether|h21|2P1 ≤ |h32|2P2 or not as shown
in Fig 2.

• If |h21|2P1 ≤ |h32|2P2, C+
1 (ρ) ≤ C+

2 (ρ) for all 0 ≤ ρ ≤
1, and henceρ∗ = 0 andC+ = C+

1 (0).
• If |h21|2P1 > |h32|2P2, ρ∗ is determined such thatC+ =

C+
1 (ρ∗) = C+

2 (ρ∗).

III. G AUSSIAN RELAY CHANNEL CAPACITY TO WITHIN

ONE BIT: CF RELAYING SCHEME

In [2], the authors introduce a deterministic relay channel
model corresponding to the Gaussian relay channel in Section
II as shown in Fig. 3. Each circle at the transmitter of each
node represents a signal level and a binary digit can be put
on each circle for transmission.ni represents the received
signal-to-noise ratio (SNR) for pathi in dB scale. More

http://arxiv.org/abs/1011.5065v1
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Fig. 1. Gaussian relay channel.
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Fig. 2. C+

1
(ρ) and C+

2
(ρ): (a) |h21|2P1 ≤ |h32|2P2, (b) |h2

21
|P1 >

|h2
32|P2.

specifically,n31 = ⌈log2(h31P1)⌉, n32 = ⌈log2(h32P2)⌉ and
n21 = ⌈log2(h21P1)⌉. Then, the transmitted bits at the first
ni signal levels are received clearly through the pathi at the
corresponding receiver while the remaining bits at the other
signal levels are not delivered to the receiver through the path
i. This is motivated to mimic the AWGN channel since the
effect of background Gaussian noise can be simplified such
that the firstni bits including the most significant bit (MSB)
are above noise level at the receiver while the remaining bits
including the least significant bit (LSB) are below noise level.

The capacity of this deterministic relay channel is then
found in [2] as

Cd = min {max{n21, n31},max{n32, n31}}
= n31 + [min{n21, n32} − n31]

+ (7)

where [x]+ = max{x, 0}. (7) implies a capacity-achieving
scheme such that firstn31 bits are directly delivered
to the destination from the source while the remaining
[min{n21, n31} − n31]

+ bits are routed from the source to the
destination through the relay. This motivates the authors in [2]
to propose a DF-based relaying scheme such that it chooses
one of two schemes depending on whether|h31|2 > |h21|2 or
not as follows.

• If |h31|2 > |h21|2, the relay is ignored and the achievable
rate is equal tolog2(1 + |h31|2P1).

• If |h31|2 ≤ |h21|2, the block-Markov encoded DF scheme
in [3] is used and hence its achievable rate is equal to
min{log2(1+ |h21|2P1), log2(1+ |h31|2P1+ |h32|2P2)}.

Hence, the overall achievable rate is given by

RDF = max
{

log2(1 + |h31|2P1),min{log2(1 + |h21|2P1),

log2(1 + |h31|2P1 + |h32|2P2)}
}

, (8)
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Fig. 3. Deterministic relay channel.

andC+ −RDF ≤ 1 is shown to be satisfied for all values of
the channel parameters.

In [4]–[6], the achievable rate of the CF relaying scheme
for the Gaussian relay channel in Section II is explicitly given
by

RCF =

log2

(

1 + |h31|2P1 +
|h21|2|h32|2P1P2

1 + (|h31|2 + |h21|2)P1 + |h32|2P2

)

.

(9)

Then,RCF in (9) can be rewritten as

RCF = log2
(

1 + |h31|2P1

)

+ log2

(

1 + δ · min
{

|h21|2P1, |h32|2P2

}

1 + |h31|2P1

)

,(10)

where

δ =
max

{

|h21|2P1, |h32|2P2

}

1 + (|h31|2 + |h21|2)P1 + |h32|2P2
< 1, (11)

and δ → 1 as max
{

|h21|2P1, |h32|2P2

}

→ ∞. In-
terestingly, we can see that (10) is very similar to (7)
such that log2

(

1 + |h31|2P1

)

bits are achieved from the
direct path between the source and the destination while
log2

(

1 + δ ·min
{

|h21|2P1, |h32|2P2

}

/
(

1 + |h31|2P1

))

bits
are additionally achieved through the relaying path. This
makes us conjecture thatC+ − RCF ≤ 1 is also satisfied
for all values of the channel parameters.

In this paper, we show thatC+ − RCF ≤ 1 is indeed sat-
isfied for all values of the channel parameters. For simplicity,
we definea , |h31|2P1, b , |h32|2P2, andc , |h21|2P1. We
first consider the case ofc ≤ b and then the case ofb < c.

A. The case of c ≤ b
(

|h21|2P1 ≤ |h32|2P2

)

Since bc
1+a+b+c

increases asb increases,

RCF = log2

(

1 + a+
bc

1 + a+ b+ c

)

≥ log2

(

1 + a+
c2

1 + a+ 2c

)

= log2
(1 + a+ c)2

1 + a+ 2c
.(12)
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Defining∆1 , C+ −RCF , we get

∆1 ≤ C+ − log2
(1 + a+ c)2

1 + a+ 2c

= log2 (1 + a+ c)− log2
(1 + a+ c)2

1 + a+ 2c

= log2
1 + a+ 2c

1 + a+ c
≤ log2 2 = 1. (13)

Hence, the CF relaying scheme achieves the Gaussian relay
channel capacity to within one bit whenc ≤ b. Moreover,
whenc = b → ∞, we get∆1 → 1. On the other hand, when
b → ∞ only, ∆1 → 0, i.e., the capacity is asymptotically
achieved.

B. The case of b < c
(

|h32|2P2 < |h21|2P1

)

Sinceρ∗ in C+ is determined to satisfyC+ = C+
1 (ρ∗) =

C+
2 (ρ∗),

log2
(

1 + (1 − ρ∗2)(a+ c)
)

= log2

(

1 + a+ b+ 2ρ∗
√
ab
)

⇐⇒ (a+ c)ρ∗2 + 2
√
abρ∗ + b− c = 0

⇐⇒ ρ∗ =

√

(a− b+ c)c−
√
ab

a+ c
, (14)

whereab < (a− b+ c)c for b < c. Hence,

C+ = log2

(

1 + a+ b+
2
√

abc(a− b + c)− 2ab

a+ c

)

. (15)

Then,

∆1 = log2

(1 + a+ b+ c)

(

1 + a+ b+
2
√

abc(a−b+c)−2ab

a+c

)

(1 + a)(1 + a+ b + c) + bc

= log2

(

1 +
B +

√
C

A

)

, (16)

where

A = ((1 + a)(1 + a+ b + c) + bc)(a+ c), (17)

B = bc− ab− abc− a2b+ b2c− ab2, (18)

C = 4(1 + a+ b+ c)2abc(a− b+ c). (19)

Note that if B+
√
C

A
≤ 1, ∆1 ≤ 1. SinceA ≥ B andC ≥ 0,

showing(A−B)2−C ≥ 0 is equivalent to showingB+
√
C

A
≤

1. After some manipulation, we obtain

(A−B)2 − C = (a+ c)2
(

α0 + 2α1c+ α2c
2 +

α3

a+ c

)

,

(20)

where

α0 = a4 + 4a3(b+ 1) + 6a2(b+ 1)2 + (b2 − 1)2

+4a(b3 + b2 + b+ 1), (21)

α1 = (a+ 1)3 + (a2 + 1)b− (a+ 1)b2 − b3, (22)

α2 = (a− b)2 + 2(a+ b) + 1, (23)

α3 = 4(ab+ 2a2b+ 2ab2 + 2a2b2 + ab3). (24)

Sincea + c > 0 andα3 ≥ 0, it is sufficient to showf(c) ,
α0+2α1c+α2c

2 ≥ 0 for all c ≥ 0. After some manipulation,
we obtain the discriminantD of f(c) as

D = α2
1 − α0α2

= −4ab
{

2a3 + (3b+ 5)a2 + (8b2 + 11b+ 4)a

+(b+ 1)2(3b+ 1)
}

≤ 0, (25)

which implies thatf(c) ≥ 0 for all c sinceα2 > 0. Hence,
∆1 ≤ 1 when c > b. Finally, we conclude the CF relaying
scheme achieves the Gaussian relay channel capacity to within
1 bit/sec/Hz for all values of the channel parameters.

Fig. 4 shows∆1 for various|h21|2P1 values whenP1 = P2,
|h31|2 = 0.1|h21|2 and |h32|2 = 1.5|h21|2. This explains the
gap∆1 is always less than one bit for the case of|h21|2P1 ≤
|h32|2P2. Fig. 5 shows∆1 for various|h21|2P1 values when
P1 = P2, |h31|2 = 0.1|h21|2 and |h32|2 = 0.8|h21|2. In this
case of|h21|2P1 > |h32|2P2, the gap∆1 becomes quite close
to one as|h21|2 increases, but still less than one.

IV. GAUSSIAN RELAY CHANNEL CAPACITY TO WITHIN

TWO BITS: AF RELAYING SCHEME

Although the DF and CF relaying schemes work well in
the Gaussian relay channel, both of them need asmart relay
that can decode or compress the received signal and re-
encode it. In this section, we propose avery simple AF-based
relaying scheme for adumb relay and show that it can achieve
the Gaussian relay channel capacity to within2 bits/sec/Hz
regardless of the channel parameters.

We first find an explicit expression for the achievable rate
of the AF relaying scheme. For simplicity, we use previously
defineda, b andc with θa , ∠h31, θb , ∠h32 andθc , ∠h21.
After the relay amplifies the received signalY2,i−1 at timei−1
and forwards it to the destination at timei as

X2,i =

√

P2

c+ 1
Y2,i−1

=

√

P2

c+ 1

(√

c

P1
ejθcX1,i−1 + Z2,i−1

)

, (26)

the destination receivesY3,i at time i as

Y3,i =

√

a

P1
ejθaX1,i +

√

b

P2
ejθbX2,i

=
√
aejθa

X1,i√
P1

+

√

bc

c+ 1
ej(θb+θc)

X1,i−1√
P1

+

√

b

c+ 1
ejθbZ2,i−1 + Z3,i, (27)

where we assumeE[|X1,i|2] = P1 and E[|X2,i|2] = P2.
For simplicity, we normalize noise power by dividingY3,i by
√

b
c+1 + 1 as

Ỹ3,i ,
Y3,i

√

b
c+1 + 1

=

1
∑

k=0

HkX̃1,i−k + Z̃3,i, (28)
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where

[H0 H1] ,

[

√

a(c+ 1)

b+ c+ 1
ejθa

√

bc

b+ c+ 1
ej(θb+θc)

]

,(29)

X̃1,i ,
X1,i√
P1

, (30)

Z̃3,i ,
1

√

b
c+1 + 1

(

√

b

c+ 1
ejθbZ2,i−1 + Z3,i

)

∼ CN (0, 1). (31)

Hence, the AF relying scheme turns the channel from the
source to the destination into a unit-memory intersymbol
interference channel [4], [6]. Following [7], [8], the achievable
rate for the AF relaying scheme is then written by

max
Σ(w)≥0

1
2π

∫ 2π
0

Σ(w)dw≤1

1

2π

∫ 2π

0

log2

(

1 + Σ(w) |H(w)|2
)

dw (32)

whereH(w) is the Fourier transform ofHk given by

H(w) =

√

a(c+ 1)

b+ c+ 1
ejθa +

√

bc

b+ c+ 1
ej(θb+θc−w),(33)

and 1
2π

∫ 2π

0
Σ(w)dw ≤ 1 is the normalized power constraint.

Although the optimal power allocationΣ∗(w) is the well-
known water-filling [6]–[8], we here assume uniform power
allocation asΣ(w) = 1 for all w. Using
∫ 2π

0

ln(µ+ ν · cos(x+ y))dx = 2π ln
µ+

√

µ2 − ν2

2
,(34)

from
∫ π

0
ln(µ+ ν · cosx)dx = π ln

µ+
√

µ2−ν2

2 for µ ≥ ν > 0
in [9, p.526], we obtain

RAF =
1

2π

∫ 2π

0

log2

(

1 +
a(c+ 1)

b+ c+ 1
+

bc

b + c+ 1

+
2
√

abc(c+ 1)

b+ c+ 1
cos(w + θa − θb − θc)

)

dw

= log2
K +

√
L

1 + b+ c
− 1, (35)

where

K = 1 + a+ b+ c+ (a+ b)c, (36)

L = (1 + c)
{

(1 + a+ b)2 +
(

(a− b)2 + 2(a+ b) + 1
)

c
}

.

(37)

Then,RAF in (35) can be rewritten as

RAF = −1 + log2
(

1 + |h31|2P1

)

+ log2

(

1 +
|h32|2P2

(

|h21|2 − |h31|2
)

P1 +
√
L

(1 + |h31|2P1) (1 + |h32|2P2 + |h21|2P1)

)

.

(38)

Interestingly, we can see that as long as|h21|2 > |h31|2, (38)
is similar toCd in (7) andRCF in (10) such thatlog2(1 +
|h31|2P1) bits are directly delivered from the source to the
destination while the remaining bits are additionally delivered
through the relaying path. This makes us to conjecture that

C+ −RAF ≤ 2 is satisfied for|h21|2 > |h31|2 where we use
two bits instead of one bit since there is a penalty of−1 bit in
(38). For|h21|2 ≤ |h31|2, the capacity can be achieved within
one bit by simply ignoring the relay as in [2]. In this case,
if the relay is active, then the signal-to-noise ratio (SNR)at
the destination becomes worse than that for the inactive relay
since too much noise is amplified at the relay and forwarded to
the destination. Finally, we can expect the capacity is achieved
within 2 bits/sec/Hz regardless of the channel parameters.

Getting an insight from the above argument, we propose an
AF-based relaying scheme as follows.

• If |h31|2 > |h21|2, the relay is ignored and the achievable
rate is equal tolog2(1+|h31|2P1). In this case, it is easily
shown thatC+ − log2(1 + a) ≤ 1 as in [2] by

C+ ≤ C+
1 (0) = log2(1 + a+ c) ≤ log2(1 + a) + 1.(39)

• If |h31|2 ≤ |h21|2, the relay amplifiesY2,i−1 and forwards
it to the destination as

X2,i =

√

P2

|h21|2P1 + 1
Y2,i−1, (40)

where we assumeE[|X1,i|2] = P1 andE[|X2,i|2] = P2.

From now on, we show thatC+ − RAF ≤ 2 in the case of
a ≤ c. Especially, we first consider the case ofa ≤ c ≤ b, and
then the case ofa ≤ c andb < c.

A. The case of a ≤ c ≤ b
(

|h31|2P1 ≤ |h21|2P1 ≤ |h32|2P2

)

Defining∆2 , C+ −RAF , we get

∆2 = 1 + log2
M

K +
√
L
, (41)

where

M = (1 + a+ c)(1 + b+ c). (42)

Since showinglog2
M

K+
√
L

≤ 1 is equivalent to showing

2(K +
√
L)−M ≥ 0, we first consider

2
(

K +
√
L
)

−M ≥ 2 (K + c(b − a))−M

= (1− a+ 3c)b+ (1 − c)(1 + a+ c), (43)

and let g(b) , (1 − a + 3c)b + (1 − c)(1 + a + c). From
(1− a+3c) ≥ 0, it is notable that ifg(c) ≥ 0, theng(b) ≥ 0
for all b ≥ c. Since

g(c) = 1 + a+ c+ 2c(c− a) > 0, (44)

∆2 ≤ 2 for all a ≤ c ≤ b. It is also notable whena = b =
c → ∞, we get∆2 → 2.

B. The case of a ≤ c and b < c
(

|h31|2P1 ≤ |h21|2P1 and
|h32|2P2 < |h21|2P1

)

From (15) and (35)–(37), we get

∆2 = 1 + log2
P +

√
Q

(a+ c)
(

K +
√
L
) , (45)
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where

P = (1 + b+ c) ((1 + a+ b)(a+ c)− 2ab) , (46)

Q = 4(1 + b+ c)2abc(a− b+ c). (47)

Since

2(a+ c)K − P = a2(1− b + c) + a(1 + b+ c)2

+c(1 + (c− b)b+ c) ≥ 0, (48)

showing log2
P+

√
Q

(a+c)(K+
√
L)

≤ 1 is equivalent to showing
(

2(a+c)(K+
√
L)−P

)2−Q ≥ 0. To do it, we first consider
the case ofa ≤ b < c and then the case ofb < a ≤ c.

1) The case of a ≤ b < c: After some manipulation, we
obtain

(

2(a+ c)(K +
√
L)− P

)2

−Q

≥ (2(a+ c)(K + c(b− a))− P )
2 −Q

= (a+ c)
(

β0 + β1c+ β2c
2 + β3c

3
)

, (49)

where

β0 = a
(

a2(5− 2b+ b2) + (1 + b)2(5 + 2b+ b2)

+2a(5 + 5b− b2 − b3)
)

, (50)

β1 = 5 + 8b+ 2b2 + b4 + 2a3(3 + b) + a2(21 + 2b− 11b2)

+4a(5 + 8b+ 5b2 + 2b3), (51)

β2 = 10 + a3 + a2(12− 8b) + 22b+ 6b2 − 6b3

+a(21 + 14b+ 13b2), (52)

β3 = 5 + 6a+ (a− b)2 + 14b+ 8b(b− a). (53)

Sinces(c) , β0 + β1c+ β2c
2 + β3c

3 is a cubic function with
β3 > 0, it is notable that ifs(b) ≥ 0, s′(b) ≥ 0 ands′′(b) ≥ 0,
thens(c) ≥ 0 for all c ≥ b. From b ≥ a, we get

s(b) = a3(5 + 4b) + a2(10 + 31b+ 12b2)

+b(5 + 18b+ 29b2 + 20b3) + a(5 + 32b+ 63b2 + 44b3)

+4ab2(a− b)2 + 4b3(b2 + 2ab− 3a2) ≥ 0, (54)

s′(b) = 5 + 6a3 + 28b+ 61b2 + 54b3 + a2(21 + 26b)

+a(20 + 74b+ 66b2) + 4ab(a− b)2 + 16b2(b2 − a2)

> 0, (55)

s′′(b) = 20 + 24a2 + 74b+ 96b2 + a(42 + 64b)

+2a(a− b)2 + 6b(7b2 − 6ab− a2) > 0. (56)

Hence, we have∆2 ≤ 2 for all c > b ≥ a.

2) The case of b < a ≤ c: Similarly, we obtain

(

2(a+ c)(K +
√
L)− P

)2

−Q

≥ (2(a+ c)(K + c(a− b))− P )
2 −Q

= (a+ c)
(

γ0 + γ1c+ γ2c
2 + γ3c

3
)

, (57)

where

γ0 = a
(

a2(5− 2b+ b2) + (1 + b)2(5 + 2b+ b2)

+2a(5 + 5b− b2 − b3)
)

, (58)

γ1 = 5 + a3(14− 6b) + 8b+ 2b2 + b4 + 4a(5 + 6b+ b2)

+a2(29 + 10b+ 5b2), (59)

γ2 = 28a2 + 9a3 + a(29− 2b− 11b2)

+2(5 + 7b+ 3b2 + b3), (60)

γ3 = 5 + 14a+ (a− b)2 + 6b+ 8a(a− b). (61)

Froma ≥ b, t(c) , γ0+γ1c+γ2c
2+γ3c

3 is a cubic function
with γ3 > 0. Since

t(a) = 2a(5 + 28a3 + 10b+ 6b2 + 2b3 + a2(34 + 6b)

+4a(5 + 6b+ b2)) + 2a(a2 − b2)2 + 16a4(a− b)

≥ 0, (62)

t′(a) = 5 + 112a3 + 8b+ 2b2 + 6a2(17 + 4b)

+4a(10 + 13b+ 4b2) + 2b2(a− b)2

+37a4 − 36a3b− b4 > 0, (63)

t′′(a) = 4
(

5 + 35a2 + 7b+ 3b2 + a(22 + 8b)
)

+ 4b(a− b)2

+8a(9a2 − 8ab− b2) > 0, (64)

t(c) ≥ 0 for all c ≥ a. Hence,∆2 ≤ 2 for all c ≥ a >
b. Finally, we conclude the proposed AF relaying scheme
achieves the Gaussian relay channel capacity to within2
bits/sec/Hz regardless of the channel parameters. Moreover,
whena = b → ∞ andc → ∞, we have∆2 → 2.

Fig. 6 shows∆2 for various|h21|2P1 values whenP1 = P2,
|h31|2 = 0.1|h21|2 and |h32|2 = 1.5|h21|2. This explains the
gap∆2 is always less than two bits for the case of|h31|2P1 ≤
|h21|2P1 ≤ |h32|2P2. Fig. 7 shows∆2 for various |h21|2P1

values whenP1 = P2, |h31|2 = 0.48|h21|2 and |h32|2 =
0.5|h21|2. In this case of|h31|2P1 ≤ |h21|2P1 and|h32|2P2 <
|h21|2P1, since|h31|2P1 is quite close to|h32|P2, the gap∆2

also becomes quite close to two as|h21|2 increases, but still
less than two.
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Fig. 4. ∆1 for various|h21|2P1 values withP1 = P2, |h31|2 = 0.1|h21|2

and |h32|2 = 1.5|h21|2.
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Fig. 5. ∆1 for various|h21|2P1 values withP1 = P2, |h31|2 = 0.1|h21|2

and |h32|2 = 0.8|h21|2.
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Fig. 6. ∆2 for various|h21|2P1 values withP1 = P2, |h31|2 = 0.1|h21|2

and |h32|2 = 1.5|h21|2.
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Fig. 7. ∆2 for various|h21|2P1 values withP1 = P2, |h31|2 = 0.48|h21|2

and |h32|2 = 0.5|h21|2.
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