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Abstract

Let v(x, t) = vrer + vθeθ+ vzez be a solution to the three-dimensional incom-
pressible axially-symmetric Navier-Stokes equations. Denote by b = vrer + vzez
the radial-axial vector field. Under a general scaling invariant condition on b,
we prove that the quantity Γ = rvθ is Hölder continuous at r = 0, t = 0. As
an application, we give a partial proof of a conjecture on Liouville property by
Koch-Nadirashvili-Seregin-Sverak in [15] and Seregin-Sverak in [24]. As another
application, we prove that if b ∈ L∞([0, T ], BMO−1), then v is regular. This pro-
vides an answer to an open question raised by Koch and Tataru in [14] about the
uniqueness and regularity of Navier-Stokes equations in the axially-symmetric
case.

Keyword: axially-symmetric Navier-Stokes equations, Liouville theorem, ancient
solutions, Nash method

1 Introduction

In this paper we study the three-dimensional incompressible axially-symmetric Navier-
Stokes equations. In cylindrical coordinates, the velocity field v = v(x, t) is of the
form

v(x, t) = vr(r, z, t)er + vθ(r, z, t)eθ + vz(r, z, t)ez.

Here and throughout the paper, we write x = (x1, x2, z), r = r(x) =
√
x21 + x22 and

er = er(x) =




x1

r
x2

r

0


 , eθ = eθ(x) =



−x2

r
x1

r

0


 , ez = ez(x) =



0
0
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are the three orthogonal unit vectors along the radial, the angular, and the axial
directions respectively. The radial, angular (or swirl) and axial components vr, vθ and
vz of the velocity field are governed by (see, for instance, [19])






∂tv
r + b · ∇vr − (vθ)2

r
+ ∂rp =

(
∆− 1

r2

)
vr,

∂tv
θ + b · ∇vθ + vrvθ

r
=

(
∆− 1

r2

)
vθ,

∂tv
z + b · ∇vz + ∂zp = ∆vz,

b = vrer + vzez, ∇ · b = ∂rv
r + vr

r
+ ∂zv

z = 0.

(1.1)

Here without loss of generality, we have set the viscosity constant to be unit.
A special feature of the axially-symmetric Navier-Stokes equations is that the quan-

tity Γ = rvθ(x, t) satisfies an parabolic equation with singular drift terms:

∂tΓ + b · ∇Γ +
2

r
∂rΓ = ∆Γ. (1.2)

We remark that Γ enjoys the maximal principle. For this reason the axially-symmetric
case appears more tractable than the full three-dimensional problem.

Nevertheless, it is well-known that global regularity of the three-dimensional incom-
pressible Navier-Stokes equations is still wide open even in the axially-symmetric case.
But if the swirl component of the velocity field vθ is trivial, independently, Ladyzhen-
skaya [16] and Uchoviskii & Yudovich [28] proved that weak solutions are regular for all
time (see also [18]). Recently, tremendous efforts and interesting progresses have been
made on the regularity problem of the axially-symmetric Navier-Stokes equations with
a general non-trivial swirl. For example, in [4, 5], Chen-Strain-Tsai-Yau proved, among
other things, that the suitable weak solutions are smooth if the velocity field v satisfies
r|v| ≤ C∗ <∞. Their method is based on the classical results by Nash [22], Moser [21]
and De Giorgi [6]. In [15], Koch-Nadirashvili-Seregin-Sverak proved the same result
using Liouville type theorem for ancient solutions of Navier-Stokes equations. See also
[24] for a local version.

A velocity field is called an ancient solution if it exists in the time interval (−∞, 0],
and it satisfies the Navier-Stokes equation in certain sense. A well known fact is that
ancient solutions represent structures of singularity of evolution equations, which makes
the study of ancient solutions an important topic.

In this paper, we study the axially-symmetric Navier-Stokes equations under a more
general assumption on the radial-axial velocity vector b. To be precise, we consider b
such that

b = b1 + b2 + b3, ∇ · b1 = ∇ · b2 = ∇ · b3 = 0, (1.3)

where

HSE(b1) ≤ C∗, b2 = ∇× B, sup
−T<t<0

‖B‖BMO ≤ C∗, sup
−T<t<0,x∈R3

r|b3| ≤ C∗. (1.4)

2



Some motivation and explanation for the condition and notations are in order. Here
[−T, 0] is the time interval where a solution exists. We often take T = 1 for convenience.
The number C∗ is an arbitrary positive constant and HSE(b1) is called ”the hollowed
scaled energy”, defined by

HSE(b1) = sup
0<R<R0

ĖR(b1), ĖR(b1) = sup
−R2<t<0

1

R

∫

B2R/BR/8

|b1(·, t)|2dx. (1.5)

Here R0 is a positive number often taken as 1.
We use

‖b‖E = HSE(b1) + sup
−T<t<0

‖B‖BMO + sup
−T<t<0

r|b3| (1.6)

to denote the controlling quantity of b throughout the paper. Here [−T, 0] is the time
interval of concern, which may be shifted or scaled. The linear space consisted of those
b such that ‖b‖E <∞ is called space E. The results in this paper depends on b only in
terms of ‖b‖E . We will use a positive function K(‖b‖E) to denote such a dependence,
whose precise value may change from line to line. Notice that the space E contains
BMO−1 which is the largest known space in which the Navier-Stokes equations are
well-posed. See the interesting work by Koch and Tataru [14]. Another feature is that
the condition on b1 is imposed only on some subdomain of the space time cube. Outside
of the subdomain, there is no restriction on b1. With a little bit more efforts, we can
also just impose conditions on part of the space time for b2 and b3 too. But here we
do not pursue that.

Our first result states that Γ = rvθ is Hölder continuous at r = 0, t = 0 if the
radial-axial velocity field b satisfies (1.3) and (1.4). The Hölder continuity depends on
b only through ‖b‖E.

Theorem 1.1. Given a number L > 0, let v = v(x, t), (x, t) ∈ QL ≡ B(x, L)× [−L2, 0]
be a L∞

loc(QL) weak solution to the three-dimensional axially-symmetric Navier-Stokes
equations (1.1). Suppose that the radial-axial velocity field b satisfies (1.3)-(1.4). Then
Γ = rvθ is Hölder continuous at (0, 0) uniformly. i.e. There exist positive constants α
and C, depending only on ‖b‖E, such that, for all (x, t) ∈ QL/2, it holds

|Γ(x, t)− Γ(0, 0)| ≤ C[(|x|+
√
|t|)/L]α sup

QL

|Γ|.

Our proof is inspired by [4] where the authors had proved a version of the above
theorem under the assumption r|v| ≤ C∗ using an De Giorgi type argument (see also
[5] for the method based on the direct estimation of an evolution kernel). Here we will
treat the more general b using a Nash type method in a uniform way. We will first
establish a local maximum estimate for solutions of (1.2) in terms of the controlling
constant C∗ for b in (1.4). This is done by using Moser’s iteration method and De Giorgi
type energy estimate, exploiting the structure of b. Similar argument has appeared in
Zhang [29] and Chen-Strain-Tsai-Yau [4, 5] where b is some form bounded function or
|rb(x, t)| ≤ C∗. Then we apply the Nash type method to prove the Hölder continuity
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of Γ. One handy tool which allows to treat more general type of vector fields b is
a simple two dimensional integration by parts argument (2.8). Another tool is the
John-Nirenberg inequality for BMO functions, which was first employed in [8] and [25]
to treat a linear heat equation with a drift term. We also utilize the role played the
stream function, which helps to do integration by parts one more time. Let v be a
velocity field. We recall that a function B is called a stream function of v if v = ∇×B.

The main significance of Theorem 1.1 is that it deduces the next two theorems. One
of them gives a partial answer to an open question in [15] on Liouville properties. The
other one establishes a condition on b such that solutions to axially-symmetric Navier-
Stokes equations are regular. This regularity condition does not involve Lebesgue
integral on b or absolute value of b, which may allow the capturing of more oscillatory
functions.

Theorem 1.2. Let v = v(x, t) be a bounded, weak ancient solution to (1.1). Suppose
also r|vθ| is bounded and the stream function is a BMO function. Then v ≡ 0.

Remark 1.3. The authors of [15] stated a conjecture on Liouville type theorem for
the axially-symmetric Navier-Stokes equations: bounded, mild, ancient velocity fields
are constants. The authors in [15] proved such kind of Liouville theorems in the three-
dimensional axially-symmetric case without swirl, or under the condition r|v| being
bounded. The above theorem, under the conditions that r|vθ| is bounded and the
stream function is a BMO function, gives a proof of this conjecture.

Recall that rvθ is scaling invariant and it also satisfies the maximum principle.
Therefore its boundedness is a mild restriction. A bounded function is obviously a
BMO function. Although a bounded velocity field may not have a bounded stream
function in general, a boundedness assumption on the stream function is also very
mild since one expects it to hold in most natural cases when the velocity is bounded.

In [14] p25, Koch and Tataru wrote that there has been a strong interest in ob-
taining well-posedness of Navier-Stokes equations assuming a BMO−1 space condi-
tion. They raised the question of uniqueness and regularity for solutions in the space
L∞([0, T ], BMO−1). They also proved uniqueness for small solutions in such a space.
Our Theorem 1.4 answers this question in the axially-symmetric case. We should
mention that Miura [20] proved uniqueness in the smaller space C([0, T ], BMO−1).

Theorem 1.4. Let v = v(x, t) be a suitable weak solution to (1.1) in the space time
region R3 × [0, T ]. Assume that the initial value satisfies v(·, 0) ∈ L2 , |rvθ(x, 0)| < C.
Suppose also v(·, t) = ∇× B(·, t) with sup0<t<T ‖B(·, t)‖BMO ≤ C∗. Then v is smooth
in R3 × (0, T ]. Here C and C∗ are arbitrary positive constants.

Remark 1.5. Note condition |rvθ(x, 0)| < C is only on the initial value. It can also be
dropped by a approximation argument. We will not seek the full generality this time.

Remark 1.6. In [7], Escauriaza, Seregin and Sverak proved that L∞
T L

3(Q) solutions
to the Navier-Stokes equations are regular, which is the highly non-trivial borderline
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case of Serrin’s criterion. Their proof is based on the method of backward uniqueness
and unique continuation together with a blowup argument. Since L3 is imbedded into
BMO−1, our Theorem 1.4 also provides a new and simpler proof to such a criterion in
the axially-symmetric case.

Before ending the introduction, let us mention some other related results on axially-
symmetric Navier-Stokes equations. In the presence of swirl, there is the paper by J.
Neustupa & M. Pokorny [23], proving the regularity of one component (either vr or
vθ) implies regularity of the other components of the solution. Also proving regularity
is the work of Q. Jiu & Z. Xin [12] under an assumption of sufficiently small zero
dimension scaled norms. We would also like to mention the regularity results of D.
Chae & J. Lee [3] who prove regularity results assuming finiteness of another zero
dimensional integral. On the other hand, G. Tian & Z. Xin [27] constructed a family
of singular axially symmetric solutions with singular initial data; T. Hou & C. Li [10]
found a special class of global smooth solutions. See also a recent extension: T. Hou,
Z. Lei & C. Li [9].

The paper is organized as follows: In section 2 we establish a local maximum
estimate using De Giorgi type energy method and Moser’s iteration method. Based on
the local maximal estimate, we obtain the Hölder continuity of Γ and prove Theorem
1.1 by Nash’s method in section 3. The argument is based on [4, 5]. Then in section 4
we prove our Theorem 1.2 and Theorem 1.4, using Theorem 1.1 and some new blow up
arguments. The main idea is that a possible singularity falls only into two types. Type
I singularity can be scaled into an axially-symmetric, bounded, ancient mild solution.
Type II can be scaled to a two dimensional ancient solution. Then we show that either
type leads to a contradiction with the assumption that the stream function is in the
BMO space. In the process the two dimensional Liouville theorem in [15] plays an
important role.

2 Local Maximum Estimate

In this section we prove a local maximum estimate of Γ using Moser’s iteration method
in proving the parabolic Harnack’s inequality. These estimates will be used to obtain
Hölder continuity of Γ in next section. The main idea is to exploit the divergence-free
property of b(x, t) and to construct a special cut-off function. We also learned from
[4, 5] where the authors treated the term 2

r
∂rΓ in the equation for Γ.

We first derive an energy estimate of De Giorgi type for (1.2). For this purpose we
need a refined cut-off function. Set 1

2
≤ σ2 < σ1 ≤ 1 and choose ψ(y, s) = φ(|y|)η(s)

to be a smooth cut-off function satisfying:






suppφ ⊂ B(σ1), φ = 1 on B(σ2), 0 ≤ φ ≤ 1,

suppη ⊂
(
− (σ1)

2, 0
]
, η(s) = 1 on

(
− (σ2)

2, 0
]
, 0 ≤ η ≤ 1,

|η′| . 1
(σ1−σ2)2

,
∣∣∇φ√

φ

∣∣ . 1
σ1−σ2

,
∣∣∇

(∇φ√
φ

)∣∣ . 1
(σ1−σ2)2

.

(2.1)
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Here as usual we use A . B to denote the inequality A ≤ CB for an absolute positive
constant C. Such a cut-off function φ can be simply chosen as a square of a standard
cut-off function. We will also use the following notations for domains. Let R > 0, we
write BR = B(0, R) and

P (R) = BR × (−R2, 0], P (R1, R2) = BR1
/BR2

× (−R2
1, 0] for R1 > R2.

Consider the functions f = |Γ|q , q > 1
2
and the cut-off functions ψR(y, s) =

φR(y)ηR(s) = φ( y
R
)η
(

s
R2

)
. Testing (1.2) by q|Γ|2q−2Γψ2

R gives

1

2

∫∫ (
∂sf

2 + (b · ∇)f 2 +
2

r
∂rf

2
)
ψ2
Rdyds = q

∫∫
∆Γ|Γ|2q−2Γψ2

Rdyds. (2.2)

Using Cauchy-Schwarz’s inequality and integration by parts, we compute that

q

∫∫
(∆Γ)|Γ|2q−2Γψ2

Rdyds = q

∫∫
(∆|Γ|)|Γ|2q−1ψ2

Rdyds

= −q
∫∫ (

(2q − 1)|∇Γ|2Γ2q−2ψ2
R +∇ψ2

R · |Γ|2q−1∇|Γ|
)
dyds

= −
∫∫ (

(2− 1

q
)|∇f |2ψ2

R + 2ψR∇ψR · f∇f
)
dyds

= −
∫∫ (

(2− 1

q
)|∇f |2ψ2

R + 2f∇ψR · ∇(fψR)− 2f 2|∇ψR|2
)
dyds

. −
∫∫

|∇(fψR)|2dyds+
∫∫

f 2|∇ψR|2dyds

and

1

2

∫∫
ψ2
R∂sf

2dyds

=
1

2

∫

B(σ1R)

ψ2
Rf

2(·, t)dy − 1

2

∫∫
f 2∂sψ

2
Rdyds.

Moreover, by the fact that Γ = 0 on the axis r = 0, we have
∫∫

1

r
∂rf

2ψ2
Rdyds =

∫∫
∂rf

2ψ2
Rdrdzdθds =

∫∫
f 2∂rψ

2
Rdrdzdθds.

Consequently, using (2.1), we have

1

2

∫
ψ2
Rf

2(·, t)dy +
∫∫

|∇(fψR)|2dyds (2.3)

.
1

(σ1 − σ2)2R2

∫∫

P (σ1R)

f 2dyds− 1

2

∫∫
(b · ∇f 2)ψ2

Rdyds.

Now we start to treat the drift term involving b = b1 + b2 + b3. For R1 > R2, let us
denote that

Ė(R1, R2, b) = sup
−R2

1
≤t≤0

1

R1 − R2

∫

BR1
\BR2

|b(·, t)|2dx.

6



By (2.1) and the divergence-free properties of the velocity field b1(x, t), we have

−1

2

∫∫
(b1 · ∇f 2)ψ2

Rdyds =

∫∫

P (σ1R, σ2R)

b1 ·
∇φR

φ
1

2

R

(ψRf)
3

2 (ηRf)
1

2dyds

.
1

(σ1 − σ2)R

∫
‖b1‖

L2

(
B(σ1R, σ2R)

)‖ψRf‖
3

2

L6

(
B(σ1R)

)‖f‖
1

2

L2

(
B(σ1R)

)ds

.
(Ė(σ1R, σ2R, b1)

(σ1 − σ2)R

) 1

2‖ψRf‖
3

2

L2
tL

6

(
P (σ1R)

)‖f‖
1

2

L2
tL

2

(
P (σ1R)

).

Therefore

−1

2

∫∫
(b1 · ∇f 2)ψ2

Rdyds (2.4)

.
Ė(σ1R, σ2R, b1)

2

(σ1 − σ2)2R2
‖f‖2

L2
tL

2

(
P (σ1R)

) + 1

8

∫∫

P (σ1R)

|∇(ψRf)|2dyds.

Next we treat the term involving b2. Let B̄ = B̄(t) be the average of B(·, t) in BR.
Then

−1

2

∫∫
(b2 · ∇f 2)ψ2

Rdyds

=

∫∫

P (σ1R, σ2R)

(B − B̄(t)) · ∇ ×
(∇φR

φ
1

2

R

(ψRf)
3

2 (ηRf)
1

2

)
dyds

.
∥∥∇

(∇φR√
φR

)∥∥
L∞
t L2

(
P (σ1R, σ2R)

)‖ψRf‖
3

2

L2
tL

6

(
P (σ1R)

)‖(B − B̄)f‖
1

2

L2
tL

2

(
P (σ1R)

)

+

∫∫

P (σ1R, σ2R)

(B − B̄) ·
[∇φR

φ
1

2

R

×∇(ψRf)
2

√
φR

]
dyds

.
( 1

(σ1 − σ2)R
‖(B − B̄)f‖

L2
tL

2

(
P (σ1R)

)
) 1

2‖∇(ψRf)‖
3

2

L2
tL

2

(
P (σ1R)

)

+
1

(σ1 − σ2)R
‖(B − B̄)f‖

L2
tL

2

(
P (σ1R)

)‖∇(ψRf)‖
L2
tL

2

(
P (σ1R)

)

+
( 1

(σ1 − σ2)R
‖(B − B̄)f‖

L2
tL

2

(
P (σ1R)

)
)2

.

Hence

−1

2

∫∫
(b2 · ∇f 2)ψ2

Rdyds .
1

8

∫∫

P (σ1R)

|∇(ψRf)|2dyds

+
1

(σ1 − σ2)2R2
‖(B − B̄)f‖2

L2
tL

2

(
P (σ1R)

).
(2.5)

To control the last expression, we need to recall the well-known John-Nirenberg in-
equality for BMO functions (see [13] or [26]): for any p ∈ (0,∞),

‖B(·, t)− B̄(t)‖Lp(BR) ≤ Cp‖B(·, t)‖BMO|BR|1/p. (2.6)
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Taking p = 6 in the above inequality, we have

‖(B − B̄)f‖
L2
tL

2

(
P (σ1R)

) ≤ ‖f‖
L3
tL

3

(
P (σ1R)

)‖B − B̄‖
L6
tL

6

(
P (σ1R)

)

≤ ‖f‖
L3
tL

3

(
P (σ1R)

)‖B‖L∞
t BMO|BR|

1

6R
1

3 .

Plug this into (2.5), we deduce

−1

2

∫∫
(b2 · ∇f 2)ψ2

Rdyds

.
‖B‖2L∞

t BMOR
5

3

(σ1 − σ2)2R2
‖f‖2

L3
tL

3

(
P (σ1R)

) + 1

8

∫∫

P (σ1R)

|∇(ψRf)|2dyds.
(2.7)

The term involving b3 has been treated in [5]. Here we give an alternative proof for
completeness and simplicity.

|1
2

∫∫
(b3 · ∇f 2)ψ2

Rdyds| . |1
2

∫∫
(b3 · ∇(ψ2

R)f
2)dyds|

= |
∫∫

(b3 · ∇(ψR)ψRf
2)dyds| . |

∫∫
(
1

r
|∇ψR|ψRf

2)rdrdθds|

= |
∫∫

(|∇ψR|ψRf
2)drdθds|

= |
∫∫

[∂r(|∇ψR|ψR)f
2 + |∇ψR|ψR∂r(f

2)]r drdθds|.

(2.8)

Using Young’s inequality, we deduce

|1
2

∫∫
(b3 · ∇f 2)ψ2

Rdyds|

.
1

(σ1 − σ2)2R2
‖f‖2

L2
tL

2

(
P (σ1R)

) + 1

8

∫∫

P (σ1R)

|∇(ψRf)|2dyds. (2.9)

Plugging in the above three estimates (2.4), (2.7) and (2.9) on terms involving bi,
i = 1, 2, 3 into (2.3), we arrive at

sup
−σ2

1
R2≤t≤0

∫

B(σ1R)

ψ2
Rf

2(·, t)dy +
∫∫

P (σ1R)

|∇(fψR)|2dyds (2.10)

.
1 + Ė(σ1R, σ2R, b1)

2

(σ1 − σ2)2R2

∫∫

P (σ1R)

f 2dyds+
‖B‖2L∞

t BMOR
5

3

(σ1 − σ2)2R2
‖f‖2

L3
tL

3

(
P (σ1R)

).

By Hölder inequality, this implies

sup
−σ2

1
R2≤t≤0

∫

B(σ1R)

ψ2
Rf

2(·, t)dy +
∫∫

P (σ1R)

|∇(fψR)|2dyds (2.11)

.
K(‖b‖E)R

5

3

(σ1 − σ2)2R2
‖f‖2

L3
tL

3

(
P (σ1R)

).
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Here and later in the section, as has been mentioned in the introduction, K = K(·)
is a one variable function which may change from line to line, and ‖b‖E is defined in
(1.6).

Our next step is to derive a mean value inequality based on (2.11) using Moser’s
iteration method. By Hölder inequality and Sobolev imbedding theorem, one has

∫∫

P (σ1R)

(ψRf)
10

3 dyds .

∫ (
‖fψR(·, s)‖

4

3

L2(B(σ1R))‖∇(fψR)‖2L2(B(σ1R))

)
ds

. sup
−(σ1R)2≤s<0

‖fψR(·, s)‖
4

3

L2(B(σ1R))‖∇(fψR)‖2L2(P (σ1R)).

Using (2.1) and (2.11), we obtain

∫∫

P (σ2R)

f
10

3 dyds .
{ K(‖b‖E)

3

2

(σ1 − σ2)3R
1

2

∫∫

P (σ1R)

f 3dyds
}10

9

,

which implies that

∫∫

P (σ2R)

(|Γ|3q) 10

9 dyds ≤
{ K(‖b‖E)

3

2

(σ1 − σ2)3R
1

2

∫∫

P (σ1R)

|Γ|3qdyds
}10

9

. (2.12)

For integers j ≥ 0 and a constant σ = 1
3
, set σ2 = 1

2

(
1 + σj+1

)
, σ1 = 1

2

(
1 + σj

)
,

q = (10
9
)j in (2.12). Then we have

{∫∫

P

(
R
2

(
1+ 1

σj+1

)) |Γ|3( 109 )j+1

dyds
}1

3
( 9

10
)j+1

≤
{K(‖b‖E)

3

2

σ3jR
1

2

∫∫

P

(
R
2

(
1+ 1

σj

)) |Γ|3( 109 )jdyds
}1

3
( 9

10
)j

.

By iteration, the above inequality gives

{∫∫

P

(
R
2

(
1+ 1

σj+1

)) |Γ|3( 109 )j+1

dyds
}1

3
( 9

10
)j+1

≤
{K(‖b‖E)

3

2

R
1

2

}∑j
k=0

1

3
( 9

10
)k

σ−
∑j

l=0
l( 9

10
)l
{∫∫

P (R)

|Γ|3dyds
}1

3

.
{K(‖b‖E)

3

2

R
1

2

} 10

3

(
1−( 9

10
)j
){∫∫

P (R)

|Γ|3dyds
}1

3

.

We take the limit j → ∞ to yield that

sup
P
(

R
2

) |Γ| .
(
K(‖b‖E)

)5{ 1

R5

∫∫

P (R)

|Γ|3dyds
}1

3

. (2.13)

9



From this a well known algebraic trick (see p87 [11] e.g.) shows

sup
P
(

R
2

) |Γ| .
(
K(‖b‖E)

){ 1

R5

∫∫

P (R)

|Γ|2dyds
}1

2

. (2.14)

Here the function K(·) may have changed at the last step.

3 Hölder Continuity of Γ

In this section we study the regularity of Γ using the local maximum estimates of (2.13)
in section 2 and Nash type method for parabolic equations.

Let us first recall a Nash inequality, whose proof can be found in [5].

Lemma 3.1. Let M ≥ 1 be a constant and µ be a probability measure. Then for all
0 ≤ f ≤M , there holds

∣∣∣ ln
∫
fdµ−

∫
ln fdµ

∣∣∣ ≤ M‖g‖L2∫
fdµ

,

where g = ln f −
∫
ln fdµ.

Let ζ be a smooth radial cut-off function such that




ζ = 1 on B(1

2
), ζ = 0 on B(1)c,

∫
R3 ζ

2(x)dx = 1,
∣∣∇ζ√

ζ

∣∣ <∞,
∣∣∇

(∇ζ√
ζ

)∣∣ <∞,
(3.1)

and ζR(x) =
1

R
3
2

ζ( x
R
). Let Φ be a positive solution to (1.2) in P (R).

Lemma 3.2. Let Φ ≤ 2 be a positive solution to (1.2) in P (R) which is assumed to
satisfy

‖Φ‖
L1

(
P (R

2
)
) ≥ c0R

5. (3.2)

Moreover, we assume that Φ(r = 0, z, t) is a constant bigger than 1. Then there holds

−
∫
ζ2R(x) lnΦ(x, t)dx ≤M0

(
1 + ‖b‖2E

)
(3.3)

for all t ∈ [− c0R2

4
, 0] and some absolute positive constant M0 depending only on c0.

Proof. First of all, let us define Φ̃(x, t) = Φ(Rx,R2t) and b̃(x, t) = Rb(Rx,R2t). It is

clear that Φ̃ solves the equation

∂tΦ̃ + b̃ · ∇Φ̃ +
2

r
∂rΦ̃ = ∆Φ̃

10



on P (1) and 0 ≤ Φ̃ ≤ 2, ‖Φ̃‖
L1

(
P ( 1

2
)
) ≥ c0. The quantity we are going to control is

−
∫
ζ2R(x) lnΦ(x, t)dx = −

∫
ζ2(x) ln Φ̃(x,R−2t)dx on a time internal [− c0R2

4
, 0]. Equiv-

alently, we just need to estimate −
∫
ζ2(x) ln Φ̃(x, t)dx for t ∈ [− c0

4
, 0].

Let Ψ = − ln Φ̃. It is easy to see that Ψ solves the equation

∂tΨ+ b̃ · ∇Ψ+
2

r
∂rΨ−∆Ψ + |∇Ψ|2 = 0. (3.4)

Hence, by testing (3.4) with ζ2 and using integrating by parts and Cauchy-Schwarz’s
inequality, one has

∂t

∫
Ψζ2dx+

∫
|∇Ψ|2ζ2dx =

∫ (
− b̃ · ∇Ψ− 2

r
∂rΨ+∆Ψ

)
ζ2dx

≤ −
∫
ζ2b̃ · ∇

(
Ψ− Ψ̄(s)

)
dx−

∫
4π

r
∂r
(
Ψ− Ψ̄(s)

)
ζ2rdrdθdz

+
1

4

∫
|∇Ψ|2ζ2dx+

∫
|∇ζ |2dx.

Here Ψ̄(s) =
∫
Ψ(·, t)ζ2dx. Using the weighted Poincaré inequality

∫
|Ψ− Ψ̄(s)|2ζ2dx ≤ C

∫
|∇Ψ|2ζ2dx (3.5)

and the divergence-free property of b, we can estimate
∣∣∣
∫
ζ2b̃1 · ∇

(
Ψ− Ψ̄(s)

)
dx

∣∣∣ ≤ 1

8

∫
|∇Ψ|2ζ2dx+ C

∫
|b̃1|2|∇ζ |2dx,

and
∣∣∣
∫
ζ2b̃2 · ∇

(
Ψ− Ψ̄(s)

)
dx

∣∣∣ =
∣∣∣
∫

∇ζ2∇× B
(
Ψ− Ψ̄(s)

)
dx

∣∣∣

.

∫
|ζ∇(Ψ− Ψ̄)||∇ζ ||B − B̄|dx+

∫ ∣∣∇
(
ζ

3

2

∇ζ√
ζ

)∣∣|B − B̄||Ψ− Ψ̄(s)|dx

.

∫
|ζ∇(Ψ− Ψ̄)||∇ζ ||B − B̄|dx+

∫ ( |∇ζ |2
ζ

+
√
ζ∇∇ζ√

ζ

)
|B − B̄||ζ ||Ψ− Ψ̄(s)|dx

.
1

8

∫
|∇Ψ|2ζ2dx+ C‖B‖2BMO.

Here we just used the weighted Poincaré inequality and (2.6), with p = 2. Moreover
∣∣∣
∫
ζ2b̃3 · ∇

(
Ψ− Ψ̄(s)

)
dx

∣∣∣ =
∣∣∣
∫

∇ζ2b̃3
(
Ψ− Ψ̄(s)

)
dx

∣∣∣

.

∫
|∇ζ(Ψ− Ψ̄)|ζdrdθdz =

∫
|∇ζ√
ζ
(Ψ− Ψ̄)|ζ 3

2drdθdz

.

∫
|ζ∇(Ψ− Ψ̄)||∇ζ |dx+

∫ ( |∇ζ |2
ζ

+
√
ζ∇∇ζ√

ζ

)
|ζ ||Ψ− Ψ̄(s)|dx

.
1

8

∫
|∇Ψ|2ζ2dx+ C.

11



Here we also used the integration by parts. On the other hand, by recalling the
assumption that Φ(r = 0, z, t) is a non-zero constant, one can estimate

−
∫

4π

r
∂rΨζ

2rdrdθdz = −4π

∫ ∞

−∞
(Ψ− Ψ̄)ζ2dz

∣∣∣
r=∞

r=0
+ 4π

∫
(Ψ− Ψ̄)∂rζ

2drdθdz

= 4π

∫ ∞

−∞
Ψζ2dz

∣∣∣
r=0

− 4πΨ̄

∫ ∞

−∞
ζ2dz

∣∣∣
r=0

+ 4π

∫
(Ψ− Ψ̄)ζ

∂rζ

r
rdrdθdz

≤ C − CΨ̄(s) +
1

8

∫
|∇Ψ|2ζ2dx.

Here we also used the fact that the support of 1
r
|∂rζ | is away from z- axis. Consequently,

we obtain

∂t

∫
Ψζ2dx+ C

∫
Ψζ2dx ≤ −1

2

∫
|∇Ψ|2ζ2dx+ C

(
1 + ‖b‖2E

)
.

In order to proceed, we apply the Nash inequality in Lemma 3.1. Take f = Φ̃,
dµ = ζ2(x)dx. One has

∣∣∣ ln
∫

Φ̃ζ2dx+

∫
Ψζ2dx

∣∣∣
2( ∫

Φ̃ζ2dx
)2

≤M2

∫ ∣∣−Ψ+

∫
Ψζ2dy

∣∣2ζ2dx.

Here M = 2 is the upper bound of Φ. Using the weighted Poincaré inequality (3.5)
once again, we have

∣∣∣ ln
∫

Φ̃ζ2dx+

∫
Ψζ2dx

∣∣∣
2(∫

Φ̃ζ2dx
)2

≤ C

∫
|∇Ψ|2ζ2dx.

Hence, we finally obtain

∂tΨ̄(t) + C0Ψ̄(t) ≤ C
(
1 + ‖b‖2E

)

− (2C)−1
∣∣∣ ln

∫
Φ̃ζ2dx+ Ψ̄

∣∣∣
2(∫

Φ̃ζ2dx
)2

.

Let χ(s) be the characteristic function of the set

W =
{
s ∈ [−1

4
, 0) : ‖Φ̃(s)‖

L1

(
B 1

2

) ≥ c0
2

}
.

By the assumption (3.2) and hence ‖Φ̃‖
L1

(
P ( 1

2
)
) ≥ c0, one has |W | ≥ 3c0

4
. In fact, if

|W | < 3c0
4
, then

‖Φ̃‖
L1

(
P ( 1

2
)
) <

∫

W

2
∣∣B

(1
2

)∣∣ds+
∫

W c

c0
2
ds ≤ (2π + 1)c0

8
< c0,

which contradicts with (3.2). Thus, we have

∂tΨ̄(t) + C0Ψ̄(t) ≤ C0

(
1 + ‖b‖2E

)
− 8C−1

0 c20χ(s)
∣∣∣ ln

∫
Φ̃ζ2dx+ Ψ̄

∣∣∣
2

. (3.6)

12



Note that the obvious consequence of this inequality gives

Ψ̄(s2) ≤ Ψ̄(s1) + C0e
C0(s2 − s1)

(
1 + ‖b‖2E

)
(3.7)

for −1
4
≤ s1 ≤ s2 ≤ 0. Hence, if for some s0 ∈ [−1

4
,− c0

4
) such that

Ψ̄(s0) ≤
4C0

c0

(
1 + ‖b‖E

)
+ 2

∣∣ ln c0
2

∣∣,

then we are done since

Ψ̄(t) ≤ Ψ̄(s0) +
C0e

C0

2

(
1 + ‖b‖2E

)

for all t ∈ [s0, 0). Otherwise, one has

Ψ̄(s) ≥ 4C0

c0

(
1 + ‖b‖E

)
+ 2

∣∣ ln c0
2

∣∣

for all s ∈ [−1
4
,− c0

4
). For s ∈ W ∩ [−1

4
,− c0

4
), one has

ln

∫
Φ̃ζ2dx ≥ ln

∫

B 1
2

Φ̃dx ≥ ln
c0
2
.

Hence, by (3.6), we have

∂tΨ̄ + C0Ψ̄ ≤ −c
2
0χ(s)

C0
Ψ̄2, −1

4
≤ s ≤ −c0

4
.

Solving the above inequality gives

Ψ̄(−c0
4
) ≤ 1

c2
0

C0

∫ − c0
4

− 1

4

χ(s)e−C0sds+ 1
Ψ(− 1

4
)

<∞.

The bound of the Ψ̄(− c0
4
) depends only on c0 since Ψ(−1

4
) > 0 and |W | ≥ 3c0

4
. Starting

from s = − c0
4
and using (3.7), we have

Ψ̄(s) ≤ Ψ̄
(
− c0

4

)
+ C0e

C0
(
1 + ‖b‖2E

)

for all s ∈ [− c0
4
, 0], which completes the proof of the lemma.

As an corollary, Lemma 3.2 gives a lower bound of positive solutions of (1.2).

Corollary 3.3. Let Φ, c0 and M0 be given in Lemma 3.2. Then there exists a constant
0 < δ < 1 depending only on ‖b‖E such that

inf
P
(

R
8

)Φ ≥ δ

2
. (3.8)
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Proof. Using Lemma 3.2, we have

M0

(
1 + ‖b‖2E

)
≥ −

∫
ζ2R(x) lnΦ(t, x)dx

= −
∫

δ<Φ≤1

ζ2R(x) lnΦ(t, x)dx−
∫

Φ≤δ

ζ2R(x) lnΦ(t, x)dx

−
∫

1<Φ≤2

ζ2R(x) lnΦ(t, x)dx

≥ 0−
∫

Φ≤δ

ζ2R(x) lnΦ(t, x)dx− ln 2

∫

1<Φ≤2

ζ2R(x)dx

≥ −
∫

Φ≤δ

ζ2R(x) lnΦ(t, x)dx− ln 2,

which implies that

−
∫

Φ≤δ

ζ2R(x) lnΦ(t, x)dx . 1 + ‖b‖2E

for − c0R2

4
≤ t ≤ 0. Consequently, we have

∣∣{x ∈ B
(R
2

)
|Φ(t, x) . δ

}∣∣ ≤ R3

− ln δ

(
1 + ‖b‖2E

)

for −R2

64
≤ t ≤ 0. Using the mean value inequality (2.14), one has

sup
P
(

R
8

)(δ − Φ)+ .
{K(‖b‖E)

R5

∫∫

P (R
2
)

(δ − Φ)2+dyds
}1

2

.
δ√
| ln δ|

K(‖b‖E),

which gives

inf
P
(√

c0R

2

)Φ ≥ δ − C0δ

2
√

| ln δ|
K(‖b‖E)

for some C0 > 0 which is independent of δ and R. Then (3.8) follows by choosing a
sufficiently small δ such that

δ ≤ exp
{
−K(‖b‖E)

}
. (3.9)

Now we are ready to give the proof of Theorem 1.1.
Proof of Theorem 1.1.
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Without loss of generality we take L = 1.
For 0 < r ≤ 1, we define

mr = inf
P (r)

Γ, Mr = sup
P (r)

Γ, Jr =Mr −mr.

As in [5], we define

Φ =

{
2(M1−Γ)

J1
if M1 > −m1,

2(Γ−m1)
J1

if M1 ≤ −m1.

It is clear that 0 ≤ Φ ≤ 2 is a non-negative solution of (1.2) in P (1) and a = Φ(r =
0, z, t) is a constant bigger than 1. To verify that Φ satisfies the condition (3.2), we
need the following lemma on the lower bound of ‖Φ‖Lp for 0 < p < 1 as in [5].

Lemma 3.4. Suppose that b satisfies (1.3) and (1.4). Then for arbitrary p ∈ (0, 1), Φ
defined above satisfies

1

R
5

p

‖Φ‖Lp(P (R,R
2
)) ≥ C−1

(
K(‖b‖E)

)− 2

pa.

Proof. Since the lemma is scaling invariant, we just take R = 1 in the proof. Let
ψ = φ(|x|)η(t), where φ ∈ C∞

0 such that φ = 1 on B 1

2

, φ = 0 on Bc
1,

∇φ√
φ
and ∇∇φ√

φ
are

bounded, η ∈ C∞
0 such that η = 1 on [−7

8
,−1

8
] and η is supported in (−1, 0). Let us

test (1.2) by pΦp−1ψ2
R, p ∈ (0, 1

2
), to derive that

∫∫ (
∂sΦ

p + (b · ∇)Φp +
2

r
∂rΦ

p
)
ψ2dyds = p

∫∫
∆ΦΦp−1ψ2dyds. (3.10)

Similarly as in [5], we have

−
∫∫

2

r
(∂rΦ

p)ψ2dyds (3.11)

=

∫∫
Φp 4

|y′|ψ(∂|y′|ψ)dyds+
∫ 0

−1

ds

∫
2Φpψ2

∣∣
r=0

dz

≥ −C
∫∫

Φpdyds+
3

2
ap.

Here |y′| =
√
y21 + y22 if y = (y1, y2, y3). Likewise

∫∫ (
− ∂sΦ

p + p∆ΦΦp−1
)
ψ2dyds (3.12)

=

∫∫
2Φp

[
ψ(∂sψ) + |∇ζ |2 − p− 2

p
ζ∆ζ

]
dyds− 4(p− 1)

p

∫∫
|∇(Φ

p
2ψ)|2dyds

≥ −C
∫∫

Φpdyds− 4(p− 1)

p

∫∫
|∇(Φ

p
2ψ)|2dyds.
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Moreover, concerning the term involving b, we estimate it as follows:

−
∫∫

ψ2(b1 · ∇)Φpdyds =

∫∫
Φpb1 · ∇ψ2dyds (3.13)

≥ −C‖b1‖L∞
t L2(P (1, 1

2
))‖Φp‖L1

tL
2(P (1, 1

2
)),

and

−
∫∫

ψ2(b2 · ∇)Φpdyds =

∫∫
(B − B̄) · ∇ × (Φp∇ψ2)dyds

=

∫∫
(B − B̄) · ∇ × [(Φ

p
2ψ)2

∇ψ
ψ

]dyds

≥ −C
R
‖Φp

2ψ‖L2
tL

2(P (1, 1
2
))‖∇(Φ

p
2ψ)‖L2

tL
2(P (1, 1

2
)) − C

∫∫
|B − B̄|Φpdyds

≥ 2(p− 1)

p

∫∫
|∇(Φ

p
2ψ)|2dyds− C

∫∫
Φpdyds

− C
( ∫∫

Φ2pdyds
)1/2(

∫∫
(B − B̄)2dyds

)1/2
.

By Hölder inequality and (2.6), we have

−
∫∫

ψ2(b2 ·∇)Φpdyds ≥ 2(p− 1)

p

∫∫
|∇(Φ

p
2ψ)|2dyds−K(‖b‖E)‖Φ‖pL2p(P (1, 1

2
))

(3.14)

Just like (2.9), we also have

−
∫∫

ψ2(b3 · ∇)Φpdyds ≥ (p− 1)

p

∫∫
|∇(Φ

p
2ψ)|2dyds− C

∫∫
Φpdyds. (3.15)

Substituting (3.15), (3.14), (3.13), (3.12) and (3.11) into (3.10), we deduce

3

2
ap ≤ C

∫∫
Φpdyds+ CK(‖b‖E)‖Φp‖p

L2
tL

2(P (1, 1
2
))

≤ CK(‖b‖E)‖Φ‖pL2p(P (1, 1
2
))
,

which completes the proof of the lemma, since p ∈ (0, 1/2) is arbitrary.

Now we continue the proof of the theorem.
By Lemma 3.4, Φ satisfies the assumptions in Lemma 3.2 for R = 1. By Corollary

3.3, one has

inf
P
(√

c0
2

)Φ ≥ δ

2
.

Noting that and m1 ≤ inf
P
(√

c0
2

) Γ ≤ sup
P
(√

c0
2

) Γ ≤M1, we have

J√
c0
2

= OSC
P
(√

c0
2

)Γ ≤
(
1− δ

4

)
J1. (3.16)

Iterating (3.16) immediately shows that Φ is Hölder continuous at (0, 0).
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4 Applications to axially symmetric Navier-Stokes

equation

This section is devoted to proving Theorems 1.2 and 1.4. We begin with

Proof of Theorem 1.2.

By the assumptions of the theorem, we can apply Theorem 1.1 to deduce that the
function Γ = rvθ is Hölder continuous at the space time point (0, 0). More precisely,
for any fixed point (x, t) ∈ R3 × (−∞, 0), there exist positive constants α and C such
that for all sufficiently large L > 0, we have

|Γ(x, t)− Γ(0, 0)| ≤ C[(|x|+
√
|t|)/L]α sup Γ.

Letting L→ ∞, we find that

rvθ(x, t) = Γ(x, t) = Γ(0, 0).

Since vθ is a bounded function, the only way this can happen is vθ ≡ 0. Hence v is
a bounded, weak ancient solution without swirl. According to Theorem 5.2 in [15],
the ancient solution v = (0, 0, l(t)) where l = l(t) depends only on time. Therefore its
stream function B is a harmonic function since ∆B = −∇× v = 0. Since the function
B = B(·, t) is BMO, by (2.6) we know

∫

|x|<R

|B(x, t)− B̄(t)|dx ≤ C‖B(·, t)‖BMOR
3.

Here B̄(t) is the average of B(·, t) in the ball BR. Since B(·, t) is harmonic, the mean
value theorem tells us that B̄(t) = B(0, t). Hence

∫

|x|<R

|B(x, t)|dx ≤ C‖B(·, t)‖BMOR
3 +B(0, t)R3.

The mean value theorem then implies that B(·, t) is a bounded function since

|B(y, t)| =
∣∣∣

1

4π|y|3
∫

B(y,|y|)
B(z, t)dz

∣∣∣

≤ 1

4π|y|3
∫

B(0,2|y|)
|B(z, t)|dz . ‖B(·, t)‖BMO + |B(0, t)|.

The classical Liouville theorem shows that the stream function B, being a bounded
function, is constant. Therefore v = ∇× B = 0.

Proof of Theorem 1.4. We use the method of contradiction. If there is a singularity
to the axially-symmetric Navier-Stokes equations (1.1), then we can generate a nonzero,
bounded, mild ancient solution as in [15]. Our Theorem 1.1 and a scaling argument
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will then be used to show that such a bounded ancient solution is identically zero. This
contradiction proves that singularity can not occur.

By time shifting, we assume that the solution v exists in the time interval [−1, 0]
and that t = 0 is a blow up time of v. The partial regularity theory in [2, 17] says that
the Hausdorff measure of the singular space-time set of any suitable weak solution is
zero. This implies that for axially-symmetric Navier-Stokes equations (1.1), suitable
weak solutions can only develop singularities on the symmetric axis r = 0. Hence,
without loss of generality, we may assume that (0, 0) is the blowup point.

For k ≥ 1, let (xk, tk) be a sequence of points such that

− 1 < tk ր 0, Qk = |v(xk, tk)| = γk max
−1<t<tk

|v(x, t)| ր ∞, γk −→ 1. (4.1)

Define a sequence of functions {v(k)} by

v(k)(x, t) =
1

Qk

v(xk +
x

Qk

, tk +
t

Q2
k

), −Q2
k(1 + tk) ≤ t ≤ 0. (4.2)

By [1], one can assume that rk = r(xk) are uniformly bounded. It is clear that {v(k)}
defined in (4.2) are mild solutions. Moreover, {v(k)} (up to a subsequence) converges
to a bounded ancient weak solution u(x, t) to the Navier-Stokes equations (for details,
see [15]). By the construction, |u(x, t)| ≤ 1 and |u(0, 0)| = 1.

We consider two cases.
Case 1 is when rk|v(xk, tk)| = rkQk are uniformly bounded by some positive constant

C. Then the functions {v(k)} are also axi-symmetric with respect to an axis which is
parallel to the z-axis and is at distance at most C from it. Consequently, u is also
axi-symmetric with respect to a suitable axis. Note that both the stream function
and rvθ are scaling invariant. Thus the stream function of u is in BMO and ruθ is
also bounded. Therefore we can apply Theorem 1.1 on u, which says that the swirl
component of u vanishes. By Theorem 5.2 in [15], we conclude u = (0, 0, l(t)) with
l = l(t) being a function of time only. But this show u = 0 as in the proof of the
previous theorem. This contradiction shows that Case 1 can not happen.

Case 2 is when rk|v(xk, tk)| = rkQk is not uniformly bounded.
Hence, rkQk (up to a subsequence) goes to infinity as k tends to infinity. Due

to Caffarelli-Kohn-Nirenberg’s partial regularity theory, {xk} (up to a subsequence)
converges to x∗ which is a point on the z-axis such that r∗ = 0. Due to the axis
symmetry of v, xk can be chosen so that θ(xk) → θ∞ for a θ∞. Hence, er(xk) → ν and
eθ(xk) → ν⊥ = (−ν2, ν1, 0) for an unit vector ν = (ν1, ν2, 0). Here er(x) and eθ(x) are
defined as in the introduction and (r(x), θ(x)) is the polar coordinate of (x1, x2).

It is clear that



xk +

x
Qk

∈ B(xk,
rk√
rkQk

) for x ∈ B(0,
√
Qkrk),

tk − ( rk√
rkQk

)2 < tk +
t

Q2
k
≤ tk < 0 for −Qkrk < t ≤ 0.
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By the assumption on initial value and the maximum principle, we know

|vθ(t, y)| . 1

rk
for y ∈ B(xk,

rk
2
), t < 0,

which shows





∣∣v(k)(x, t)eθ
(
xk +

x
Qk

)∣∣ = 1
Qk

∣∣vθ
(
xk +

x
Qk
, tk +

t
Q2

k

)∣∣ . 1
Qkrk

,

for (x, t) ∈ B(0,
√
rkQk)× (−rkQk, 0].

(4.3)

Note that on B(0,
√
Qkrk)× (−Qkrk, 0], it is easy to see that er

(
xk +

x
Qk

)
→ ν and

eθ
(
xk +

x
Qk

)
→ ν⊥ as n → ∞. Moreover, for each k, v(k) is still a mild solution to the

3D Navier-Stokes equations. By (4.3), there exists a subsequence of {v(k)} (we will still
denote it by {v(k)}) and a bounded ancient solution u(x, t) to the 3D Navier-Stokes
equations on R

3 × (−∞, 0], which is mild in the sense of [15], such that

v(k)(x, t) =
1

Qk
vr
(
xk +

x

Qk
, tk +

t

Q2
k

)
er
(
xk +

x

Qk

)

+
1

Qk
vθ
(
xk +

x

Qk
, tk +

t

Q2
k

)
eθ
(
xk +

x

Qk

)

+
1

Qk
vz
(
xk +

x

Qk
, tk +

t

Q2
k

)
ez
(
xk +

x

Qk

)

→ u = urν + uθν⊥ + uzez in L∞(Ω)

for any compact subset Ω of R3 × R and u(x, t) · ν⊥ = 0. Hence,

u(x, t) = ur(x, t)ν + uz(x, t)ez. (4.4)

On the other hand, for (y, s) ∈ B(xk,
rk√
rkQk

)×
[
tk − ( rk√

rkQk
)2, tk

]
, one has

− 1

Qk
[vr(y, s)eθ(y)− vθ(y, s)er(y)]

=
1

Qk

∂θ[v
r(y, s)er(y) + vθ(y, s)eθ(y) + vz(y, s)ez(y)]

= ∂θ
[
v(k)

(
Qk(y − xk), Q

2
k(s− tk)

)]

= Qk(∂θy · ∇)v(k)
(
Qk(y − xk), Q

2
k(s− tk)

)

= Qk|y|
(
eθ(y) · ∇

)
v(k)

(
Qk(y − xk), Q

2
k(s− tk)

)
,

which gives that

1

Qk

[
− vr

(
xk +

x

Qk
, tk +

t

Q2
k

)
eθ
(
xk +

x

Qk

)
(4.5)

+vθ
(
xk +

x

Qk
, tk +

t

Q2
k

)
er
(
xk +

x

Qk

)]

= Qk

∣∣xk +
x

Qk

∣∣
(
eθ
(
xk +

x

Qk

)
· ∇

)
v(k)(x, t)
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for (x, t) ∈ B(0,
√
Qkrk) × (−Qkrk, 0]. Since rkQk → ∞, we know Qk

∣∣xk + x
Qk

∣∣ → ∞
for fixed x. But the left hand side of (4.5) is bounded by definition of Qk. Hence, let
k → ∞, we have

(ν⊥ · ∇)u(x, t) = 0. (4.6)

Note that the Navier-Stokes equations are invariant under rotation. Without loss of
generality, we set ν = e1 and ν⊥ = e2. Consequently, the limit function

u(x, t) = ur(x1, z, t)e1 + uz(x1, z, t)ez,

is a bounded ancient solution to the 2D Navier-Stokes equations. By Theorem 5.1 in
[15], the limit

u(x, t) = ur(t)ν + uz(t)ez (4.7)

depends only on t and that |u(0, 0)| = 1. By the argument in the proof of the previous
theorem, the boundedness of the stream function of u in BMO norm implies that
u = 0. This contradiction shows that Case 2 can not occur either. Therefore the
assumption that v becomes singular at (0, 0) is false, proving Theorem 1.4.
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