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Larkin-Ovchinnikov-Fulde-Ferrell Phase in (TMTSF)2ClO4 Superconductor: Theory
versus Experiment
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We consider a formation of the Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) phase in a quasi-one-
dimensional (Q1D) conductor in a magnetic field, parallel to its conducting chains, where we take
into account both the paramagnetic spin-splitting and orbital destructive effects against supercon-
ductivity. We show that, due to a relative weakness of the orbital effects in a Q1D case, the LOFF
phase appears in (TMTSF)2ClO4 superconductor for real values of its Q1D band parameters. We
compare our theoretical calculations with the recent experimental data by Y. Maeno’s group [S.
Yonezawa et al., Phys. Rev. Lett. 100, 117002 (2008)] and show that there is a good qualitative
and quantitative agreement between the theory and experimental data.
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Since a discovery of superconductivity in organic
(TMTSF)2X conductors (X=PF6 and ClO4) [1], their
physical properties have been intensively studied both
experimentally and theoretically [2,3]. From the begin-
ning, it was clear that their superconducting properties
were unconventional. Indeed, it was found [4] that super-
conductivity was destroyed by non-magnetic impurities,
which was recently unequivocally confirmed [5]. In ad-
dition, it was shown [6] that the conventional for s-wave
superconductivity Hebel-Slichter peak was absent in the
NMR experiments. Note that the experimental results [4-
6] provide strong arguments that superconducting order
parameter changes its sign on a quasi-one-dimensional
(Q1D) Fermi surface (FS) of (TMTSF)2X superconduc-
tors. On the other hand, they do not contain information
about a spin-part of a superconducting order parameter
and, thus, do not distinguish between singlet and triplet
pairings. At the moment, the problem about a spin part
of a superconducting order parameter in (TMTSF)2X
conductors is still controversial. Indeed, early measure-
ments of the Knight shift in (TMTSF)2PF6 conductor
[7] in a magnetic field H = 1.43 T showed that spin sus-
ceptibility was unchanged through the superconducting
transition. These data were interpreted as an evidence
for triplet superconductivity. On the other hand, more
recent Knight shift data in (TMTSF)2ClO4 conductor
[8], obtained in a magnetic field H = 0.957 T , were in-
terpreted in favor of a singlet superconducting pairing.

Another unconventional feature of superconductivity
in (TMTSF)2X conductors is very large upper critical
fields for a magnetic field parallel to their conducting
planes and perpendicular to their conducting chains,
H ‖ b′ [9-14]. These fields exceed both the quasi-classical
orbital upper critical field [15,16] and so-called Clogston
paramagnetic limit [17]. Note that in (TMTSF)2PF6

superconductor Hb′

c2 is very large [10,11] due to a for-
mation of domain walls in the vicinity of antiferromag-
netic phase. In contrast, in (TMTSF)2ClO4 conduc-
tor large upper critical field Hb′

c2 [12-14] is prescribed
to 3D → 2D dimensional crossover in a magnetic field,

predicted in Ref.[18] and elaborated in Refs. [19-23].
In addition, recent measurements of the upper critical
fields in (TMTSF)2ClO4 superconductor [13,14] have re-
vealed another unusual property - a novel superconduct-
ing phase, which appears when a magnetic field is ap-
plied along the conducting chains, H ‖ a. It is shown
[13,14] that the above mentioned phase is very sensitive
to impurities and inclinations of a magnetic field from a

axis. The authors of the experiments [13,14] have related
this new phase with a possible formation of the Larkin-
Ovchinnikov-Fulde-Ferrell (LOFF) state [24,25].
The goal of our Letter is to show theoretically that the

LOFF phase has to appear in a magnetic field, parallel
to the conducting chains of (TMTSF)2ClO4 supercon-
ductor, if we use experimentally measured values of its
Q1D band parameters. The distinctive feature of our
work is that we take into account both the paramagnetic
spin-splitting and orbital destructive effects against su-
perconductivity. This problem is a challenging one, since
the orbital effects for a magnetic field along the con-
ducting chains correspond to very particular open elec-
tron trajectories. These effects cannot be described by
any of the existing theories, including Refs. [15-23,26].
To describe the orbital and paramagnetic effects, below
we derive an integral equation for a superconducting or-
der parameter, which, to the best of our knowledge, has
not been considered before. By means of the measured
Ginzburg-Landau slops of an anisotropic upper critical
field in (TMTSF)2ClO4 [13,14] and the measured ratio
ta/tb [27,28], we determine its Q1D band parameters. We
use these band parameters for a numerical solution of the
above mentioned integral equation and conclude that the
LOFF phase has to exist in (TMTSF)2ClO4 conductor.
This conclusion is based both on theoretical arguments
and on good qualitative and quantitative agreement be-
tween the theory and experimental measurements [13,14].
It is important that the results of our Letter support sin-
glet d-wave scenario of superconductivity in (TMTSF)2X
materials.

Below, we consider a Q1D conductor with the following
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electron spectrum,

ǫ(p) = −2ta cos(pxa/2)− 2tb cos(pyb
∗)− 2tc cos(pzc

∗),
(1)

in a magnetic field, parallel to its conducting chains, H ‖
a,

H = (H, 0, 0), A = (0, 0, Hy), (2)

where ta ≫ tb ≫ tc correspond to electron hoping inte-
grals along a , b, and c axes, respectively.
We represent electron wave functions with definite en-

ergy and momentum px in the following way:

Ψ±
ǫ (px;x, y) = exp(±ipxx) exp[±ip±y (px)y] ψ±

ǫ (px, y),
(3)

where +(-) stands for left (right) sheet of a Q1D FS and
the functions p±y (px) are defined by the equations:

vF (px ∓ pF )∓ 2tb cos[p
±
y (px)b

∗] = 0, (4)

where vF and pF are the Fermi velocity and Fermi mo-
mentum, respectively. In this case, we can rewrite Eq.
(1) as:

δǫ±(p) = ±2tbb
∗(py−p±y ) sin(p±y b∗)−2tc cos(pzc

∗), (5)

where we linearize the electron spectrum (1) near the FS
with respect to momentum py; energy δǫ = ǫ − ǫF is
counted from the Fermi energy ǫF .
In a magnetic field, we use the Peierls substitution

method [18] for Eq.(5),

py − p±y → −i d
dy
, pzc

∗ → pzc
∗ − ωc

vF
y, ωc =

eHvF c
∗

c
,

(6)
where e is the electron charge and c is the velocity of
light. As a result, we obtain the following Schrodinger
equation for the electron wave functions:

[∓ivy(p±y )
d

dy
−2tc cos(pzc

∗ − ωc

vF
y)− µBσH ] ψ±

ǫ (px, y, pz)

= δǫ ψ±
ǫ (px, y, pz), (7)

with σ/2 being a projection of an electron spin on a axis;
µB is the Bohr magneton, vy(py) = 2tbb

∗ sin(pyb
∗).

It is important that Eq.(7) can be exactly solved:

ψ±
ǫ (px, y, pz) =

1
√

2π|vy(p±y )|
exp

[ ±iδǫy
vy(p

±
y )

]

exp

[±iµBσHy

vy(p
±
y )

]

× exp

[

±i 2tc

vy(p
±
y )

∫ y

0

cos

(

pzc
∗ − ωc

vF
u

)

du

]

,(8)

where the wave functions (8) are normalized by condition:

∫ +∞

−∞

[ψ±
ǫ1
(px, y, pz)]

∗ ψ±
ǫ2
(px, y, pz) dy = δ(ǫ1 − ǫ2). (9)

Note that finite temperature Green functions for the
wave functions (8),(3) can be determined by the stan-
dard equation:

g±iωn
(x, x1; y, y1; pz) =

∫ +∞

−∞

d(δǫ)
[ψ±

ǫ (x1, y1, pz)]
∗ ψ±

ǫ (x, y, pz)

iωn − δǫ
,

(10)
where ωn is the Matsubara frequency [29].
Below, we consider a singlet d-wave scenario of super-

conductivity in (TMTSF)2ClO4 conductor, which is in
agreement with the experiments [4-6,8]. For this pur-
pose we introduce the following d-wave like LOFF order
parameter,

∆q(x, y; py) =
√
2 cos(pyb

∗) exp(iqx)∆q(y), (11)

where the Cooper pairs are characterized by non-zero to-
tal momentum along a axis, q 6= 0, and ∆q(y) is the
Ginzburg-Landau (GL) order parameter, which depends
on coordinate y. To derive the gap equation for ∆q(y), we
use the Gor’kov equations for non-uniform superconduc-
tivity [30,31], as it is done, for example, in Ref.[32]. As a
result of lengthy but rather straightforward calculations,
we obtain:

∆q(y) = g

∫

dpy
vx(py)

∫

|y−y1|>
|vy|

Ω

2πTdy1

vy(py) sinh
[2πT |y−y1|

vy(py)

]

×2 cos2(pyb
∗) cos

[

2βµBH(y − y1)

vy(py)

]

cos

[

q
vx(py)

vy(py)
(y − y1)

]

×J0
{

8tcvF
ωcvy(py)

sin

[

ωc(y − y1)

2vF

]

sin

[

ωc(y + y1)

2vF

]}

∆q(y1),(12)

where factor β takes into account possible decrease of
the spin-splitting paramagnetic effects due to small de-
viations from a weak coupling scenario; g is an effective
electron coupling constant, Ω is a cutoff energy. Note
that the last term in Eq.(12) describes the orbital ef-
fects against superconducting at low enough magnetic
fields. At high magnetic fields, quantum effects due to
the Bragg reflections of electrons from boundaries of the
Brillouin zone, as shown in Refs. [18,32], can improve su-
perconductivity. This improvement may cause to the ap-
pearance of the Reentrant Superconducting (RS) phase
[18-23,32]. Our analysis of Eq.(12) shows that the RS
phase may appear only at magnetic fields of the order
of 50 T , where superconductivity is already destroyed by
the paramagnetic spin-splitting effects. Therefore, for a
magnetic field parallel to the conducting axis, H ‖ a, un-
like the situation, where it is perpendicular to it, H ‖ b′

[18-23], we can ignore the above mentioned RS effects.
From mathematical point of view, this means that we can

replace the term sin[ωc(y−y1)
2vF

] sin[ωc(y+y1)
2vF

] by
ω2

c(y
2−y2

1
)

4v2

F

in Eq.(12). If we do this and if we introduce more conve-

nient variables, y = y, y1 = y +
vy(py)
vF

z, we can rewrite
Eq.(12) as:
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∆q(y) = g

∫

dpy
vx(py)

∫

|z|>
vF
Ω

2πTdz

vF sinh
[

2πTz
vF

]

×2 cos2(pyb
∗) cos

[

2βµBHz

vF

]

cos

[

q
vx(py)

vF
z

]

×J0
{

2tceHc
∗

vF c
z

[

2y +
vy(py)

vF
z

]}

∆q

[

y +
vy(py)

vF
z

]

.(13)

It is possible to show that in the vicinity of transition
temperature, (Tc −T ) ≪ Tc, Eq.(13) is equivalent to the
GL expression for the upper critical field,

Ha
c2 =

4
√
2π2c~T 2

c

7ζ(3)etbtcb∗c∗

(

Tc − T

Tc

)

, (14)

where ζ(x) is the Riemann zeta function.
Let us briefly discuss how to determine band param-

eters ta, tb, and tc from analysis of the available exper-
imental data in (TMTSF)2ClO4 conductor [33]. First
of all, the ratio ta/tb ≃ 10 was firmly established in
Ref.[28], where the measured Lee-Naughton-Lebed oscil-
lations were compared with the corresponding theoretical
results. Second, in Refs.[13,14], the GL slopes for the up-
per critical fields along b and c axes were carefully mea-
sured: dHb

c2/dT = 2.75 T/K and dHc
c2/dT = 0.14 T/K.

If we take into account that for d-wave like order param-
eter (11) in the GL region [33]:

Hb
c2 =

8π2c~T 2
c

7ζ(3)etatcac∗

(

Tc − T

Tc

)

(15)

and

Hc
c2 =

8
√
2π2c~T 2

c

7ζ(3)etatbab∗

(

Tc − T

Tc

)

, (16)

then we can evaluate all three band parameters: ta =
1340 K, tb = 134 K, tc = 2.6 K. In Eqs.(15),(16), we
use the following known values: Tc = 1.45 K, a = 7.1 Å,
b∗ = 7.2 Å, and c∗ = 13.1 Å [13,14].
In Fig.(1), we compare the result of numerical solu-

tions of Eq.(13) for β = 0.9 with the experimental data
[13] and predict the appearance of the LOFF phase at
H ≥ 3 T (see also the figure caption). Note that the
only fitting parameter in our theory is β. We interpret
the above mentioned value β = 0.9, which fits better the
experimental data [13], as an evidence of small devia-
tions from a weak coupling scenario of superconductivity,
where β = 1.
Here, we summarize the main results of the Letter. We

have derived an integral equation, which allows to de-
scribe superconductivity in a magnetic field, parallel to
conducting axes of a Q1D conductor. By using numeri-
cal solutions of the above mentioned equation for exper-
imentally measured band parameters of (TMTSF)2ClO4

q=0
LOFF

1 2 3 4 5
HHTL

0.2

0.4

0.6

0.8

1.0

1.2

1.4

TcHKL

FIG. 1: Numerical solution of Eq.(13) (solid line) is com-
pared to the experimental data [13] (dottes). Note that a
phase transition from uniform superconductivity (q=0) to the
Larkin-Ovchinnikov-Felde-Ferrell phase (q 6= 0) is predicted
by our theory in a magnetic field H ≃ 3 T . We pay atten-
tion on a good overall qualitative and quantitative agreement
between the theory and experiment.

compound, we have found that the LOFF phase has to
appear in this superconductor at high enough magnetic
fields. Comparison of our theoretical curve with the re-
cent experimental data [13] demonstrates a good overall
qualitative and quantitative agreement (see Fig.1).

For theoretical discussions of a possibility of the ap-
pearance of the LOFF phase in a Q1D conductor in a
magnetic field, perpendicular to conducting axes and par-
allel to conducting planes, see Refs.[18,20-23]. There are
some experimental data in a favor of the existence of
the LOFF phase in quasi-two-dimensional (Q2D) super-
conductors κ-(ET)2Cu(NCS)2 [34,35], λ-(BETS)2GaCl4
[36], and λ-(BETS)2FeCl4 [37]. Nevertheless, theoreti-
cal calculations, which take into account both the orbital
and paramagnetic effects in a Q2D case, have not been
done yet . The paramagnetic spin-splitting effects in the
LOFF phase in a pure 1D case were theoretically studied
in Ref. [38], whereas they were theoretically studied in a
pure 2D case in a number of papers [39-43].
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