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ON THE MANIFOLD STRUCTURE OF THE SET OF UNPARAMETERIZED
EMBEDDINGS WITH LOW REGULARITY

LUIS J. ALIAS AND PAOLO PICCIONE

ABSTRACT. Given manifoldsM and N, with M compact, we study the geometrical
structure of the space of embeddingsidfinto N, having less regularity thafi>, quo-
tiented by the group of diffeomorphisms &f.

1. INTRODUCTION

A very general class of geometrical variational problenmstmaformulated in terms of
some action functional defined on the sp&ieeb(M, N) of embeddings of a manifold/
into some other manifold. In many interesting examples, like for instance in the ytud
of minimalor constant mean curvatuembeddings: : M — N, the functionals involved
do not depend on the parameterizatiome., they are invariant bRiff (M) the diffeomor-
phism group of\/ that acts by right compaosition on the space of embeddingdetiiese
circumstances, given a solutian M — N of the variational problem, any embedding of
the formz o ¢, with ¢ € Diff (M), is also a solution of the problem, which is not geomet-
rically distinct fromz. This implies in particular, that typical compactness agstions,
like the Palais—Smale condition, obviously fail for paraenzation invariant functionals.
Namely, every critical level of a parameterization invatifunctional is non compact. If
one is interested in multiplicity results, like for instaniorse Theory or Bifurcation The-
ory, one has to identify solutions that are not geometrcdifferent. There are several
methods in the literature to get rid of the gauge invarianmoperty in equivariant varia-
tional problems. One method is to imposgaaige fixing conditioyin the language of [11],
i.e., a smooth submanifold of the domain of the functiondlicl intersects all the orbits
of the group action, and on which the variational problem h@snvariance properties.
A second method consists in determining an auxiliary fuumetl, withthe samecritical
points and which is no longer gauge invariant. This is iHatd well in the classical
closed geodesic problem, originally formulated using #rgth functional in the space of
immersions of the circle in a Riemannian manifdld In this case, one replaces the length
functional by a quadratic energy functional, which is nogenparameterization invariant,
and has the same critical points. Nonetheless, the samrigeehmay not be available
for variational problems in higher dimension, and in thisectghe appropriate functional
space to consider for the variational problem is the seinplarameterized embeddings
M into N. Two embeddings;,z2 : MN — N are said to be equivalent if there exists
a diffeomorphismyp of M such thatts = z; o ¢; an unparameterized embedding/df
into N is an equivalence class of embedding\éfinto V. Actions of the diffeomorphism
group of a manifold have been studied in several contextspag of the central question
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is how to construcslicesfor these actions. The interested reader may look up [1]Her t
action on Riemannian metrics by pull-back, or [4] for gaugzotry.

A crucial point is the choice of regularity for the embeddiniamely, important prop-
erties of the variational problem, like for instance thedfatSmale condition, or the Fred-
holmness condition for the second derivative, depend &afigron this choice. Th&*°
case has been extensively studied (see [7, 8, 9]), and a réchdt differentiable structure
has been described for this set. The theory of manifolds tedd®m general locally con-
vex topological vector spaces has been recently developaetail in [6]. Nevertheless, in
view to applications in variational calculus, the Frechreicture ofC> embeddings is too
weak, and it is desirable to have a geometry modeled on Bardditbert spaces. Usually,
a natural choice would be to consider embeddings of d4ssr C*, with & < oo and
a € )0, 1[, or some Sobolev regularity. However, when a regularity keeghanC> is
assumed for the embeddings, subtle obstructions arise attempting to define a global
differentiable structure on the quotient space of embegitinodulo diffeomorphisms. The
problemis a consequence of the fact that, when co, the map of left-composition with a
fixed diffeomorphism of clas§® is nota differentiable map in the space@f-maps. The
transition maps of any natural atlas of charts for the sphoeparameterized embeddings
involves this type of operations.

The point we address in this paper is precisely an analydiseofocal and global ge-
ometrical structure of the set of unparameterized embeddiaving regularity weaker
thanC*. We will show that, unlike the smooth case, such a set doetian a natu-
ral global differentiable structure, nonetheless local global techniques from Calculus
of Variations can be applied for parameterization invarfanctionals. More precisely,
we use Palais’ notion of Vector Bundle Neighborhood (VBN) describing an atlas of
charts for the set of unparameterized embeddings, whassitica functions are contin-
uous. Using these charts, the set of unparameterized einigedd “locally” a smooth
submanifold of the space of embeddings. The restrictiompfmrameterization invariant
smooth function on the space of embeddings defines a funatidine space of unparame-
terized embeddings which is smooth in any local chart. Toos has a well defined notion
of critical point, and we compute the first and the secondati@m at a critical point of a
parameterization invariant smooth functional. In the &&sttion we also analyze regularity
properties of the action of the isometry group of the targanifold N on the space of
unparameterized embeddinds by left-composition. Thi®ads also not smooth, but in
local charts its orbits are smooth embedded submanifolds.

2. NOTATIONS AND PRELIMINARIES

Let us consider two smooth (i.&€%°) manifoldsM™ and N", with m < n. For sim-
plicity, we will assume thal/ is compact, although an analogous theory can be developed
also in the non compact case, along the lines of [12]. We wiltifroughout an auxiliary
Riemannian metrig on the target manifol@v, and we will denote byxp the correspond-
ing exponential map. The metricinduces a norm on every vector bundle obtained by
functorial construction fronfT' NV (like pull-backs, normal bundles of embeddings o
etc.). The metrig will be used only for a more explicit description of the madf charts;
all the results of the present paper will not depend on thécetaf such metric.

We will denote by¢ a regularity class of maps defined dn. More precisely, let
¢(M,R) be a Banach space of maps frdto R such that

C>®(M,R) C &(M,R) C C*(M,R),

with denseinclusionC>(M,R) — ¢(M,R) and continuousinclusion €(M,R) —
CH(M,R). We require that(M,R) be stable under composition from the right with
functionsf € C*>°(M, M) (this action is linear), and stable under composition frowe t
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left with functionsf € C>*°(R,R). We also assume that for gfl € C*°(RR,R), the map
¢(M,R)> g+ go f € €(M,R)is smooth.

Typical examples of are:

o ¢ =CF withk > 1;

e ¢ =Cko withk > 1anda € 10, 1[ (Holder type regularity);

o ¢ =Wk with p(k — 1) > m (Sobolev type regularity).
In several interesting examples, also non standard chéicebe functore may appear
naturally, see Remark 2.1. Thus, treating the subject il gemerality is not a useless
abstraction.

A description of the differentiable structure of the set cipaf : M — N of class
¢ can be given as follows. Se(M,R?) = o¢_,¢(M,R) and, given a subs&t C RY,
denote by¢(M, S) the set of mapg € ¢(M,R4) such thatf(M) C S. Such set is
endowed with the induced topology fro@{M, R?). If S is a submanifold olR?, then
¢(M, S) is a submanifold o€ (M, R¢). Given a smooth embedding: N — R?, denote
by €(M, N, ¢) the set of all mapg : M — N such thatp o f € €(M,¢(N)). The
map&(M,N,¢) > f— o f € C(M,qb(N)) is a bijection, and it induces a a Banach
manifold structure o€ (M, N, ¢). This differentiable structure is independentdni.e.,
given different embeddings; : N — R%,i = 1,2, then€(M, N, ¢1) = €(M, N, ¢3),
and the differentiable structures induced ®{M, ¢1(N)) and €(M, ¢2(N)) coincide.
We will therefore omit the symba in the notation of the set of mags: M — N of class
¢, and we will write€ (M, N). Given a smooth vector bundie: £ — M, one also has a
notion ofsections of clas¢ of =, defined in the obvious way.

Remark?2.1 When the Banach spae& M, R) is not separable, as in the cage= C*2,

with o € ]0, 1], then& (M, N) is a non separable Banach manifolds. There are theories
where separability is an important issue, especially whaml’s theorem needs to be in-
voked. A situation of this type is considered in [14], whdre author proves a genericity
result in the space at*® embeddings. As suggested in [131.5], a possible way of
circumventing the problem is to consider rather than thesg&, the closed subspace
ck-e+consisting of allC*<-limits of functions of clas€**!. This space is separable with
respect to th€**-topology, and in fact it is second countable.

By the assumption that the inclusi@{M, R) < C'(M,R) is continuous, it follows
that the (possibly empty) subset &1/, N) consisting of embeddings is open. In next
Section we will describe an explicit set of local charts focls set, given intrinsically, i.e.,
without using embeddings @¥ into some Euclidean space.

3. THE MANIFOLD OF EMBEDDINGS

Classical references where the differentiable structfii®(d/, N), or more generally
of spaces of-sections of fiber bundlésvith compact base, has been described explicitly
are [2, 3, 10]; local charts of this differentiable struetare described by Palais using the
notion ofvector bundle neighborhog@BN). When the base is non compact, restrictions
on the space of sections are required in order to have a wiglledeBanach differentiable
structure, see [12]. In order to get a better insight on ocoblem, let us recall how a
global differentiable structure o&(M, N) is obtained, following the VBN approach of
[10]. Given a Riemannian vector bundie over M (i.e., a vector bundle endowed with
a Riemannian structure on the fibers and a compatible caongctve will denote by
I'(E) the Banach space of all sections of cldssf E. The essential property required for
developing Palais’ theory is the fact, proved in [10], tlgiten a compact manifold/,
two Riemannian vector bundlds;, F» over M, and a smooth vector bundle morphism
® : E; — E,, the composition operatd?(FE;) 3 s — ® o s € I'(F2) is a smooth map.

tunctions fromA/ to N can be thought of as sections of the trivial fiber buntilex N.
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The idea of vector bundle neighborhoods is that suitabldlstaaeighborhoods of a given
mapz : M — N of classC>™ are parameterized by elements in neighborhoods of the
zero section of the pull-back bundi¢ (7' N) over M. More precisely, once a Riemannian
metricg with Levi—Civita connectiorVV in N is fixed, a local charp of €(A, N) around a
given smooth functiom is obtained by associating to each sectiaf class¢ of the vector
bundlez*(T'N) the mapy : M — N defined byy(p) = exp,(,) (u(p)), whereexp is the
exponential map o¥/. The inverse of the map that associates to eatite corresponding
y defines a local chart from an open neighborhood of the zetioseof z*(T'N) to an
open neighborhood aof, that will be denoted by,. The transition maps for charts in
this atlas are computed as follows. Given smooth maps. : M — N, fori = 1,2
consider the mapXP; : z}(T'N) — M x N defined byEXP;(p,v) = (p,exp,, (v)),

v € T,,»)N. This gives a smooth diffeomorphism of an open subset cointathe zero
section ofz}(T'N) onto an open neighborhood of the graphgf the compositior{ =
EXP,' o EXP, is a smooth diffeomorphisms between two open neighborhddteo
zero sections of the vector bundles(T'N) andx3 (T N) that preserves the fibersThe
transition mapb_! o ®,, is given by left-composition with the smooth mépand thus it
is differentiable (compare with the situation describe®amark 4.2). Moreover, when
varies in the set of smooth functions, the domain of thesetslsaver the entire€(M, N),
as we are assuming density of the inclusish(M, R) — €(M, R). Hence, the collection
of all such charts defines a differentiable atla®’¢n/, V). Given a smooth map : M —
N, the tangent spac&,&(M, N) is identified, via the char®,, with the space of all
sections of clasg of the pull-back bundle* (T'V).

The subseEmb(M, N) of €(M, N) consisting of all embeddings : M — N is
open, and thus it inherits a natural Banach manifold strecltom (M, N). One can
consider the sebiff (M), which is the set of all diffeomorphisms: M — M of class
¢, observe thaDiff (A/) may fail to be closed under composition or inverse, so that in
general it is not a groupDiff (M) is an open subset &mb(M, M), and thus it inherits
a natural differentiable structure. However, even underassumption thabiff (M) is
closed under composition and inversejther one of the two operations is differentiable
Namely, the left-composition map+ = o ¢ onDiff (M) in general is not of clasg! (see
[13, Appendix]). Similarly, the derivative of the map— ¢! involves the derivative of
¢, and thus this is not differentiable at those pointshose derivative is not of class

4. THE MANIFOLD OF UNPARAMETERIZED EMBEDDINGS

Two embeddings;,y : M — N will be considered equivalent if there exist€a
diffeomorphismy : M — M such thaty = z o ¢, i.e., if they are different parameteriza-
tions of the same submanifold of diffeomorphic toM. If 2 andy are of clas€”, then
such diffeomorphisng will also be of clas€*. Forz € Emb(M, N), we will denote by
[x] the class of aly € Emb(M, N) that are equivalent to.

Definition 4.1. The set ofunparameterized embeddings of clgssf M into NV, denoted
by Emb(M, N), is the set:

Emb(M, N) = {[z] : # € Emb(M, N)}.

Thus,ﬁ?nT)(M, N) can be thought as the set of all embedded submanifolds af€lals
N that are¢-diffeomorphic to)M . We will now establish an infinite dimensional Banach
topologicalstructure onﬁrﬁf)(M, N), and we will describe suitable local charts of this
structure. L L

Letz : M — N be a smooth embedding; a local chért U, — W, in Emb(M, N),
wherel{, is an appropriate neighborhood pf] in EIEB(M,N), W, is an appropriate
¢-neighborhood of the zero section of the normal bundle,a$ given as follows. There
exists an open subsktof the normal bundle containing the zero section of this bundle,
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and an open subs&t of V containing the image (M) such that the restriction ekp to
U gives a diffeomorphism fror/ to V. The spacd’(z) of all sections of clasg of the
normal bundle: is a Banach space, and the sullgt; U) of T'(z+) consisting of all
sections whose image is containediitis open. A mapl,, : T'(z1:U) — EIEI/)(M, N)is
obtained by setting’,,(u) = [y], wherey(p) = exp,, (u(p)) forallp € M. Clearly,y
is an embedding of classof M into N, sinceu is an embedding of classof M into the
normal bundles*, andexp is a diffeomorphism frond/ to V. It is easy to see thakt, is
injective. In order to prove this, first observe that two edttiagsz;, 22 € Emb(M, N)
are equivalent if and only i1 (M) = a2(M). Now, observe that two distinct sections
uy,up € T'(z+;U) must have distinct i images i, and thus their composmon witdkp
are also different ir. This proves that,, is injective. The image ol is the projection
ontoEmb(M, N) of an open neighborhood afin Emb(M, N). If y € Emb(M, N) is
nearz, in particular it has image contained ih, thenexp~! (y(M)) is the image of a
sectionu, of 2 of classe; then, U, (u) = [y]. Thus, the ma is a bijection from an open
subsetV, of I'(z!) containing the zero section, to a subigtof E?nT)(M, N) given by
the projection ont(E/rEB(M, N) of an open neighborhood efin Emb(M, N). Its inverse
will be denoted byfx, and the collection of such maps,asaries in the set of all smooth
embeddings o/ into NV is taken as an atlas of charts E/I‘EI/)(M, N).

We note however thdhere is no differentiable compatibility between two ckantthis
atlas, i.e., the transition maps are in genemat differentiable, but only continuous. Let
us compute a transition map. Denotedby s : M — N two smooth embeddings such
that the classef;] and[xz,] belong to the intersection of the domaiids, N 4, of the
charts&)m1 and 512. Denote byexp,, exp, the exponential map qj restricted to the
normal bundles:;- andz; respectively, that are diffeomorphisms between open ssibse
containing the zero section and tubular neighborhoodsmfrﬂages;z:l(M) andxs (M)
respectively. Thus, there are open subéets rj containing the zero section such that
the map§ U = U given by¢ = exp, ' oexp, is a smooth diffeomorphism. Let
u € Wy, N W,, be fixed and set’ = &, (B! (u)).

x

Remark4.2. The key observation here is that, in spite of the fact thatséetionu’ of

the normal bundler;- has the same image of the map u, the latter isnot a section of
x5 This depends on the fact that the diffeomorphisia not a vector bundle morphism
as in the case of the charts Bfob(M, N) (Section 3), i.e., it does not take fibersxof

into fibres ofzy . In order to obtain the sectiorf, anadjustmenneeds to be done in the
domain of¢ o u, which is obtained by composition on the right with a diffemnphism

of the baseM that depends on; it is precisely such adjustment that causes the loss of
differentiability of the transition maps.

The following formula holds:
u' =Couohyt,
whereh,, : M — M is the diffeomorphism:
hy =m0 ou,

5 : Fs — M being the projection of the vector bundi& over the base manifold/.
Now, the maps: — ¢ o v andu — h, areC*, but the functiorh — h~! is not differen-
tiable in Diff (M) whereh is only of class®, as well as the function of composing on the
left with ¢ o u, whenw is only of class¢. Thus, the map +— «’ is continuous, but not
differentiable.

We can then define a unlque topology]@mb(M N) whose basis is the collection of
the domalnsu of the chartsl)x, asz varies in the set of smooth embeddingsidfinto
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N, and by requiring that each, is a homeomorphism onto its image. It is easy te?see
that this topology is exactly the quotient topology indubgdhe canonical quotient map
7 : Emb(M, N) — Emb(M, N).

The reader should observe that the chértsin Emb(M, N) and®,, in EIBB(M, N)
look very much alike. The only difference is thly, takes values in the space of sections
of the normal bundle:*, while ®,. takes values in the spaces of sections'of'M). If
we identify? - with a subbundle of*(T'N), then this suggests that, roughly speaking,
“locally E?nT)(M, N) is a smooth submanifold &mb(M, N)”. Let us state this in a more
precise way:

Proposition 4.3. For x varying in the set of smooth embeddings\ffinto IV, the family
{(ZL, 595)} is an atlas of charts cEmb(M, N'), whose domains form an open cover of

m(M, N), and that makeE/rEl/)(M, N) into an infinite dimensionabpologicalmani-
fold modeled on the Banach spate\/, R"~™).

The canonical projectioff : Emb(M, N) — ﬁr?ﬁ)(M, N) is a quotient map.

For a given smooth embedding M — N, by identifying the normal bundle" with a
subbundle of the pull-back*(T'N), then the local char®, of Emb(M, N) aroundz and
the local chartﬁrﬁf)(M, N) around[z] allow an identification of the neighborhodd(z)
of [z] with the smooth submanifold &fimb(M, N) consisting of thos€-embeddings in
the domain of the char, for which®, takes values in the space of sections of the normal
bundlezt. O

The local identification oﬁ;n/b(M, N) with submanifolds ofEmb (M, N) is particu-
larly useful for studying smooth maps.

Corollary 4.4. Let 3 be an arbitrary manifold and’ : Emb(M, N) — 3 be a smooth
function such thaf () = f(y) for all pairs of equivalentembeddingsy € Emb(M, N).
Then, given any smooth embedding M — N, considering the local char(tl](x), 593)
of Emb(M, N), the compositiorf, = f o &, : &, (,) — 3 is smooth.

If 3 = R, thenu = ®,([y)) is a critical point of f,, if and only ify is a critical point of f.

Proof. The mapﬁC is the restriction to the subspacedtections of the normal bundie-
of the smooth functiorf, = fo ®.1, thus f, is smooth. Fomu € ®, (ZL) the tangent
space at: of the space o€-sections of the bundle* (T'N) is identified with the space of
sections of some vector subbundleof z*(T'N') complementary telx(T M) (if v # 0,
then E will not necessarily be the normal bundte). The invariance property of says
thatdf,. vanishes on sections of the bundle(7' M), from which it follows easily that
u = ,([y]) is a critical point off, if and only if y is a critical point ofy. O

Remark4.5. Note that the result of Corollary 4.4 says in particular tHat a smooth
function f on Emb(M, N) which is invariant by diffeomorphisms df/, one has a well
defined notion of “critical point of in ]:]?nT)(M, N)". We will say that[y] is a critical point
of fin E?n/b(M, N) if givenz : M — N smooth embedding such that belongs to the
domairﬂx of the charﬁ)x, then&)x ([y]) is a critical point of the smooth functigfo 5;1.
Corollary 4.4 says that this notion does not depend on theelas the chart aroun;
of course, this conclusion could not be drawn using a chahgeasts argument.

2Consider the restriction ok to the inverse imag%‘l(ﬂz) of the domain of some chart. Then, such
restriction is continuous, open (because it admits coatisdocal sections with arbitrarily prescribed values at a
given point), and surjective, hence it is a quotient map.

SWe will identify the pull-back bundle:* (T'N') with the Whitney sumlz(TM) & x+.
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When|[z] is the class of a smooth embedding M — N, then for all questions of

differentiability at[z] a it will be convenient to use the chabt,, centeredat the pointz.
The tangent space &t] is described in next:

Lemma 4.6. Letz : M — N be a smooth embedding. The tangent space at the point
[z] to Emb(M, N) is identified, via the char®, with the Banach spacE(x*) of all ¢-
sections of the normal bundle-. If » — x, € Emb(M, N) is aC'-curve withz,, =
wzand ft| _ z, =V € L(z*(TN)) thenr — ~. = ®,([z,]) is of classC', and

d

4 v, = V1t € T'(zt), whereV+(p) is the orthogonal projection of (p) onto the

dr lr=rg

orthogonal space (p), p € M.

Proof. The domain ofb,, is mapped byiC to an open neighborhood of the zero section of
I'(z1). The tangent space is therefore identified with the Banaabesjiself. Since
z, isC, thenr — 0, = ®,(z,) isC'; now,v, = P*+(n,), whereP+ : T'(z*(TN)) —
I'(z1) is the bounded linear map defined By (W) = W+. Thus,y, is of classC!, and
its derivative atr is given byP(V) = V. O

Proposition 4.7. Let f : Emb(M, N) — R be a smooth function invariant by diffeomor-
phisms ofM, and assume that : M — N is a smooth embedding such tHaf is a
critical point of f in m(M, N) (in the sense of Remark 4.5). Then, the second variation
d?(f o ®;1)(0) coincides with the restriction of the second variatith( f o ®;1)(0) to

the space of-sections of the normal bundie".

Proof. It follows immediately from the fact that, using the locabets®,, and®,, centered

atz, thenﬁ?n/b(M, N) (= sections of the normal bundle") is identified with alinear
subspace oEmb (M, N) (= sections of the pull-back bundie (T N)). O

Remark4.8. One may wonder whether the E/ET)(M, N) admits some othematural
atlas of charts that are pairwise differentiably compatiteind that make it into a true
Banach differentiable manifold. The existence of such fedshtiable structurtails if one
requires the natural property that the quotient mlapEmb (M, N) — E?nT)(M,N) be

a smooth submersion. Namely, if such a differentiable stinecexisted, then the inverse
image by this projection of points éf?nT)(M, N), i.e., equivalence classes of embeddings,
would be embedded smooth submanifoldskefib(M, N). But as we have observed,
equivalence classes of embeddinghat are only of clas¢ arenotsubmanifolds, as they
have the same regularity of the left-composition function> x o ¢.

5. ACTION OF THE ISOMETRY GROUP

We will now study regularity questions concerning the actd the (connected com-
ponent of the identity of the) isometry grodp= Iso(NV, g) of the Riemannian manifold
(N, g) on the manifoldEmb(M, N) given by composition on the left, and the correspond-

ing action onEmb(M, N). Itis well known (see for instance [5]) thétis a Lie group; if
N is compact, then als@ is compact.
Proposition 5.1. The following regularity properties hold for the actionIsb(XV, g).
(1) The action ofiso(N, g) onEmb(M, N) is by smooth diffeomorphisms.
(2) The corresponding action dimb(M, N) is by homeomorphisms.
3) If x : M — N is a smooth embedding, then the map
By : Iso(N, g) — Emb(M, N)

defined bys,. () = ¢ - [z] is a smooth injective immersion on a neighborhood of
the identity (when represented in any of the local chartgdiesd in Subsection 4).
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(4) The local charts OEIBB(M, N) described in Subsection 4, restricted to the orbit
Iso(N, g) - [z] of a smooth embedding: M — N are differentiably compatible,

and they define a differentiable structure on the orbitxdfin E?nT)(M, N). The
action ofIso(N, ¢g) on this orbit is smooth, and this orbit is diffeomorphic te th
quotientlso(N, g)/H,, whereH, is the isotropy group of].

Proof. Isometries of N, g) are smooth. Part (1) follows from the fact that left-compiosi
with smooth maps is smooth dtmb(M, N); the inverse of left-composition by is left-
composition by ~!. As to the mam(M,N) Sfyl— oyl e EIEB(M,N), this is
continuous, but not smooth. Namely, given thsectionu = 5I(y) of 2+, then the map
exp~ ! otp o exp(u) is @ map of clasg between open subsetsof, but it is not a section.
Thus, when representing the compositjgre y] in local charts, a right composition with
a diffeomorphism is needed, which as observed in Subsedtismot smooth, but only
continuous. This proves part (2). For part (3), observettimtomposition o3, and the
local chartsiy applied toy involves only compositions af with smooth diffeomorphism,
and it is therefore a smooth injective immersion of (an opeigimborhood of the identity
in) Iso(N, g). To prove part (4), observe that, by (3), the intersectiathebrbitlso(V, g)-
[] with the domain of a chaéy is an immersed submanifold. Since the orbit of a smooth
embedding consists only of classes of smooth embeddings,ttte transition functions
restrict to smooth maps at every point of the orbit. Smoathrué the action on this orbit
also follows easily. O

Itis an easy observation that, for alle Emb(M, N), the stabilizer ofz] in Iso(N, g)
is the subgroup consisting of all isometri¢shat preserve the imagg M), i.e., such that

) (x(M)) = 2(M).
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