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Abstract

In spite of its long history and classical character which goes back even

to d’Alembert and Lagrange, the problems of constraints in mechanics of

continua is still mysterious and full of misunderstandings. Let us mention

the problem of difference between special solutions of unconstrained systems

and constraints dynamics, holonomic and nonholonomic constrained, various

versions of so-called vakonomy, sub-Riemannian structures, servoconstraints,

and programme motion. There are some strange confusions between field the-

ory and mechanics of continua; many problems call for conceptual cleaning,

although both the mechanics of continua and field theory are formally based

on partial differential equations. The author is deeply indebted to professor

Czes law Woźniak for his help during many years, and deep understanding

and support

1 Constrained dynamics versus constrained solu-

tions

The problem of constraints in mechanics is very delicate and full of confusions
and misconceptions. Situation is maximally clear in mechanics of system with
a finite number of degrees of freedom, subject to holonomic constraints. Let us
consider a system of N material points moving in n-dimensional Euclidean space
M . ”Physically” n = 3, but let us forget about this. If some other symbols turn
out to be needed, the N -dimensional linear space of translations in M will be
denoted by V , and the metric tensor by g ∈ V ∗ ⊗ V ∗; obviously, g is symmetric
and positively definite.

Let the force acting on the A-th material point be denoted by

FA(r1, . . . , rN ; v1, . . . , vN ; t)
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the explicit dependence on time t is admissible. Obviously, rA is the radius-vector
of the A-th material point (with respect to some fixed origin in M) and vA = drA/dt
is its velocity vector (independent on the origin, but evidently dependent on the
choice of the inertial reference frame). Unconstrained equations of motion have the
obvious Newton form:

mA

d2rA
dt2

= FA

(
r1, . . . , rN ;

dr1
dt

, . . . ,
drN
dt

; t

)
. (1)

Kinetic energy is given by

T =
1

2

∑

A

mA

drA
dt

·
drA
dt

(2)

with the obvious symbol for the scalar product:

u· v = g(u, v) = giju
iwj . (3)

If we use generalized coordinates Qa and the corresponding kinematical metric
tensor G on the configuration space Q := MN ,

Gab =
∑

A

mA

∂rA
∂Qa

·
∂rA
∂Qb

, (4)

and its contravariant inverse Gab,

GacGcb = δab, (5)

equations of motion become

D2Qa

Dt2
= F a

(
. . . , Qb, . . . ; . . .

dQb

dt
; t

)
. (6)

Here generalized accelerations are given by

D2Qa

Dt2
=

d2Qa

dt2
+ Γa

bc

dQb

dt

dQc

dt
, (7)

Γa
bc are Christoffel coefficients for G,

Γa
bc =

1

2
Gai (Gib,c + Gic,b −Gbc,i) , (8)

comma denotes the partial differentiation with respect to Qa, and generalized forces
are given by

F a =
∑

A

GabFA·
∂rA
∂qb

. (9)

Obviously, the configuration kinematical metric G is here flat, i.e., its curvature
tensor does vanish. Nevertheless, equations (6), (7) are more general and hold also
for the general Riemann space (Q,G), used as a configuration space.
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For the potential system, the forces FA are given by

F i
A = −gij

∂V

∂rjA
= −gij

∂V

∂rjB
δBA. (10)

In terms of generalized coordinates:

F a = −Gab ∂V

∂Qb
. (11)

Equations of motion are then derivable from the variational principle:

δI = δ

∫
Ldt = 0, (12)

where L = T − V , and have the Euler-Lagrange form

δI

δQa
=

∂L

∂Qa
−

D

Dt

∂L

∂Q̇a
= 0; (13)

the symbol D/Dt denoting the total (substantial) derivative with respect to time
t; do not confuse it with the covariant differentiation.

If in addition to the Lagrangian background some other forces φa, e.g., dissipa-
tive ones (friction) are present, then (13) is replaced by

∂L

∂Qa
−

D

Dt

∂L

∂Q̇a
= Gabφ

b. (14)

The problem of constraints is as follows: In addition to explicitly given forces
like FA, F a, etc., there are additional ones, which confine motion to some sub-
manifold W ⊂ Q of dimension f < dimQ. More precisely, this is the problem
of holonomic constraints. The manifold W may be analytically described by the
system of equations:

Fa(. . . , Qb, . . .) = 0, a = 1, . . . ,m = dimQ− f. (15)

And now some very important point comes, namely one concerning the distinc-
tion between two different problems:

Procedure 1. Problem of special solutions of (13)/(14) satisfying equations
(15), i.e., placed on

W := {z ∈ Q : Fa(z) = 0, a = 1, . . . ,m} (16)

(it is implicitly assumed that φa are functionally independent, at least in a neigh-
bourhood of W ).

Procedure 2. Problem (13)/(14) dynamically modified by (15). This problem
consists in that in addition to a priori given forces (1), (9), (10), etc., there are some
additional ones, usually even not described explicitly (usually, but not always),
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RA, Ra which result in small-amplitude (but sometimes large-energy and high-
frequency) oscillations vertical to W . Their orthogonal projections onto W do not
satisfy original equations, but something else.

Obviously, it is well-known that the total, joint system consisting of the pri-
mary equations of motion in any of the versions (1), (13), (14) and constraining
conditions (15) is inconsistent: as a rule, it is intrinsically contradictory. There
are only exceptional situations when inconsistency does not appear. For example,
when the forces FA do vanish, i.e., motion is free, and W is an affine subman-
ifold of the Euclidean space Q (functions Fa are affine, i.e., roughly speaking,
linear-inhomogeneous), then all straight-lines swept with constant velocities are
solutions (they form the general solution of the problem of motion in W ). But
of course, the situation changes drastically when the general constraints of rigid
motion are imposed onto the free motion problem. Then the only solutions of the
above Procedure 1 are the total free translations. But we are aware that with a
good approximation the general rigid motion with nontrivial rotations does exist
and is both theoretically interesting and practically relevant; one knows that from
elementary school. The point is that one deals then with the above Procedure

2. The solution is classical, known from ages and belongs mainly to Lagrange
and d’Alembert. Nevertheless, there are situations when this classical procedure is
forgotten. From some point of view this is the problem of passive control, based
on the natural contact-rolling-friction mechanism, without servomechanism-aided
and computer-aided procedures and active control elements, cf [1]–[6]. From some
point of view the idea is peculiar. Namely, instead of real auxiliary forces or-
thogonal to W , defined around W , and just vanishing at W itself, one introduced
symbolic d’Alembert reactions which are just defined on W itself and maintain the
among-constraints motion. Therefore, (1) is replaced by

mA

d2rA
dt2

= FA

(
r1, . . . , rN ;

dr1
dt

, . . .
drN
dt

; t

)
+ RA

(
r1, . . . , rN ;

dr1
dt

, . . .
drN
dt

; t

)

(17)
and this equation is completed and treated jointly with constraint equations (15)

Fa (r1, . . . , rN ) = Fa

(
. . . , Qb, . . .

)
= 0 (18)

But of course the joint system (17) & (18) is over-determined unless some con-
stitutive conditions are imposed on RA. The d’Alembert-Lagrange procedure of
passive control tells us that the along-constraints motion is neither affected nor
maintained without the energy transfer to the system, i.e., reactions RA do not
do any work, i.e., their mechanical power does vanish; they are orthogonal to the
constraints surface W , i.e., to all virtual motions:

PR =
∑

A

RA ·
drA
dt

= 0 (19)

for any functions R ∋ t → rA (t) satisfying equations:

Fa (r1 (t) , . . . , rN (t)) = 0 identically over t, (20)
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therefore, for any virtual velocities drA
dt

subject to

∂Fa

∂rA
·
drA
dt

= 0. (21)

Obviously, the symbols ∂Fa/∂rA are abbreviations for the systems of derivatives
with respect to the components riA. This means that reactions RA are given by:

RA =
∑

a

λa ∂Fa

∂rA
(22)

with the same meaning of ∂Fa/∂rA as above. Here λa are some apriori unknown
Lagrange multipliers. The total system of equations of motion in the sense of the
Procedure 2 above, consists of (17), (20), (22). This is the system of f + m =
dimQ+m equations for the system of dimQ+m variables rA, λa. Eliminating λa−s
we obtain the system of f independent equations for f independent generalized
coordinates parametrizing W ⊂ Q. The knowledge of λa, i.e., reactions RA is
essential for the design of the system of factors maintaining the constraints.

Let us go back to a more homogeneous notation. We consider analytical me-
chanics in a differential manifold Q of dimension dimQ = k, with the Lagrangian
background L : TQ → R ( TQ denoting the tangent bundle of Q, i.e., manifold of
generalized coordinates qi and velocities vi = q̇i), and with certain non-Lagrangian
forces, e.g., dissipative ones, represented in the covariant terms as Di. If Q is en-
dowed with Riemannian structure G, and something like the “magnetic field” Ai

(covector potential) is present, and the scalar potential V as well, then the typical
school example is:

L (q, v) =
1

2
Gij (q) vivj + εAi (q) vi + V (q) . (23)

Typical model of dissipative forces is

Di (q, v) = −dij (q, v) vj , (24)

where dij (q, 0) = 0, and dij is symmetric and positively definite. In applications
it often does not depend on coordinates qi.

Quite independently on the above particular structure, in general equations of
motion of the system (L,D) have the form:

D

Dt

∂L

∂q̇i
−

∂L

∂qi
= Di, i = 1, . . . , dimQ = k. (25)

Let us quote, although it is not particularly important, that for (23) the result-
ing field equations have the form:

D2qi

Dt2
= εGikFkj

dqj

dt
−Gik ∂V

∂qk
−Gikdkj

dqj

dt
, i = 1, . . . , k, (26)
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where

Fkj = Aj,k −Ak,j =
∂Aj

∂qk
−

∂Ak

∂qj
. (27)

Holonomic constraints are described analytically by functionally independent equa-
tions

Fa

(
q1, . . . , qk

)
= 0 , a = 1, . . . ,m,

and the total system of equations of motion is given by

D

Dt

∂L

∂q̇i
−

∂L

∂qi
= Di + Ri, Fa

(
q1, . . . , qk

)
= 0, (28)

i = 1, . . . , k, a = 1, . . . ,m,

together with the condition that reactions Ri are passive, i.e., do not any work on
virtual motions compatible with constraints, i.e., such ones that

∑

i

Ri (q)
dqj

dt
= 0 (29)

if equations
Fa

(
q1 (t) , . . . , qk (t)

)
= 0 , a = 1, . . . ,m, (30)

are satisfied. Let us notice that qi(t) in (30) are quite arbitrary (excepting, of
course, appropriate smoothness conditions). This implies that reactions are given
by:

R(q, v)i =
∑

a

λa(q, v)
∂Fa

∂qi
, i = 1, . . . , k. (31)

The total system of equations

D

Dt

∂L

∂q̇i
−

∂L

∂qi
= Di +

∑

a

λa ∂Fa

∂qi
, i = 1, . . . , k, (32)

Fa(q1, . . . , kk) = 0, a = 1, . . . ,m,

consists of (k + m) independent conditions imposed on (k + m) functions of time,
qi(t), λa(t). And, roughly speaking, λa are to be eliminated, and the general
solution for the time dependence of qi is to be determined. Although, more pre-
cisely, in engineering design the quantities λa are very relevant in the analysis of
the endurance of mechanical factors responsible for constraints (various ”rods”,
”threads”, etc.).

This is implicit description. In certain problems the explicit parametric formu-
lation is more convenient. So, let the constraints W ⊂ Q be parametrically given
by:

qi = ϕi(y1, . . . , yk−m), i = 1, . . . , k; (33)
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the parameters yµ, µ = 1, . . . , f = k−m are independent ”proper” coordinates on
W ⊂ Q, i.e., they label ”true” degrees of freedom of the constrained system. Then
our equations of motion may be written as follows, in explicitly irredundant terms:

D

Dt

∂LW

∂ẏµ
−

∂LW

∂yµ
= DWµ, µ = 1, . . . , f = k −m, (34)

where, obviously, LW is the restriction of the original L to the tangent subbundle
TW , and DW is the pull-back of D to W ⊂ Q,

LW (y, ẏ) := L

(
ϕi(y),

∂ϕi

∂zν
żν
)
, (35)

DWµ(y, ẏ) := Di

(
ϕj(y),

∂ϕj

∂zν
żν
)

∂ϕi

∂zµ
.

2 Nonholonomy and vakonomy

It is interesting to mention here briefly about non-holonomic constraints, although
it is not our main subject here [1]–[10].

Non-holonomic constraints based on the natural slide-free rolling on rough sur-
faces are linear in generalized velocities; in certain situations one deals with ”linear
non-homogeneous”, i.e., affine conditions,

Fa(q, v) = ωai(q)vi + fa(q) = 0, a = 1, . . . ,m. (36)

Of course, holonomic constraints (30) may be also formally written in this way,
then ωai are given by derivatives of Fa-s in (32):

ωai =
∂Fa

∂qi
, a = 1, . . . ,m. (37)

There are also mixed situations, when both the motion in Q and instantaneous
virtual velocities are independently restricted, and one deals with the mixture of
genuine non-holonomic, and holonomic constraints. Let us do not go here into
such details, roughly, the true non-holonomy is assumed here to follow from the
non-integrability of the Pfaff problem:

ωa = ωai (q) dqi = 0 , a = 1, . . . ,m. (38)

This means that at any configuration q ∈ Q we are given some linear (k − m)-
dimensional subspace Wq ∈ TqM of virtual velocities. There are various degrees of
non/integrability. There are two extreme situations: quasiholonomic constraints,
when Q is foliated (stratified) by the m-dimensional family of (k−m)-dimensional
strata (fibers), and the total non-holonomy, when at least locally, at any q ∈ Q
there is a neighbourhood U ⊂ Q such that any of its points may be approached
from q along a curve compatible with (36)/(38) (compare this with Caratheodory
formulation of the Second Principle of Thermodynamics).

7



According to the d’Alembert principle, the reactions maintaining such con-
straints are ideal, i.e., energetically passive, they do not do any work along virtual
motions compatible with constraints. The total system of equations of motion is
given by

D

Dt

∂L

∂q̇i
−

∂L

∂qi
= Di + λaωai , ωai

dqi

dt
= 0; (39)

obviously, the summation convention meant with respect to repeated indices.
This is again the system of (k+m) equations for (k+m) variables (qi, λa). But

in non-holonomic theory some new problems appear which some more than one
century ago resulted in a big confusion, misunderstanding, simply shame. Namely,
in the case of variational system, the Lusternik theorem for the variational problem

δ

∫
L(q(t), q̇(t))dt = 0 (40)

constrained by the conditions

Fa(q(t), q̇(t)) = ωai(q(t))q̇i(t) = 0 (41)

results in equations:

D

Dt

∂L

∂q̇i
−

∂L

∂qi
= Ri, ωai

dqi

dt
= 0, (42)

where, however, the reactions are not any longer given by the right-hand sides of
(39).

Lusternik theorem, i.e., confined extremum (confined stationary point) after
some easy calculations implies that

Ri = µa

(
∂ωaj

∂qi
−

∂ωai

∂qj

)
dqj

dt
−

dµa

dt
ωai. (43)

This is something evidently different than the dissipative-free (39). The obvious
generalization of (42) to the dissipative case is

D

Dt

∂L

∂q̇i
−

∂L

∂qi
= Di + Ri. (44)

Only the second term in (43) is analogous to (39), when we identify the holonomic
Lagrange multiplies λa with dµa/dt. The system (43) & (44) consists of (k + m)
differential equations imposed on (k+m) variables (qi, µa). Let us notice however,
that this is essentially a system of differential equations, because the Lagrange
multipliers enter there in a differential, non-algebraic way. In this sense the system
is more ”elastic”. And equations of motion (43)/(44) are evidently different than
(32). Moreover (43)/(44) do not describe rough, slide-free rolling of natural me-
chanical systems. The ”magnetic”-like term controlled by µ is completely strange
from the point of view of such applications. The system based on (43)/(44) has
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evidently more degrees of freedom. Such system were called by Russian school
”vakonomic” (variational axiomatic). In Western literature they are called ”sub-
Riemannian”. Quite unexpected applications were found in financial mathematics.
Besides, such systems are interesting from the point of view of pure differential ge-
ometry. It seems that systems of this kind may be used in active control, especially
when one deals with servomechanisms and computer-aided problems of programme
motion. Systems based on variational principles and higher-order Lusternik princi-
ples (higher-order differential, but also integral and functional), have some special
features interesting from the point of view of energetic balance in active control. In
particular, this is the case with non-holonomic constraints nonlinear in velocities,
accelerations and higher-order time derivatives. Certainly they are non-physical
in natural mechanism of sliding-free constraints, but they are promising from the
point of view of active control.

In automatic and active control some first-order constraints nonlinear in veloc-
ities may be used, e.g., when stabilizing velocity of satellites and space ships.

If such constraints are given by equations:

Fa(q, v) = 0, a = 1, . . . ,m, (45)

then there are good geometric reasons to control the system with the Appell-
Chetajev reactions:

D

Dt

∂L

∂q̇i
−

∂L

∂qi
= Di + λa ∂Fa

∂vi
, Fa(q, v) = 0, (46)

a = 1, . . . ,m, i = 1, . . . , k.

In any case, the Appell-Chetajew reactions are geometrically correctly-defined
(in a manner independent on the choice of coordinates).

There are also physical reasons to expect the physical utility from the variational
Lusternik procedure. The corresponding equations of motion have the form:

D

Dt

∂L

∂q̇i
−

∂L

∂qi
= Di + Ri Fa(q, q̇) = 0, (47)

with the program forces / reactions given by:

Ri = µa ∂F

∂qi
−

dµa

dt

∂Fa

∂q̇i
− µa ∂2Fa

∂q̇i∂qj
dqj

dt
− µa ∂2Fa

∂q̇i∂q̇j
d2qj

dt2
= 0. (48)

They are also geometrically correctly defined and it is clear that the main term
has just the Appell-Chetajew form dµa

dt
∂Fa

∂q̇i
. The last term in (48) represents the

control of inertial properties.

3 Constraints and symmetries in deformable

bodies

What is not clear with constraints if everything is so clear and classical? It seems
that people doing with continua often do not distinguish between Procedures 1
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and 2 in Section 1 above. The point is that mechanics of continua is often confused
with field theory. In spite of using partial differential equations in both disciplines,
they are something else. There is only one obvious exception. When dealing with
incompressible (isochoric) media, one usually does not forget about the pressure
Lagrange multiplier which is just the reaction force responsible for incompressibil-
ity. But one forgets about the problem in other models, and it is a great merit of
professor Czes law Woźniak [11]–[14] that he stressed the problem. Incidentally, the
author here is very indebted to professor Woźniak for his understanding the prob-
lem, and his permanent support. First of all, let us notice that from the geometric
point of view, the most interesting and important constraints are ones implied by
some symmetry groups.

These are usually some groups responsible for geometry of the physical space
or space time, like isometry group, affine group, conformal group, Poincare group,
Galilei group, etc. Configuration space of various constrained continua very often
happen to be homogeneous spaces of those groups. One of examples which was
very interesting for us was affinely rigid body, i.e., body rigid in the sense of affine
geometry, homogeneously deformable body. It was the model of internal degrees of
freedom in Eringen’s micromorphic continuum. There are also other interesting ex-
amples, like molecular vibrations, collective models of nuclei, astrophysical objects,
geophysical problems, macroscopic elasticity in situations when the wave length is
comparable with the linear size of the body etc. And here there is plenty of mis-
understandings. Namely, one often does not distinguish between Procedures 1,
2 from Section 1. One is often faced with the statement that there is only a small
family of solutions. The point is that one confuses Procedure 1 with Procedure

2 and one looks for the special solutions of unconstrained problems, rather then
on the constrained dynamics with its characteristic reaction forces. An extremely
strange argument is that both the deformation tensor and the stress tensor are
constant within the homogeneously deformable body, because of which motion is
to be trivial.

Obviously, finite bodies with boundary cannot have constant deformation ten-
sor, except its interior. And the reaction analysis shows that, in virtue of the
d’Alembert principle, reactions responsible for the affine rigidity do not vanish,
however, it is their monopole and dipole distributions that vanishes, i.e., therefore
the total reaction force and the dipole distribution of reactions do vanish. Because
of this, if the configuration of affine body is given by

xi(r, ϕ; t) = ri(t) + ϕi
K(t)aK , (49)

where ri are coordinates of the centre of mass, ϕi
K are internal/relative parameters,

and aK are material variables, then equations of motion have the form:

M
d2ri

dt2
= F i, ϕi

K

d2ϕj
L

dt2
JKL = N ij . (50)

The meaning of symbols is as follows:
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• M is the total mass of the body,

M =

∫
dµ (51)

• JKL is the co-moving tensor of inertia in the material space, thus constant,

JKL =

∫
aKaLdµ(a) (52)

• center of mass is placed at aK = 0,

JK =

∫
aKdµ(a) = 0 (53)

• F i is the total force,

F i =

∫
F i(a)dµ(a) (54)

• NKL is the co-moving dipole of forces distribution, therefore, its spatial/Eule-
rian components are given by

N ij =

∫
ϕi

Kϕj
La

KaLdµ(a) = ϕi
Kϕj

L

∫
aKaLdµ(a). (55)

Let us quote some alternative forms of equations of motion as balance laws for
linear momentum p and affine spin K

dpi

dt
= F i dKij

dt
=

dϕi
K

dt

dϕj
L

dt
JKL + N ij , (56)

where

pi = M
dri

dt
, Kij = ϕi

K

dϕj
L

dt
JKL (57)

are respectively translational momentum and affine spin. In other words:

dpi

dt
= F i,

dKij

dt
= Ωi

mKmj , (58)

Ωi
j =

dϕi
A

dt
ϕ−1A

j , (59)

is an affine velocity, i.e., Eringen’s ”gyration”

Ω̂A
B = ϕ−1Ai

iϕ
j
BΩi

j , (60)

is its co-moving representation.

11



Let us also quote the following formula:

dKij

dt
= N ij + 2

∂Tint

∂gij
, (61)

where the kinetic energy is given by

T = Ttr + Tint =
M

2
gij

dri

dt

drj

dt
+

1

2
gij

dϕi
K

dt

dϕj
L

dt
JKL. (62)

If Lagrangian is given by

L = T − V
(
ri, ϕi

K

)
, (63)

then
pi,K

i
j (64)

are respectively Hamiltonian generators of spatial translations and affine rotations
about the centre of mass.

Sij = Kij −Kji (65)

is the spin angular momentum, and

dSij

dt
= N ij −N ji, (66)

thus, spin is conserved if N ij is symmetric
Let us quote a few additional interesting formulas:

dp̂A

dt
= −p̂BJBCK

CA + F̂A,
dK̂AB

dt
= −K̂ACJCDK̂

DB + NAB, (67)

where symbol with the capital indices denote co-moving component of physical
quantities and

JACJ
CB = δA

B. (68)

Another geometrically interesting expressions:

M
dv̂A

dt
= M Ω̂A

B v̂
B + F̂A,

dΩ̂B
C

dt
JCA = −Ω̂B

DΩ̂D
CJ

CA + N̂AB. (69)

It is clear that we deal here with the system of n2 + n = n(n + 1) degrees of
freedom (in the n-dimensional space; physically it is 12, when n = 3) and this is
just the dimensionality of the general solution, according to the Procedure 2 in
Section 1.

There are another interesting problems concerning dynamical affine invariance
in mechanics of affinely rigid bodies and nonholonomic constraints, both usual and
VAKONOMIC in mechanics of affine bodies, however, there is no place for them
here. Some of them are discussed in [2], [3], [6].
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Let us notice that if the forces are potential, then the dynamical quantities (56)
(57) are given by

F i = −gij
∂V

∂rj
N ij = −ϕi

A

∂V

∂ϕk
A

gkj . (70)

If there exist dissipative forces non-derivable from Lagrangian or Hamiltonian,
then in addition to (56)some additional terms appears. In the simplest case, we
choose them linear or quadratic in generalized velocities dri/dt, dϕi

k/dt.
Let us observe another interesting point, namely, some additional, geometric,

i.e., group-implied forces imposed onto (56). Gyroscopic constraints, or rather
pseudo-holonomic constraints of rigid motion, consist of the first equation of (56),

i.e., the assumption that Ωi
j , Ω̂A

B are respectively g-skew-symmetric and η-skew-
symmetric angular velocities in spatial and co-moving representations,

Ωi
j = −Ωj

i = −gikΩk
ig

ij , Ω̂A
B = −Ω̂B

A = −ηBCΩ̂C
DηDA, (71)

where g is the metric tensor of the physical space and η is the material (reference)
metric. The conditions (56) are then evidently holonomic and may be written down
as the conditions of isometry,

gijϕ
i
Aϕ

j
B = ηAB. (72)

This is explicitly purely holonomic form. Then the reaction moments NR are
evidently symmetric,

NR ij = NR ji , (73)

and equations (56) are evidently free of explicitly non-specified reactions. Gyro-
scopic reactions do not vanish, however their full tensor contractions with skew-
symmetric affine virtual velocities (angular velocities) are vanishing in virtue of
constraints (71), (72). Taking skew-symmetric part of (56) we eliminate reaction
moments and obtain the effective equations of motion.

Let us now consider isochoric constraints, i.e., incompressibility. Here one is
faced with something traditionally very familiar and important in continuum me-
chanics, first of all in fluids. The traces of affine velocities do vanish then:

Tr Ω = Ωi
i = 0. (74)

The total contractions of such virtual Ω-s with the reaction affine moment NR

must vanish:
NR

ijΩji = NR
ijΩk

igjk = 0. (75)

But this means that reactions are pure traces,

NR
i
j = λδij , NR

ij = λgij , λ =
1

n
Tr.NR =

1

n
gijNR

ij . (76)
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Therefore, to eliminate the Lagrange multiplier λ, we must take the constraints
condition (74) (i.e., detϕ =const) jointly with the g-traceless part of (56) itself,
i.e., explicit,

ϕi
A

d2ϕj
B

dt2
JAB −

1

n
gabϕ

a
A

d2ϕb
B

dt2
JABgij = N ij −

1

n
gabN

abgij . (77)

One can discuss constraints implied by the linear-conformal group, i.e., gener-
ated by rotations and dilatations. Then affine velocity (gyration) has the form:

Ωi
j = ωi

j + αδij , (78)

where ωi
j is the g-skew-symmetric angular velocity, i.e., it satisfies (71) and α is

an arbitrary real, dilatational parameter, so that

gijϕ
i
Aϕ

j
B = ληAB , λ > 0. (79)

Then reaction-free equations of motion consist of the skew-symmetric part of (56)
and of the g-trace of that equation, so

ϕi
A

d2ϕj
B

dt2
JAB − ϕj

A

d2ϕi
B

dt2
JAB = N ij −N ji, (80)

gijϕ
i
A

d2ϕj
B

dt2
JAB = gijN

ij . (81)

Reaction moments NR
ij are symmetric and g-traceless.

And finally some very interesting example of non-holonomic, but non-VA-
KONOMIC constraints, when Ω is g-symmetric. Those are constraints of the purely
rotation-free motion (the only geometrically correct definition);

Ωi
j − Ωj

i = Ωi
j − gjkg

ilΩk
l = 0. (82)

Reactions are anti-symmetric, and (82) must be joined with the symmetric part of
(56),

ϕi
A

d2ϕj
B

dt2
JAB + ϕj

A

d2ϕi
B

dt2
JAB = N ij + N ji. (83)

Think the motion of suspension in a viscous fluid as an example. There are also
VAKONOMIC models of this kind. But this a quite different story, no place for it
here.
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