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Abstract

Let (Mm, g) be a m-dimensional complete Riemannian manifold which satisfies the n-Sobolev

inequality and on which the volume growth is comparable to the one of R
n for big balls; if the

Hodge Laplacian on 1-forms is strongly positive and the Ricci tensor is in L
n
2
±ǫ for an ǫ > 0, then

we prove a Gaussian estimate on the Heat Kernel of the Hodge Laplacian on 1-forms. This allows

us to prove that, under the same hypotheses, the Riesz transform d∆−1/2 is bounded on Lp for all

1 < p < ∞. Then, without the strong positivity assumption, we prove that the Riesz transform is

bounded on Lp for all 1 < p < n, when n > 3.

1 Introduction

1.1 A brief state of the art for the Riesz transform problem

In 1983 in [41], Strichartz raised the following question : when is the Riesz transform d∆−1/2 bounded
on Lp(M), where M is a complete manifold? Since then, there have been a certain amount of pa-
pers which have studied this problem. We want to recall some of the results that have been so far
obtained; we do not seek to be exhaustive, since there are now a lot of results on the Riesz transform
problem in cases that include Cartan-Hadamard manifolds with a spectral gap (see [30]), Lie groups
with polynomial growth (see [2]), or R

n for Riesz transform with potential d(∆ + V )−1/2 (c.f. the
survey [3]). In this article, we are mostly interested in finding geometric hypotheses which ensure the
boundedness of the Riesz transform, so let us now present some of the existing results concerning this
aspect of the problem. Bakry proved in [5] that when M has non-negative Ricci curvature, the Riesz
transform is bounded on Lp, for every 1 < p < ∞. Carron, Coulhon and Hassell proved in [11] that
on the connected sum of several copies of Rn, the Riesz transform is bounded on Lp for all 1 < p < n,
and unbounded on Lp for p ≥ n if there is more than one end. Later in [10], Carron extended this
result to a manifold M obtained as the connected sum of manifolds Mi, 1 ≤ i ≤ k all of which
satisfying a Sobolev inequality of dimension n > 3: he proved that if for every 1 ≤ i ≤ k, the Riesz
transform on Mi is bounded on Lp and n

n−1 < p < n, then the Riesz transform on M is bounded on Lp.

For manifolds satisfying a Sobolev inequality of dimension n, there are -at least- 3 different ranges
of p that lead to different results for the Riesz transform: for 1 < p ≤ 2, the boundedness of the Riesz
transform on Lp has been shown under a quite great generality (at least comparing to the other cases):
Coulhon and Duong proved in [14] that if M satisfies the Doubling property together with a relative
Faber-Krahn inequality, then the Riesz transform is bounded on Lp for 1 < p ≤ 2. For 2 ≤ p < n, it
seems that the boundedness of the Riesz transform only depends on the geometry at infinity of the
manifold, i.e. the geometry of each end of M considered separately. For this range of p’s, Carron’s
perturbation argument [10] works: roughly, the boundedness of the Riesz transform is preserved under
gluing and perturbation both of the metric and the topology on a compact set. For n ≤ p < ∞,
an obstruction to the boundedness of the Riesz transform can be the presence of more than one end
(as we see for the exemple consisting of the connected sum of several Euclidean spaces). However,
Carron’s perturbation result [10] does not work for this range of p’s, even if we assume that there is
only one end. At this point, we mention another perturbation result that still works for this range
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of p’s: Coulhon and Dungey in [13] proved that the boundedness of the Riesz transform is preserved
with no restriction on p under a certain Lq perturbation of the metric (but the underlying manifold
remaining the same). The problem of this result is that we must assume a priori that the manifold
M is obtained by a change of metric from a manifold on which the Riesz transform is bounded (for
example, Rn with a metric close to the Euclidean one); but if we want to generalize Bakry’s result, we
do not want to make this kind of assumptions: we would rather have intrinsic conditions in term of the
Ricci curvature and other geometric quantities that would imply that the Riesz transform is bounded.
The only known result for this range of p’s, for manifolds that are not Lie groups, apart from the case
of non-negative Ricci curvature (and apart from the examples obtained by the perturbation method
of [13]), is the case of conical manifolds with compact basis, studied by Li in [29] (see also [16]). He
has found in this case explicitely p0 > n depending on the geometry of the base, such that the Riesz
transform is bounded on Lp if and only if 1 < p < p0. These manifolds have only one end, but in
fact when p0 < ∞ they may be too far from being perturbation of the Euclidean space R

n or of a
manifold with non-negative Ricci curvature (their Ricci tensor may not be in L

n
2 ). Later, Guillarmou

and Hassell have extended Li’s results to the case of asymptotically conical manifolds (see [26] and [27]).

On the other hand, there are some results concerning sufficient or necessary conditions so that the
Riesz transform be bounded. The point is that these results are analytical, in the sense that they
reduce the problem of the boundedness of the Riesz transform to verifying some other assumption,
typically on the Heat Kernel. One of these results is the following : under the assumptions that the
Doubling property and the scaled Poincaré inequalities hold on M (which implies in a lot of cases that
M has only one end), Auscher, Coulhon, Duong and Hofmann have shown in [4] that the boundedness
of the Riesz transform on Lp is equivalent to the following Lp estimate of the gradient of the heat
kernel:

||∇e−t∆||p,p ≤ Cp√
t
, ∀t > 0.

However, we do not know any geometric caracterisation of these Lp estimates- it is only known that
the non-negativity of the Ricci curvature is enough to get these for all p’s. Let us also make the
following related remark: so far, almost all the proofs that the Riesz transform is bounded rely on
some hypotheses on the Heat Kernel; indeed, for 1 < p ≤ 2, what is used is a Gaussian upper estimate
for the heat kernel. And to treat the case p > 2, many authors make assumptions on the gradient
of the heat kernel, or, what turns out to be related, on the heat kernel on 1-forms ~pt. For example,
Coulhon and Duong in [15] proved the boundedness of the Riesz transform on Lp for all 1 < p < ∞
when a Gaussian upper estimate on the heat kernel on functions pt holds, together with the domination
condition:

||~pt(x, y)|| ≤ Cpt(x, y), ∀t > 0, ∀x, y ∈ M.

This implies that a Gaussian estimate holds for the heat kernel on 1-forms. Moreover, they show that
a Gaussian estimate for the heat kernel on 1-forms is enough to get this domination. Examples of
manifolds that satisfy this domination condition are the manifolds with non-negative Ricci curvature
(and conversely, if we have the domination with constant C = 1, the Ricci curvature is non-negative).
To our knowledge, it is the only case where a Gaussian estimate for the Heat Kernel on 1-forms has
been proven. If one wants to prove Gaussian estimates for the Heat Kernel on 1-forms in more general
cases, a certain amount of negative Ricci curvature must be allowed. At each point p ∈ M , the Ricci
tensor:

Ricp : Λ1T ∗M → Λ1T ∗M,

is symmetric (with respect to gp, the metric in p). Therefore, we can write, at each point:

Ricp = (Ric+)p − (Ric−)p,

with (Ric+)p and (Ric−)p non-negative.

Definition 1.1 Ric+ ∈ End(Λ1T ∗M) and Ric− ∈ End(Λ1T ∗M) are respectively the positive and
negative part of the Ricci tensor.
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One wants to extend the Gaussian estimate for the Heat Kernel on 1-forms to the case where Ric− is
“small” in an appropriate sense. In this direction, in a recent paper, Coulhon and Zhang ([19]) prove

that under some strong positivity of the operator ~∆ (the Hodge Laplacian on 1-forms), there is an
estimate of the form:

||~pt(x, y)|| ≤
Ctα

V (x,
√
t)
exp(−cd2(x, y)/t),

for t ≥ 1: it differs from the Gaussian estimate by a polynomial factor tα, where α > 0 depends on
q such that Ric−, the negative part of the Ricci tensor (see Definition (1.1)) is in Lq. Unfortunately,
such estimates with the additionnal polynomial factor are not enough to get the boundedness of the
Riesz transform, even for small values of α. Another recent tool to obtain Gaussian estimates for
the heat kernel on forms is a result of Sikora (see [38]) which generalises to the Hodge Laplacian the
well-known fact (due to Davies) for the Laplacian on functions that (Gaussian) off-diagonal estimates
follow from suitable on-diagonal estimates.

In this article, we prove Gaussian estimates for the heat kernel on 1-forms for a class of manifolds
larger than that of non-negative Ricci curvature. We were inspired by ideas developped by Barry
Simon in [39] for operators of the form L = ∆+ V on R

n, where V is a potential whose negative part
is in L

n
2 ±ǫ; he obtained that ||e−tL||∞,∞ ≤ C, ∀t > 0 if and only if V is a sub-critical potential (i.e. a

potential such that L is strongly positive). The uniform upper bound ||e−tL||∞,∞ ≤ C, ∀t > 0 may be
seen, by applying the Nash argument (this uses the sub-criticality of V ), to be an on-diagonal upper
bound of the Heat Kernel associated to L of the form:

|pVt (x, x)| ≤
C

tn/2
, ∀t > 0, ∀x ∈ M

where pVt is the Heat Keernel associated to L.

1.2 Our results

Let us describe roughly the structure of the article: it is essentially divided in two parts. In the first
one, we prove a Gaussian estimate on the Heat Kernel on 1-forms for short-range Ricci potential: we
assume that Ric− ∈ L

n
2 ±ǫ, together with some strong positivity assumption comparable to the one

of Coulhon-Zhang, and a Sobolev inequality as well as a volume growth assumption (to be discussed
below). This improves the result of Coulhon-Zhang ([19]): under our conditons, we get rid of the
polynomial term. As a corollary, we obtain the boundedness of the Riesz transform on Lp for all
1 < p < ∞. In a second part, we remove the hypothesis of strong positivity, and we show that the
Riesz transform is still bounded on Lp if we restrict ourselves to the range 1 < p < n.

Now let us present more precisely our results. For the first part, in addition to Ric− ∈ L
n
2 ±ǫ, the

hypotheses that we make is that the Hodge Laplacian is “strongly positive”, which roughly means that

its kernel in L
2n

n−2 is zero (for a precise definition, see Definition (2.2)), and we also assume that the
volume growth of M is “compatible with the Sobolev dimension”; this means that the volume of big
balls B(x,R) is comparable to Rn, where n is the dimension in the Sobolev inequality that we assume
to hold on M (see Definition (3.2)). The hypothesis that the Ricci curvature is bounded from below
is to ensure that the local geometry of the manifold is bounded. Our result is the following :

Theorem 1.1 Let (Mm, g) be an m-dimensional complete Riemannian manifold which satisfies the
n-Sobolev inequality, and whose negative part of the Ricci tensor Ric− is in L

n
2 ±ǫ for an ǫ > 0. We

also assume that the Hodge Laplacian on 1-forms ~∆ is strongly positive, that the volume growth of M
is compatible with the Sobolev dimension, and that Ric is bounded from below;

Then the Gaussian estimate is valid for e−t~∆: for all δ > 0, there exists a constant C such that

||~pt(x, y)|| ≤
C

V (x, t1/2)
exp

(

−d2(x, y)

(4 + δ)t

)

, ∀x, y ∈ M, ∀t > 0.

Thus, the Riesz transform is bounded on Lp for all 1 < p < ∞.
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Let us recall the definition of L2-cohomology. The first space of reduced cohomology is defined to be:

H1
2 (M) :=

{α ∈ L2 : dα = 0}
{dC∞

0 (M)
= {α ∈ L2 : ~∆α = 0},

where ~∆ is the Hodge Laplacian acting on 1-forms.
A consequence of Proposition 1.3 in [8] is that, when n > 4, ~∆ is strongly positive if and only if
H1

2 (M) = {0}.
Thus we get the following:

Corollary 1.1 Assume n > 4 ;
Let (Mm, g) be a complete Riemannian manifold which satisfies the n-Sobolev inequality, and whose
negative part of the Ricci tensor Ric− is in L

n
2 ±ǫ for an ǫ > 0. We also assume that H1

2 (M) = {0},
that the volume growth of M is compatible with the Sobolev dimension, and that Ric is bounded from
below;

Then the Gaussian estimate is valid for e−t~∆: for all δ > 0, there exists a constant C such that

||~pt(x, y)|| ≤
C

V (x, t1/2)
exp

(

−d2(x, y)

(4 + δ)t

)

, ∀x, y ∈ M, ∀t > 0.

Thus, the Riesz transform is bounded on Lp for all 1 < p < ∞.

Remark 1.1 H1
2 (M) = {0} implies in particular that M has only one end.

This applies in particular to conical manifolds with non-negative Ricci curvature outside a compact
set: if we take a compact (n − 1)-dimensional manifold Σ which satisfies RicΣ ≥ n − 2, the conical
manifold c(Σ) with base Σ satisfies Ricc(Σ) ≥ 0. Let us remark that by the Lichnerowicz-Obata
Theorem, we have λ1(Σ) ≥ n− 1 = λ1(S

n−1) (with equality if and only if Σ is isometric to Sn−1). So
this is coherent with Li’s result (see [29]), which asserts that the Riesz transform on c(Σ) is bounded
on Lp for all 1 < p < ∞ when λ1(Σ) ≥ n − 1, since by Bakry we know that Ric ≥ 0 implies the
boundedness of the Riesz transform on Lp for all 1 < p < ∞. It is known that a conical manifold
of dimension n satisfies the n-Sobolev inequality, and that its volume growth is compatible with the
Sobolev dimension. Thus we get the following result:

Corollary 1.2 Let M be a complete Riemannian manifold such that there exist K1 ⊂ M , K2 ⊂ c(Σ)
compact sets such that M \K1 is isometric to c(Σ) \K2;
Assume that RicΣ ≥ n− 2 and H1

2 (M) = {0};
Then the Gaussian estimate is valid for e−t~∆ on M : for all δ > 0, there exists a constant C such that

||~pt(x, y)|| ≤
C

V (x, t1/2)
exp

(

− d2(x, y)

(4 + δ)t

)

, ∀x, y ∈ M, ∀t > 0.

Moreover, the Riesz transform is bounded on Lp for all 1 < p < ∞ (we already knew that from the
work of Guillarmou-Hassell [26], [27]).

In a second part, we remove the hypothesis of strong positivity. The perturbation method of Carron
in [10] allows us to prove:

Theorem 1.2 Assume that n > 3;
Let (Mm, g) be an m-dimensional complete Riemannian manifold which satisfies the n-Sobolev inequal-
ity, and whose negative part of the Ricci tensor Ric− is in L

n
2 ±ǫ for an ǫ > 0.

We also assume that the volume growth of M is compatible with the Sobolev dimension, and that the
Ricci curvature is bounded from below.
Then for every 1 < p < n, the Riesz transform is bounded on Lp on M .

Remark 1.2 Let us note that in all these results, the Sobolev exponent n is not necessarily equal to
the dimension m of the manifold M ; in fact, n must only satisfy n ≥ m.
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2 Preliminaries

Throughout the text, M will denote a complete non-compact manifold which satisfies the n-Sobolev

inequality: there is a constant C such that

||f || 2n
n−2

≤ C||∇f ||2, ∀f ∈ C∞
0 (M).

We consider an operator of the form ∇∗∇+R+ −R−, acting on a Riemannian fiber bundle E → M ,
where ∇ is a connection on E → M compatible with the metric, and for p ∈ M , R+(p), R−(p) are
non-negative symmetric endomorphism acting on the fiber Ep. Let us denote ∆̄ := ∇∗∇, the “rough
Laplacian”, and C∞(E) (resp. C∞

0 (E)) the set of smooth sections of E (resp., of smooth sections of
E which coincide with the zero section outside a compact set).
We define H := ∆̄ +R+. We will consider the L2-norm on sections of E:

||ω||22 =

∫

M

|ω|2(p)dvol(p),

where |ω|(p) is the norm of the evaluation of ω in p. We will denote L2(E), or simply L2 when there
is no confusion possible for the set of sections of E with finite L2 norm.
We have in mind the case of ~∆ = d∗d+dd∗, the Hodge Laplacian acting on 1-forms, for which we have
the Bochner decomposition:

~∆ = ∆̄ +Ric,

where ∆̄ = ∇∗∇ is the rough Laplacian on 1-forms, and Ric ∈ End(Λ1T ∗M) is canonically identified
- using the metric - to the Ricci tensor.
From classical results in spectral analysis (an obvious adaptation to ∆̄ of Strichartz’s proof that the
Laplacian is self-adjoint on a complete manifold, see Theorem 3.13 in [31]), we know that if R− is
bounded and in L1

loc, then ∆̄ +R+ −R− is essentially self-adjoint on C∞
0 (E).

2.1 Consequences of the Sobolev inequality

We will see in this section that H = ∆̄ + R+ shares with the usual Laplacian acting on functions a
certain amount of functionnal properties, among which:

Proposition 2.1 H satisfies the n-Sobolev inequality: there is a constant C such that

||ω||22n
n−2

≤ C〈Hω, ω〉, ∀ω ∈ C∞
0 (E).

Proof of Proposition (2.1):
For the reader’s convenience, we rewrite the proof of the Appendix of [6], written by G. Besson. Since
R+ is non-negative, it is enough to prove that ∆̄ satisfies the n-Sobolev inequality. If ω ∈ C∞

0 (Γ(E)),
〈∆̄ω, ω〉 =

∫

M |∇ω|2. Let us define fǫ :=
√

|ω|2 + ǫ2 − ǫ ∈ C∞
0 (M). By the n-Sobolev inequality on

M ,

||fǫ||22n
n−2

≤ C

∫

M

|∇fǫ|2.

But

∇fǫ =
∇(|ω|2)

2
√

|ω|2 + ǫ
.

If |X | = 1, |∇X(|ω|2)| = 2|〈∇Xω, ω〉| ≤ 2|∇Xω||ω| ≤ 2|∇ω||ω| (indeed, |∇ω|2(p) = ∑

i |∇Xiω|2(p) if
(Xi)i is an orthonormal basis of TpM), hence

|∇(|ω|2)| = sup
|X|=1

|∇X(|ω|2)| ≤ 2|∇ω||ω|,

so that
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|∇fǫ| ≤ |∇ω|.
We obtain

||fǫ||22n
n−2

≤ C||∇ω||22.

Furthermore, fǫ → |ω| uniformly when ǫ → 0, so we can let ǫ → 0 in the preceeding inequality,
obtaining:

||ω|| 2n
n−2

≤ C||∇ω||22.

But by integration by parts, if ω ∈ C∞
0 (E), 〈∆̄ω, ω〉 =

∫

M
|∇ω|2, so we have:

||ω|| 2n
n−2

≤ C〈∆̄ω, ω〉.

�

Remark 2.1 In fact, the preceeding proof shows the Kato inequality (also proved in [6]): for all
ω ∈ C∞

0 (E), |ω| ∈ W 1,2 and

q∆̄(ω) ≥ q∆(|ω|),
where q∆̄ (resp. q∆) is the quadratic forms associated to the self-adjoint operator ∆̄ (resp. to ∆). In
the usual terminology of [6], we say that ∆ dominates ∆̄; in fact, it is obvious that ∆ dominates H+λ,
for all λ ≥ 0.

A consequence of this domination is:

Proposition 2.2 For all ω ∈ C∞
0 (E),

|e−tHω| ≤ e−t∆|ω|, ∀t ≥ 0,

and

|H−αω| ≤ ∆−α|ω|, ∀α > 0.

Proof of Proposition (2.2):
The first part comes directly from [6].
The second domination is a consequence of the first one and of the following formulae:

H−α =
1

Γ(α+ 1)

∫ ∞

0

e−tHtα−1dt,

∆−α =
1

Γ(α+ 1)

∫ ∞

0

e−t∆tα−1dt.

�

This domination property, together with the fact that e−t∆ is a contraction semigroup on Lp for all
1 ≤ p ≤ ∞, gives at once that e−tH is also a contraction semigroup on all the Lp spaces.
From the ultracontractivity estimate:

||e−t∆||1,∞ ≤ C

tn/2
, ∀t > 0,

valid since M satisfies a n-Sobolev inequality (see [37]), and the domination of Proposition (2.2), we
deduce that we also have:

||e−tH ||1,∞ ≤ C

tn/2
, ∀t > 0.
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By interpolation with ||e−tH ||∞,∞ ≤ 1, we deduce that for all 1 ≤ p ≤ ∞, there exists C such that

||e−tH ||p,∞ ≤ C

tn/2p
, ∀t > 0.

Interpolating with ||e−tH ||p,p ≤ 1, we obtain:

||e−tH ||p,q ≤
C

t
n
2p (1−

p
q )

.

Furthermore, the domination property also yields that e−tH is a contraction semigroup on Lp, 1 ≤ p ≤
∞, so by Stein’s Theorem (Theorem 1 p.67 in [40]), e−tH is analytic bounded on Lp, for all 1 < p < ∞.
Hence we have proved:

Corollary 2.1 e−tH is a contraction semigroup on Lp, for all 1 ≤ p ≤ ∞.
For all 1 ≤ p ≤ ∞, there exists C such that:

||e−tH ||p,q ≤ C

t
n
2p (1−

p
q )

, ∀t > 0, ∀q > p.

Moreover, e−tH is analytic bounded on Lp with sector of angle π
2

(

1−
∣

∣

∣

2
p − 1

∣

∣

∣

)

, for all 1 < p < ∞.

We recall the following consequences of the analyticity of a semigroup, which come from the Dunford-
Schwarz functionnal calculus (see [34], p.249):

Corollary 2.2 Let e−zA an analytic semigroup on a Banach space X. Then there exists a constant
C such that for all α > 0:

1.

||Aαe−tA|| ≤ C

tα
, ∀t > 0.

2.
||(I + tA)αe−tA|| ≤ C, ∀t > 0.

Furthermore, the domination property also yields that e−tH is a contraction semigroup on Lp, 1 ≤ p ≤
∞, so by Stein’s Theorem (Theorem 1 p.67 in [40]), e−tH is analytic bounded on Lp, for all 1 < p < ∞.
Thus:

Theorem 2.1 H satisfies the following properties:

1. The mapping properties:
For all α > 0,

H−α/2 : Lp −→ Lq

is bounded whenever 1
q = 1

p − α
n and p < q < ∞ (in particular we must have p < n

α).

2. The Gagliardo-Nirenberg inequalities:
For all r > ν and all s > 0,

||ω||L∞ ≤ C(n, r, s)||Hω||θr/2||ω||1−θ
s/2 , ∀ω ∈ C∞

0 (E),

where θ = n/s
1−(n/r)+(n/s) , under the condition r > n.

Proof of Theorem (2.1:
The mapping properties for H are the consequence of the domination of Proposition (2.2) and of the
mapping properties for ∆, which hold since M satisfies a n-Sobolev inequality (cf [42], Theorem 1 and
[18], Theorem II.4.1). The Gagliardo-Nirenberg inequalities are extracted from [12], Theorems 1 and
2, given the ultracontractivity of e−tH and its analiticity on Lp for 1 < p < ∞ (Corollary (2.1)).
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Furthermore, we have the following important fact:

Proposition 2.3 All the results of this section are also valid if we replace H by H + λ with λ > 0
(since H + λ is dominated by ∆, for all λ ≥ 0), and moreover the constants in the Sobolev inequality,
in the Gagliardo-Nirenberg inequality and also the norms of the operators (H + λ)−α : Lp → Lq, are
all bounded independantly of λ.

This will be intensively used later.

2.2 Strong positivity

As in the previous section, denote H := ∆̄ + R+. We assume - as it is the case for the Laplacian on
1-forms - that H −R− is a non-negative operator:

Assumption 1 H −R− is a non-negative operator

It is equivalent to the following inequality : if ω ∈ C∞
0 (E),

0 ≤ 〈Ric−ω, ω〉 ≤ 〈Hω, ω〉.
Simon and Davies first ([39] and [20]), in the Euclidean setting, and later Coulhon and Zhang ([19])
for the case of manifolds, have studied the large time behaviour of a semigroup e−t(∆−V ) generated by
a Schrödinger operator with non-positive potential, assuming that ∆− V is a positive operator. They
find that if V ∈ Lq for some q, then ||e−t(∆−V )||∞,∞ ≤ Ctα, where α depends on q. Moreover, if we
make the supplementary assumption that the operator ∆ − V is “strongly positive” (or “V strongly
subcritical”), then the exponent α can be lowered. In particular, on R

n, under the assumptions that
V ∈ L

n
2 ±ǫ is strongly subcritical, Simon obtains in [39] that ||e−t(∆−V )||∞,∞ ≤ C. What we do here

is to generalize this to the case of operators of the form ∇∗∇+ R+ − R− acting on the sections of a
vector bundle E → M over M . Let us begin by recalling the following classical definition:

Definition 2.1 The Hilbert space H1
0 is the completion of C∞

0 (E) for the norm given by the quadratic
form associated to the self-adjoint operator H.

We recall some of the properties of this space H1
0 associated to H :

Proposition 2.4 1. H1
0 →֒ L

2n
n−2 (E). In particular, it is a space of sections of E → M .

2. H1/2, defined on C∞
0 (E), extends uniquely to a bijective isometry from H1

0 to L2(E).
Thus we can consider H−1/2 : L2(E) → H1

0 .

3. If we consider the operator H1/2 given by the Spectral Theorem - denote it H
1/2
s to avoid confusion

with the one we have just defined from H1
0 to L2 - then Dom(H

1/2
s ) = H1

0 ∩L2(E), and moreover

H1/2 coincide with H
1/2
s on H1

0 ∩ L2(E).

Sketch of proof of Proposition (2.4):
(1) is a consequence of the n-Sobolev inequality of Proposition (2.1). The Sobolev inequality implies
that H is non-parabolic, and (2) can be obtained by the same method as in [21]. (3) can also be obtained
by the techniques developped in [21] in the context of Schrödinger operators acting on functions, which
adapts to the case of Schrödinger operators acting on sections of a vector bundle.

�

In what follows, we assume that R− ∈ L
n
2 .

Definition 2.2 We say that L := H −R− is strongly positive if one of the following equivalent -at
least when R− ∈ L

n
2 - conditions is satisfied :
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1. There exists ǫ > 0 such that:

0 ≤ 〈R−ω, ω〉 ≤ (1− ǫ)〈Hω, ω〉, ∀ω ∈ C∞
0 (E).

2.
KerH1

0
(L) = {0}.

3. The (non-negative, self-adjoint compact if R− ∈ L
n
2 ) operator A := H−1/2R−H−1/2 acting on

L2(E) satisfies:

||A||2,2 ≤ (1− ǫ),

where ǫ > 0.

Remark 2.2 In general, we have the equivalence between 1) and 3) and the implication 3)⇒2), under
the sole hypothesis that A is self-adjoint (which is the case if R− ∈ L

n
2 , but can be true under more

general conditions). The fact that 2)⇒3) is true as soon as A is self-adjoint compact.

Proof of the equivalence:
We can write:

L = H −R− = H1/2(I −A)H1/2.

First, let us prove that 1) ⇔ 3′), where 3′) is defined to be:

3′) : 〈Au, u〉 ≤ (1− ǫ)〈u, u〉, ∀u ∈ L2.

Remark that 3′) is equivalent to 3) when A is self-adjoint. Let ω ∈ C∞
0 (Γ(E)), and set u = H1/2ω ∈

L2(Γ(E)). Then

〈Au, u〉 ≤ (1− ǫ)〈u, u〉 ⇔ 〈H−1/2R−ω,H1/2ω〉 ≤ (1 − ǫ)〈H1/2ω,H1/2ω〉
⇔ 〈R−ω, ω〉 ≤ (1 − ǫ)〈Hω, ω〉

Then we show that 3) ⇒ 2). This is a consequence of the following Lemma:

Lemma 2.1 If A is self-adjoint, then

H1/2 : KerH1
0
(L) → KerL2(I −A)

is an isomorphism (and it is of course an isometry).

Proof of Lemma (2.1):

Let u ∈ H1
0 ; we can write u = H−1/2ϕ, where ϕ ∈ L2(Γ(E)). By definition, Lu = 0 means that for

every v ∈ C∞
0 (Γ(E)),

〈u, Lv〉 = 0.

This equality makes sense, because since H satisfies a n-Sobolev inequality, H1
0 →֒ L1

loc. The Spectral
Theorem then implies, since C∞

0 ⊂ Dom(H), that given v ∈ C∞
0 (Γ(E)) the following equality holds in

L2(Γ(E)):

Hv = H1/2H1/2v.

Hence

Lv = (H −R−)v = H1/2(I −A)H1/2v.

9



Let w := (I − A)H1/2v; then the preceeding equality shows that w ∈ Dom(H1/2) = H1
0 ∩ L2(Γ(E)).

Furthermore, H1/2w = Hv is compactly supported, so we have:

〈u,H1/2w〉 = 〈H1/2u,w〉.
Indeed, if u ∈ H1

0 ∩L2 it is a consequence of Lemma 3.1 in [21], and a limiting argument plus the fact
that H1

0 →֒ L2
loc shows that it is true for all u ∈ H1

0 .

Lu = 0 ⇐⇒ ∀v ∈ C∞
0 , 〈H1/2u, (I −A)H1/2v〉 = 0.

But since H1/2C∞
0 (E) is dense in L2(E), we get, using the fact that A is self-adjoint:

Lu = 0 ⇐⇒ ∀v ∈ L2, 〈H1/2u, (I −A)v〉 = 0

⇐⇒ H1/2u ∈ KerL2(I −A)

�

It remains to prove that 2) ⇒ 3) ; this is a consequence of Lemma (2.1) and of the following Lemma,
which is extracted from Proposition 1.2 in [9]:

Lemma 2.2 Assume R− ∈ L
n
2 . Then A := H−1/2R−H−1/2 is a non-negative, self-adjoint compact

operator on L2(Γ(E)). Moreover,

||A||2,2 ≤ C||R−||n2 ,
where C depends only on the Sobolev constant for H.

�

We will also need the following Lemma, which is an easy consequence of the definition of strong
positivity:

Lemma 2.3 Let H be of the form: H = ∆̄ + R+, with R+ non-negative. Let R− ∈ End(Λ1T ∗M)
be symmetric, non-negative, in L

n
2 such that L := H − R− is strongly positive. Then the n-Sobolev

inequality is valid for L, i.e.

||ω||22n
n−2

≤ C〈Lω, ω〉, ∀ω ∈ C∞
0 (E).

Proof of Lemma (2.3):
By definition of strong positivity,

〈R−ω, ω〉 ≤ (1− ǫ)〈Hω, ω〉.
Therefore:

〈Lω, ω〉 = 〈Hω, ω〉 − 〈R−ω, ω〉
≥ (1 − (1− ǫ))〈Hω, ω〉
≥ ǫC||ω||22n

n−2

,

where we have used in the last inequality the fact that H satisfies a n-Sobolev inequality.

�
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3 Gaussian upper-bound for the Heat Kernel on 1-forms

3.1 Estimates on the resolvent of the Schrödinger-type operator

In this section, we will show how to obtain bounds on the resolvent of L := ∇∗∇+R+−R− = H−R−.
In order to do this, we first have to estimate the resolvent of the operator H = ∆̄ + R+. Recall from
Corollary (2.1) that e−tH is a contraction semigroup on Lp, for all 1 ≤ p ≤ ∞. Using the formula:

(L+ λ)−1 =

∫ ∞

0

e−tLe−tλdt,

we get:

Proposition 3.1 Let (Mm, g) be an m-dimensional complete Riemannian manifold. Then for all
λ > 0 and for all 1 ≤ p ≤ ∞,

||(H + λ)−1||p,p ≤ 1

λ
.

Remark 3.1 The case p = ∞ is by duality, for (H + λ)−1 is defined on L∞ by duality. Indeed, for
g ∈ L∞, we define (H + λ)−1g so that:

〈(H + λ)−1g, f〉 := 〈g, (H + λ)−1f〉, ∀f ∈ L1

(recall that (L1)′ = L∞). It is then easy to see that ||(H+λ)−1||1,1 ≤ 1
λ implies ||(H+λ)−1||∞,∞ ≤ 1

λ .

We now estimate the resolvent of the operator L := ∇∗∇+R+ −R−; as before, L acts on the sections
of a vector bundle E → M (see the beginning of the Preliminaries for the general context). The key
result is the following:

Theorem 3.1 Let (M, g) be a complete Riemannian manifold which satisfies the n-Sobolev inequality,
and suppose that R− is in L

n
2 ±ǫ for some ǫ > 0. We also assume that L := H − R−, acting on the

sections of E → M , is strongly positive. Then for all 1 ≤ p ≤ ∞, there exists a constant C(p) such
that

||(L + λ)−1||p,p ≤ C(p)

λ
, ∀λ > 0.

Proof of Theorem (3.1):
In this proof, we write Lq for Lq(E). Let us denote Hλ := H + λ. So

(L+ λ)−1 = (I − Tλ)
−1H−1

λ ,

where Tλ := H−1
λ R−. If we can prove that (I − Tλ)

−1 is a bounded operator on Lp, with norm
independant of λ, then by Proposition (3.1) we are done. To achieve this, we will show that the series
∑

n≥0 T
n
λ converges on L(Lp, Lp), with a bound of the norm independant of λ ≥ 0.

The aim of the next two Lemmas is to prove that Tλ acts on all the Lq spaces. We single out the case
q = ∞, for it requires a different ingredient for its proof:

Lemma 3.1 Tλ : L∞ −→ L∞ and is bounded as a linear operator, with a bound of the norm indepen-
dant of λ ≥ 0.

Proof of Lemma (3.1):

We have seen that e−tHλ satisfies the mapping properties and the Gagliardo-Nirenberg inequalities of
Theorem (2.1) with constants independant of λ ≥ 0. Let u ∈ L∞. We apply the Gagliardo-Nirenberg
inequality for Hλ:

||Tλu||∞ ≤ C||R−u||θn/2+ǫ||Tλu||1−θ
p , ∀p,

11



with C independant of λ (see Remark (1.2)). We have ||R−u||n2 +ǫ ≤ ||R−||n2 +ǫ||u||∞. By the mapping

properties of Theorem (2.1), H−1
λ : L

n
2 −ǫ → Ls for a certain s, with a norm bounded independantly

of λ. So we get :

||Tλu||∞ ≤ C||R−||θn/2+ǫ(||H−1
λ ||n/2−ǫ,s||R−||n/2−ǫ)

1−θ||u||∞ ≤ C||u||∞

�

Lemma 3.2 1. For all 1 ≤ β ≤ ∞,

R− : Lβ → L
nβ

n+2β

is bounded.

2. There exists ν > 0 (small and independant of λ ≥ 0), such that for all β < ∞, and for all λ ≥ 0,

Tλ : Lβ → Lr ∩ Ls,

where 1
r = max( 1β − ν, 0+)) and 1

s = min( 1β + ν, 1), is bounded, with a bound of the norm

independant of λ (here 0+ denotes any positive number).

3. For β = ∞,

Tλ : L∞ → L∞ ∩ Lp

is bounded with a norm bounded independantly of λ, if p big enough.

4. For β large enough,

Tλ : Lβ → Lβ ∩ L∞

is bounded with a norm bounded independantly of λ.

Proof of Lemma (3.2):

If u ∈ Lβ and v ∈ Lγ , then

||uv|| γβ
γ+β

≤ ||u||β||v||γ .

Therefore, R− : Lβ → Lq is bounded, where 1
q = 1

β + 1
p , for all p ∈ [n2 − ǫ, n2 + ǫ]. Taking p = n

2 , we
find the first result of the Lemma.
Applying the mapping property (2.1), we deduce that:

H−1
λ R− : Lβ →→ Lr ∩ Ls

is bounded independantly of β, and also independantly of λ ≥ 0 by Remark (1.2), where

1

r
= max

((

2

n+ 2ǫ
− 2

n

)

+
1

β
, 0+

)

= max

(

1

β
− µ, 0+

)

,

and
1

s
= min

((

2

n− 2ǫ
− 2

n

)

+
1

β
, 1

)

= min

(

1

β
+ µ′, 1

)

,

hence the second part of the Lemma with ν = min(µ, µ′).

For the case β = ∞, we have s = 1
µ′

= p large, and we already know from Lemma (3.1) that Tλ send
L∞ to L∞.
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For the case β large enough : since R− ∈ L
n
2 +ǫ, if β is large enough and u ∈ Lβ , then R−u ∈ L

n
2 +α

for an α > 0. We may apply Gagliardo-Nirenberg’s inequality: for such a β,

||H−1
λ R−u||∞ ≤ C||R−u||θn/2+α||H−1

λ R−u||1−θ
β .

This yields the result.

�

As a corollary of Lemma (3.2), we obtain:

Proposition 3.2 For all 1 ≤ β ≤ ∞ and 1 ≤ α ≤ ∞, there exists an N ∈ N (which depends only on
β and α, and not on λ), such that for all λ ≥ 0,

TN
λ : Lα → Lβ

is bounded with a bound of its norm independant of λ.

Thus, if we can prove that there is a β ∈ [1,∞] and a µ ∈ (0, 1) such that

||T k
λ ||β,β ≤ C(1 − µ)k, k ∈ N,

with C independant of λ ≥ 0, we will obtain that the series
∑

n≥0 T
n
λ converges in L(Lp, Lp) for all

1 ≤ p ≤ ∞, uniformly with respect to λ ≥ 0. It is the purpose of the next Lemma :

Lemma 3.3 Let β := 2n
n−2 . Then ||T k

λ ||β,β ≤ C(1− µ)k for all k ∈ N with constants C and 0 < µ < 1
independant of λ ≥ 0.

Proof of Lemma (3.3):
We write :

Tλ = H
−1/2
λ [H

−1/2
λ R−H

−1/2
λ ]H

1/2
λ ,

and we define Aλ := H
−1/2
λ R−H

−1/2
λ . Let us define the Hilbert space H1

0,λ to be the closure of C∞
0 (E)

for the norm:

ω 7→
(
∫

M

|∇ω|2 + λ|ω|2
)1/2

= Qλ(ω)
1/2,

where Qλ is the quadratic form associated to the self-adjoint operator Hλ. If λ > 0, it is the space

H1
0 ∩ L2 = Dom(H1/2), but with a different norm. The choice of the norm is made so that H

1/2
λ :

H1
0,λ → L2 is an isometry. Since Aλ : L2 → L2, and given that Tλ = H

−1/2
λ AλH

1/2
λ , we deduce that :

Tλ : H1
0,λ → H1

0,λ with ||Tλ||H1
0,λ

,H1
0,λ

= ||Aλ||2,2.

But by the equivalence 1) ⇔ 3) in the Definition (2.2), the existence of µ ∈ (0, 1) such that ||Aλ||2,2 ≤
1− µ is equivalent to:

〈R−ω, ω〉 ≤ (1− µ)〈(Hλ)ω, ω〉, ∀ω ∈ C∞
0 (Γ(E)).

Since 〈(H + λ)ω, ω〉 = 〈Hω, ω〉 + λ||ω||22 ≥ 〈Hω, ω〉, we obtain that the existence of some µ ∈ (0, 1)
such that for all λ ≥ 0, ||Aλ||2,2 ≤ 1 − µ is equivalent to the strong positivity of L. Therefore
||Tλ||H1

0,λ,H
1
0,λ

≤ (1 − µ). Moreover, by the functionnal consequence of Sobolev’s inequality (Theorem

(2.1)),

H
−1/2
λ : L

2n
n+2 → L2,

with norm bounded independantly of λ ≥ 0 (by Remark (1.2), and by Lemma (3.2),
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R− : L
2n

n−2 → L
2n

n+2 ,

so that, using that H
−1/2
λ : L2 → H1

0,λ is an isometry and that we can write Tλ = H
−1/2
λ [H

−1/2
λ R−],

we get that

Tλ : Lβ → H1
0,λ,

is bounded with a bound of the norm independant of λ ≥ 0. Furthermore, H1
0,λ →֒ H1

0 is continuous
of norm less than 1, and the n-Sobolev inequality for H says precisely that:

H1
0 →֒ Lβ

continuously. Therefore, H1
0,λ →֒ Lβ continuously, with a bound of the norm independant of λ. Then

we write T k
λ = T k−1

λ Tλ, with

Tλ : Lβ → H1
0,λ

and

T k−1
λ : H1

0,λ → H1
0,λ →֒ Lβ ,

so that we get:

||T k
λ ||β,β ≤ C(1 − µ)k.

�

As a byproduct of the proof (more precisely, of Proposition (3.2) and Lemma (3.3)), we get:

Corollary 3.1

(L+ λ)−1 = (I − Tλ)
−1H−1

λ ,

with (I − Tλ)
−1 : Lp(E) → Lp(E) bounded with a bound of the norm independant of λ, for all 1 ≤ p ≤

∞.

We could hope to deduce from Theorem (3.1) that e−tL is uniformly bounded on all the Lp spaces,
by an argument similar to the Hille-Yosida Theorem. In particular, the Hille-Yosida-Phillips Theorem
tells us that the bound

||(L + λ)−k|| ≤ C

λk
, ∀k ∈ N,

with C independant of λ and k, is necessary and sufficient to obtain e−tL uniformly bounded. The
issue here is that applying Theorem (3.1) directly yields:

||(L+ λ)−k|| ≤ Ck

λk
, ∀k ∈ N,

i.e. the constant is not independant of k. In fact, applying the method of Theorem (3.1) in a less naïve
way would in fact yield:

||(L+ λ)−k|| ≤ Ck

λk
, ∀k ∈ N,

i.e. the growth of the constant is linear in k and not exponential.
We do not know if we can obtain that e−tL is uniformly bounded in the general setting of Theorem
(3.1). However, the operator that we want to consider in fine is ~∆ = ∆̄ + Ric, and this additional
information will allow us to use the idea, coming from Sikora [38], that a Gaussian off-diagonal estimate

for e−t~∆ follows from a suitable on-diagonal estimate. Therefore, our goal is to obtain first on-diagonal
bounds for e−tL, i.e. estimates for ||e−tL||2,∞, and for this, following an idea of Sikora in [38], we can
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try to prove bounds for ||(L+λ)−k||2,∞. The point is that the bound needed on ||(H−R−+λ)−k||2,∞
need not be independant of k, so Theorem (3.1) should be enough to prove it! We follow this path in
the next section.

Remark 3.2 Of course, at the end, if we succeed in proving the Gaussian estimate for e−t~∆, e−t~∆

will be uniformly bounded on all the Lp spaces.

3.2 On-diagonal upper bounds

The next Proposition is a slight generalisation of Sikora’s idea:

Proposition 3.3 Let X be a measurable metric space. Let L be a self-adjoint, positive unbounded
operator on L2(X) , and let 1 < p < ∞. Assume that the semigroup e−tL is analytic bounded on
Lp(X) (it is necessarily the case if p = 2). The following statements are equivalent:

1. There exists a constant C such that for all t > 0,

||e−tL||p,∞ ≤ C

tn/2p
.

2. For an (for all) α > n/2p, there exists a constant C(p, α) such that

||(L + λ)−α||p,∞ ≤ C(p, α)λ−α+n/2p, ∀λ > 0.

Proof of Proposition (3.3):
First, notice that

||(L+ λ)−α||p,∞ ≤ C(p, α)λ−α+n/2p, ∀λ > 0

can be rewritten as

||(I + tL)−α||p,∞ ≤ C(p, α)t−n/2p, ∀t > 0.

2) ⇒ 1): since e−tL is analytic bounded on Lp, by Proposition (2.2) there is a constant C such that:

||(I + tL)αe−tL||p,p ≤ C, ∀t > 0.

We then write e−tL = (I + tL)−α
(

(I + tL)αe−tL
)

to obtain the result.

1) ⇒ 2): we have

(L+ λ)−α =
1

Γ(α+ 1)

∫ ∞

0

e−λte−tLtα−1dt,

so that

||(L+ λ)−α||p,∞ ≤ 1

Γ(α+ 1)

∫ ∞

0

e−λt||e−tL||p,∞tα−1dt.

Using the hypothesis, we obtain:

||(L + λ)−α||p,∞ ≤ 1

Γ(α+ 1)

∫ ∞

0

e−λttα−n/2p−1dt =
1

Γ(α+ 1)
λ−α+n/2p

∫ ∞

0

e−uuα−n/2p−1du.

Since α− n/2p > 0, the integral
∫∞
0

e−uuα−n/2p−1du converges, hence the result.

�
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We will use both sides of the equivalence. First, we apply this to H (which, by Corollary (2.1), satisfies
||e−tH ||p,∞ ≤ C

tn/2p and which is analytic bounded on Lp for 1 < p < ∞ by Corollary (2.1)), to get:

Corollary 3.2 For all 1 ≤ p ≤ ∞ and α > n/2p, there exists a constant C(p, α) such that

||H−α
λ ||p,∞ ≤ C(p, α)λ−α+n/2p, ∀λ > 0.

We now use the other side of the equivalence in Proposition (3.3) (i.e. a bound on the resolvent implies
a bound on the semigroup) to prove the following Theorem, which is our main result in this section:

Theorem 3.2 Let (Mn, g) be an complete Riemannian manifold which satisfies the n-Sobolev inequal-
ity, and assume that R− is in L

n
2 ±ǫ for an ǫ > 0. We also assume that L := H−R− = ∇∗∇+R+−R−,

acting on the sections of a fibre bundle E → M , is strongly positive. Then we have the following on-
diagonal estimate: there is a constant C such that

||e−tL||2,∞ ≤ C

tn/4
, ∀t > 0.

Proof of Theorem (3.2):
In this proof, we write Lq for Lq(E). By Proposition (3.3), it is enough to prove the estimate:

||(L+ λ)−N ||2,∞ ≤ CN

λN−n/4
, ∀λ > 0, (1)

for an N > n/4. We use the fact that for all 1 ≤ p ≤ ∞, we have (L + λ)−1 = (I − Tλ)
−1H−1

λ

on Lp, where (I − Tλ)
−1 is bounded on all the Lp spaces, with a bound for the norm independant of

λ ≥ 0 (c.f. Corollary (3.1)). Let k = ⌊n/4⌋ = ⌊ 1
2/

2
n⌋. We will show the estimate (1) for N = k + 1.

First case: n
4 /∈ N

We want to show the estimate ||(L+ λ)−k−1||2,∞ ≤ C
λ(k+1)−n/4 , ∀λ > 0. Define p > n

2 by:

1

p
=

1

2
− k

2

n
.

By the mapping property (Theorem (2.1)),

H−1
λ : Lr −→ Ls,

1

s
=

1

r
− 2

n
, ∀r <

n

2
,

with a norm bounded independantly of λ. Using the fact that (I − Tλ)
−1 is bounded on all the Lp

spaces, with a bound for the norm independant of λ ≥ 0, we get that

(L + λ)−k : L2 −→ Lp

is bounded uniformly in λ ≥ 0. Since n
2p < 1, we have by Corollary (3.2):

H−1
λ : Lp −→ L∞,

with
||H−1

λ ||p,∞ ≤ Cλ−1+ n
2p ,

so that:

||(L+ λ)−k−1||2,∞ ≤ C(k)λ−1+ n
2p =

C(k)

λk+1−n/4
.

Second case: n
4 ∈ N hence k = n

4 . We write H−1
λ = H−α

λ H−1+α, where α ∈ (0, 1). Then by Proposition

(3.1), ||H−1+α
λ ||2,2 ≤ 1

λ1−α , and
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H−α
λ : L2 −→ Lq,

1

q
=

1

2
− α

2

n

is bounded with a norm bounded independantly of λ > 0. This time, we define p > n
2 by:

1

p
=

1

2
− (k − 1 + α)

2

n
.

We get:

||(L+ λ)−k||2,p ≤ ||(L+ λ)−(k−1)||q,p||(I − Tλ)
−1||q,q||H−α

λ ||2,q||H−(1−α)
λ ||2,2 ≤ C

λ1−α
,

Therefore, using that ||H−1
λ ||p,∞ ≤ Cλ−1+ n

2p and ||(I − Tλ)
−1||∞,∞ ≤ C independant of λ, we obtain:

||(L+ λ)−k−1||2,∞ ≤ Ck

λ(1−n/2p)+(1−α)
.

But n
2p = n

4 − (k − 1 + α), which yields what we want.

�

3.3 Pointwise estimates of the Heat Kernel on 1-forms

Let us denote by ~pt the Heat Kernel of the Hodge Laplacian on 1-forms; for all x, y ∈ M , ~pt(x, y) is a
linear morphism from T ∗

yM to T ∗
xM . A consequence of Sikora’s work (Theorem 4 in [38]) is:

Theorem 3.3 Let M be a complete Riemannian manifold. If we have the on-diagonal estimates:

||e−t~∆||2,∞ ≤ C

tn/4
, ∀t > 0,

then we have a Gaussian-type estimate for e−t~∆ : for all δ > 0, there exists a constant C such that

||~pt(x, y)|| ≤
C

tn/2
exp

(

−d2(x, y)

(4 + δ)t

)

, ∀x, y ∈ M, ∀t > 0.

We can generalize a little bit this result: we can add a non-negative potential V to the Hodge Laplacian.
Theorem 6 in Sikora generalizes in the following way (which is almost contained in Sikora’s paper, and
is easy to prove):

Definition 3.1 Let L be a self-adjoint positive definite operator acting on a metric measured space
X. We say that the Gaffney-Davies estimates hold for L if:

|〈e−tLf1, f2〉| ≤ Ce−
r2

4t ||f1||2||f2||2, ∀t > 0,

whenever fn is continuous and supp(fn) ⊂ B(xn, rn) for n = 1, 2, and 0 ≤ r < d(x1, x2)− (r1 + r2).

Proposition 3.4 Let M be a complete Riemannian manifold, and let L := ~∆ + V , with V ∈ C∞ a
non-negative potential. Then the Gaffney-Davies estimates hold for L.

We have the following slight generalisation of Theorem (3.3), consequence of Theorem (3.3), together
with Proposition (3.4):

Corollary 3.3 Let M be a complete Riemannian manifold, and let V ∈ C∞ be a non-negative poten-

tial. Denote by ~pt
V the kernel of e−t(~∆+V ). If we have the on-diagonal estimate:

||e−t(~∆+V )||2,∞ ≤ C

tn/4
, ∀t > 0,

then we have a Gaussian-type estimate for e−t(~∆+V ): for all δ > 0, there exists a constant C such that

||~ptV (x, y)|| ≤
C

tn/2
exp

(

−d2(x, y)

(4 + δ)t

)

, ∀x, y ∈ M, ∀t > 0.
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The bound that we obtain is not exactly what is usually called a Gaussian estimate on ~pt; indeed, a
Gaussian estimate on ~pt is a bound of the following type:

||~pt(x, y)|| ≤
C

V (x, t1/2)
exp

(

−d2(x, y)

(4 + δ)t

)

, ∀x, y ∈ M, ∀t > 0.

The problem comes from the term V (x, t1/2), which may not behave like t−n/2. Indeed, when M
satisfies a n-Sobolev inequality, we only have the lower bound (proved in [7] and [1]):

V (x,R) ≥ CRn, ∀R > 0, ∀x ∈ M,

which implies by the way that n ≥ dim(M). For example the Heisenberg group H1 is a manifold of
dimension 3 which satisfies a 4-Sobolev inequality but whose volume of geodesic balls satisfies:

V (x,R) ≈ R3 if R ≤ 1,

and

V (x,R) ≈ R4 if R ≥ 1.

Definition 3.2 Let M be a complete Riemannian manifold of dimension m, which satisfies a n-Sobolev
inequality. We say that the volume growth of M is compatible with the Sobolev dimension if there
is a constant C such that:

V (x,R) ≤ CRn, ∀x ∈ M, ∀R ≥ 1.

Definition 3.3 We say that M satisfies a relative Faber-Krahn inequality of exponent n if there
is a constant C such that for every x ∈ M and R > 0, and every non-empty subset Ω ⊂ B(x,R),

λ1(Ω) ≥
C

R2

( |B(x,R)|
|Ω|

)2/n

,

where λ1(Ω) is the first eigenvalue of ∆ on Ω for the DIrichlet boudary conditions.

We also recall two classical definitions:

Definition 3.4 For x ∈ M and R > 0, denote by V (x,R) the volume of the geodesic ball centered in
x, of radius R. We say that M satisfies the Doubling Property if there is a constant C such that

V (x, 2R) ≤ CV (x,R), ∀x ∈ M, ∀R > 0.

Definition 3.5 We say that M satisfies the scaled Poincaré inequalities if there exists a constant
C such that for every ball B = B(x, r) and for every function f with f, ∇f locally square integrable,

∫

B

|f − fB|2 ≤ Cr2
∫

B

|∇f |2.

It is proved in [24] that the relative Faber-Krahn inequality is equivalent to the Doubling Property
together with the following Gaussian upper bound of the heat kernel:

pt(x, y) ≤
C

V (x,
√
t)
exp

(

−d2(x, y)

(4 + δ)t

)

, ∀t > 0, ∀x, y ∈ M.

We have the following property, which is not new but whose proof is given for the reader’s convenience:

Proposition 3.5 Let M be a complete Riemannian manifold of dimension m, which satisfies a n-
Sobolev inequality, and whose Ricci curvature is bounded from below. If the volume growth of M is
compatible with the Sobolev dimension, then M satisfies a relative Faber-Krahn inequality of exponent
n.
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Proof of Proposition (3.5):
We first explain why we have a relative Faber-Krahn inequality for balls of small radius. The hypothesis
that the Ricci curvature is bounded from below implies by Theorem (3.1) in [36] that we can find a
constant µm such that each ball B(x,R) with R ≤ 1 satisfies the m-Sobolev inequality with Sobolev
constant ≤ µm, and V (x,R) ≤ CRm for R ≤ 1. Now, it is proved in [7] that the m-Sobolev inequality
for B(x,R) is equivalent to a Faber-Krahn inequality for B(x,R), with Faber-Krahn constant Γm that
can be estimated in term of µm. Thus, each ball B(x,R) satisfies a Faber-Krahn inequality with a
constant Γm that does depend neither on x ∈ M nor on R ≤ 1, i.e. for all open subset Ω ⊂ B(x,R),

λ1(Ω) ≥
Γm

|Ω| 2
m

.

But since m ≤ n and |B(x,R)|
|Ω| ≥ 1,

(

|B(x,R)|
|Ω|

)
2
n ≤

(

|B(x,R)|
|Ω|

)
2
m

. Thus, using that |B(x,R)| ≤ CRm for

R ≤ 1, we get :

λ1(Ω) ≥
C

|Ω| 2
m

≥ C

R2

( |B(x,R)|
|Ω|

)
2
m

≥ C

R2

( |B(x,R)|
|Ω|

)
2
n

,

thus we have a relative Faber-Krahn inequality of exponent n for balls of radius ≤ 1.

For balls of radius ≥ 1: again, by [7], since a n-Sobolev inequality holds on M , M satisfies a Faber-
Krahn inequality of exponent n, i.e. for all open subset Ω ⊂ M ,

λ1(Ω) ≥
C

|Ω| 2
n

.

The hypothesis |B(x,R)| ≤ CRn, for R ≥ 1 then implies:

λ1(Ω) ≥
C

|Ω| 2
n

≥ C

R2

( |B(x,R)|
|Ω|

)
2
n

.

�

Example 3.1 The Heisenberg group H1 satisfies a relative Faber-Krahn inequality of exponent 4; in
fact, it even satisfies the scaled Poincaré inequalities and the Doubling Property, which is equivalent
(by the work of Grigor’yan [23] and Saloff-Coste [35]) to the conjunction of a Gaussian upper and
lower bound for the heat kernel.

Every manifold with Ric ≥ 0 (or more generally, with Ric ≥ 0 outside a compact set, finite first
Betti number and only one end, c.f. Theorem 1.1 in [25]) satisfies the scaled Poincaré inequalities,
and thus a relative Faber-Krahn inequality of exponent dim(M).

Taking into account what we have obtained in Theorem (3.2), we get one of the main results of our
paper:

Theorem 3.4 Let (M, g) be a complete Riemannian manifold which satisfies the n-Sobolev inequality,
and whose negative part of the Ricci tensor Ric− is in L

n
2 ±ǫ for an ǫ > 0. We also assume that the

Hodge Laplacian on 1-forms ~∆ is strongly positive, that the volume growth of M is compatible with the
Sobolev dimension, and that Ric is bounded from below.

Then the Gaussian estimate is valid for e−t~∆: for all δ > 0, there exists a constant C such that

||~pt(x, y)|| ≤
C

V (x, t1/2)
exp

(

−d2(x, y)

(4 + δ)t

)

, ∀x, y ∈ M, ∀t > 0.
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Proof of Theorem (3.4):

By the result of Theorem (3.2), we can apply Theorem (3.3) to the Hodge Laplacian; given that the
volume growth of M is compatible with the Sobolev dimension, the estimate of Theorem (3.3) writes:

||~pt(x, y)|| ≤
C

V (x, t1/2)
exp

(

−d2(x, y)

(4 + δ)t

)

, ∀x, y ∈ M, ∀t ≥ 1.

The fact that M satisfies a relative Faber-Krahn inequality implies:

|pt(x, y)| ≤
C

V (x, t1/2)
exp

(

−d2(x, y)

(4 + δ)t

)

, ∀x, y ∈ M, ∀t > 0.

But the hypothesis that the Ricci curvature is bounded from below then implies the Gaussian estimate
of ||~pt(x, y)|| for small times:

||~pt(x, y)|| ≤
C

V (x, t1/2)
exp

(

− d2(x, y)

(4 + δ)t

)

, ∀x, y ∈ M, ∀t ≤ 1.

Indeed, this comes from the fact that we have the domination (proved in [28]):

||pt(x, y)|| ≤ e−t(∆−Ric−)(x, y) ≤ e−t(∆−C)(x, y)

if Ric ≥ −C.

�

From [8], we know that if n > 4, KerH1
0
(~∆) = KerL2(~∆). Recall that by the Sobolev inequality,

KerH1
0
(~∆) →֒ Ker

L
2n

n−2
(~∆). Taking this into account, we get the following:

Corollary 3.4 Assume n > 4.
Let (Mm, g) be an m-dimensional complete Riemannian manifold which satisfies the n-Sobolev inequal-
ity, and whose negative part of the Ricci tensor Ric− is in L

n
2 ±ǫ for an ǫ > 0. We also assume that for

some k ∈ [2, 2n
n−2 ], KerLk(~∆) = {0}, and that the volume growth of M is compatible with the Sobolev

dimension.
Then the Gaussian estimate is valid for e−t~∆: for all δ > 0, there exists a constant C such that

||~pt(x, y)|| ≤
C

V (x, t1/2)
exp

(

−d2(x, y)

(4 + δ)t

)

, ∀x, y ∈ M, ∀t > 0.

Also, for the case with a potential, if we apply Theorem (3.2) and Corollary (3.3), we get:

Corollary 3.5 Let (Mm, g) be an m-dimensional complete Riemannian manifold which satisfies the
Sobolevn inequality, and whose negative part of the Ricci tensor Ric− is in L

n
2 ±ǫ for an ǫ > 0. Let

V ∈ C∞ be a non-negative potential such that ~∆+V is strongly positive. Assume also that the volume
growth of M is compatible with the Sobolev dimension and that Ric is bounded from below. Denote by

~pt
V the kernel of e−t(~∆+V ).

Then we have a Gaussian estimate for e−t(~∆+V ): for all δ > 0, there exists a constant C such that

||~ptV (x, y)|| ≤
C

V (x,
√
t)

exp

(

−d2(x, y)

(4 + δ)t

)

, ∀x, y ∈ M, ∀t > 0.

4 Applications

The Gaussian estimate on the Heat Kernel on 1-forms has a certain number of consequences, which
we decribe now.
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4.1 Estimates on the gradient of the Heat kernel on functions and scaled

Poincaré inequalities

First, Coulhon and Duong (p. 1728-1751 in [15]) have noticed that a Gaussian estimate on the heat
kernel on 1-forms -in fact, a Gaussian estimate on the heat kernel on exact 1-forms is enough- leads
to the following estimate for the gradient of the heat kernel on functions:

|∇xpt(x, y)| ≤
C√

tV (x,
√
t)

exp

(

−d2(x, y)

(4 + δ)t

)

, ∀t > 0, ∀x, y ∈ M,

which, when the on-diagonal Gaussian upper bound for the Heat Kernel on functions and the Doubling
Property hold, yields the Gaussian lower bound for the Heat Kernel on functions:

pt(x, y) ≥
C

V (x,
√
t)

exp

(

−d2(x, y)

(4 + δ)t

)

, ∀t > 0, ∀x, y ∈ M.

In addition, if M satisfies a n-Sobolev inequality and if the volume growth of M is compatible with the
Sobolev dimension, we know from Proposition (3.5) that M satisfies a relative Faber-Krahn inequality
of exponent n, and this implies by the work of Grigor’yan ([24]) that we have the corresponding
upper-bound for the heat kernel on functions:

pt(x, y) ≤
C

V (x,
√
t)

exp

(

−d2(x, y)

(4 + δ)t

)

, ∀t > 0, ∀x, y ∈ M

But we know from the work of Saloff-Coste and Grigor’yan ([35] and [23]) that the two-sided Gaussian
estimates for the Heat Kernel on functions are equivalent to the conjonction of the scaled Poincaré
inequalities and the Doubling Property.
Thus we have proved the following theorem, which extends similar results for manifolds with Ric ≥ 0:

Theorem 4.1 Let (Mm, g) be an m-dimensional complete Riemannian manifold which satisfies the
n-Sobolev inequality, and whose negative part of the Ricci tensor Ric− is in L

n
2 ±ǫ for an ǫ > 0. We

assume that the Hodge Laplacian on 1-forms ~∆ is strongly positive. We also assume that the volume
growth of M is compatible with the Sobolev dimension, and that the Ricci curvature is bounded from
below.
Then we have the following estimates on the heat kernel on functions:

|∇xpt(x, y)| ≤
C√

tV (x,
√
t)

exp

(

−d2(x, y)

(4 + δ)t

)

, ∀t > 0, ∀x, y ∈ M,

c

V (x,
√
t)

exp

(

−d2(x, y)

(4 + δ)t

)

≤ pt(x, y) ≤
C

V (x,
√
t)

exp

(

−d2(x, y)

(4 + δ)t

)

, ∀t > 0, ∀x, y ∈ M,

and on M the scaled Poincaré inequalities hold.

4.2 Boundedness of the Riesz transform

In [38], Sikora shows that when a Gaussian estimate holds for a semigroup e−tH , where H is a self-
adjoint operator, then for every local operator A such that AL−α is bounded on L2, α > 0, then AL−α

is bounded on Lp for all 1 < p ≤ 2. Given this, we obtain the following result and its corollary, which
are consequences of Theorem 10 in [38] (or Theorem 5.5 in Coulhon-Duong [15]), and of Theorem
(3.4):

Theorem 4.2 Let (Mm, g) be an m-dimensional complete Riemannian manifold which satisfies the
n-Sobolev inequality, and whose negative part of the Ricci tensor Ric− is in L

n
2 ±ǫ for an ǫ > 0. We

assume that the Hodge Laplacian on 1-forms ~∆ is strongly positive. We also assume that the volume
growth of M is compatible with the Sobolev dimension, and that the Ricci curvature is bounded from
below.
Then d∗~∆−1/2 is bounded on Lp for 1 < p ≤ 2.
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Corollary 4.1 Let (Mm, g) be an m-dimensional complete Riemannian manifold which satisfies the
n-Sobolev inequality, and whose negative part of the Ricci tensor Ric− is in L

n
2 ±ǫ for an ǫ > 0. We

assume that the Hodge Laplacian on 1-forms ~∆ is strongly positive. We also assume that the volume
growth of M is compatible with the Sobolev dimension, and that the Ricci curvature is bounded from
below.
Then the Riesz transform d∆−1/2 is bounded on Lp, for all 1 < p < ∞.

Given Corollary (4.1), and using the analyticity of e−t∆ on Lp for 1 < p < ∞, we obtain the following
estimates on the gradient of the Heat Kernel on functions (which is also a consequence of the gradient
estimate that we have proven above):

Corollary 4.2 There exists a constant C such that for all 1 < p < ∞,

||∇e−t∆||p,p ≤ C√
t
, ∀t > 0.

Remark 4.1 One can also deduce from the estimate |∇xpt(x, y)| ≤ C√
tV (x,

√
t)
exp

(

− d2(x,y)
(4+δ)t

)

of the

gradient of the heat kernel, that for all 2 ≤ p ≤ ∞, the Lp estimate of the gradient holds, i.e.
||∇e−t∆||p,p ≤ C√

t
(see Proposition 1.10 in [4]). Given that by Theorem (4.1) the scaled Poincaré

inequalities hold, we can also deduce directly from the main result of [4] that the Riesz transform is
bounded on Lp for every 1 < p < ∞.

With our method, we also recover one of Bakry’s result (Theorem 4.1 in [5]) and an slight extension
of it in our context:

Theorem 4.3 Let (Mm, g) be an m-dimensional complete manifold with Ricci curvature bounded from
below by −a, a ≥ 0, satisfying the n-Sobolev inequality, and whose volume growth is compatible with
the Sobolev dimension.
Then for all 1 < p < ∞, there exists a constant C(p) such that:

||df ||p ≤ C(p)(||∆1/2f ||p + a||f ||p), ∀f ∈ C∞
0 (M).

If furthermore Ric− ∈ Ln/2±ǫ with ǫ > 0, then for all b > 0 and all 1 < p < ∞, there exists a constant
C(p) such that:

||df ||p ≤ C(p)(||∆1/2f ||p + b||f ||p), ∀f ∈ C∞
0 (M).

Proof of Theorem (4.2):
The first part can be obtained directly from Sikora’s work, but the proof that we give is instructive
for the rest of the paper. We have:

~∆+ a = ∆̄ +R+ + (a−R−),

and by hypothesis a−R− ≥ 0, so that ~∆+a is strongly positive. By Corollary (3.5), e−t(~∆+a) satisfies
a Gaussian upper-estimate. Since we obviously have the commutation:

de−t(∆+a) = e−t(~∆+a)d,

using the formula: H−1/2 = 1
Γ(3/2)

∫∞
0 e−tH dt√

t
,

we deduce that

d(∆ + a)−1/2 = (~∆+ a)−1/2d.

We can then apply Sikora’s argument (the proof of Theorem 10 in [38]), to get that d(∆ + a)−1/2 is
bounded on Lp. But by an argument of Bakry, it is equivalent to the inequality:

||df ||p ≤ C(p)(||∆1/2f ||p + a||f ||p), ∀f ∈ C∞
0 (M).
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For the case where Ric− ∈ Ln/2±ǫ: for every b > 0, ~∆ + b is strongly positive. Indeed, let us define

H = ∆̄ + Ric+ + b, so that ~∆ + b = H − Ric−. Then if H1
0 is the space associated to H , we have

KerH1
0
(~∆+ b) = {0}. In fact, since b 6= 0, H1

0 →֒ L2 continuously. But ~∆+ b has a spectral gap, so

KerL2(~∆+ b) = {0}, which proves that ~∆+ b is strongly positive. We can thus apply Corollary (3.5)

to get that e−t(~∆+b) satisfies a Gaussian estimate. We then conclude as in the first case.

�

5 Boundedness of the Riesz transform in the range 1 < p < n

As announced in the introduction, we now remove the hypothesis of strong positivity. We are mainly
inspired by the perturbation technique developped by Carron in [10]. This section is devoted to the
proof of the following result:

Theorem 5.1 Assume n > 3.
Let (Mm, g) be an m-dimensional complete Riemannian manifold which satisfies the n-Sobolev inequal-
ity, and whose negative part of the Ricci tensor Ric− is in L

n
2 ±ǫ for an ǫ > 0. We also assume that

the Ricci curvature is bounded from below, and that the volume growth of M is compatible with the
Sobolev dimension.
Then for every 1 < p < n, the Riesz transform is bounded on Lp on M .

Remark 5.1 The hypotheses that we have made imply (by Proposition (3.5)) that M satisfies the
relative Faber-Krahn inequality of exponent n, which is equivalent to the conjunction of the Doubling
Property and of the Gaussian upper-estimate on pt, i.e.

pt(x, y) ≤
C

V (x,
√
t)
e−

d2(x,y)
(4+δ)t , ∀t > 0, ∀x, y ∈ M.

And we know by [14] that all this implies that the Riesz transform is bounded on M for all 1 < p ≤ 2.
What we prove below is that the Riesz transform is bounded on Lp for every n

n−1 < p < n, which is
thus enough to get the result.

The proof of this result is by a perturbation argument: using ideas of [10], we will show that if
V ∈ C∞

0 is non-negative, then d(∆ + V )−1/2 − d∆−1/2 is bounded on Lp for n
n−1 < p < n. Then we

will prove that if V is chosen such that ~∆+ V be strongly positive, d(∆ + V )−1/2 is bounded on Lp

for n
n−1 < p < n. The following Lemma will then conclude the proof of Theorem (5.1):

Lemma 5.1 Let (M, g) be a complete Riemannian manifold which satisfies the n-Sobolev inequality,
and whose negative part of the Ricci tensor is in Ln/2.
Then we can find a non-negative potential V ∈ C∞

0 such that ~∆+ V is strongly positive.

Proof of Lemma (5.1):

If we write ~∆+ V = (∆̄ +W+) −W− = H −W−, and A := H−1/2W−H−1/2, then by the definition

of strong positivity, ~∆+ V is strongly positive if and only if ||A||2,2 < 1. Moreover, by Lemma (2.2),
we have ||A||2,2 ≤ C||W−||n/2, where C is independant of the chosen potential V ≤ 0. Therefore, it is

enough to take V such that ||(V −Ric−)−||n
2
< 1

C , which is possible since Ric− ∈ Ln/2.

�

5.1 A perturbation result

Our aim here is to prove:

Theorem 5.2 Assume n > 3.
Let (Mm, g) be an m-dimensional complete Riemannian manifold which satisfies the Sobolevn inequal-
ity, whose Ricci curvature is bounded from below. Let V ∈ C∞

0 be a non-negative potential.
Then for every n

n−1 < p < n, d(∆ + V )−1/2 − d∆−1/2 is bounded on Lp on M .
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The proof is an adaptation of the proof in [10]. To adapt these ideas to the case of Schrödinger operator
with non-negative potential, we will need some preliminary results. First, we recall a “classical” result:

Proposition 5.1 Let V ∈ C∞
0 be non-negative, and let Ω be a smooth, open, relatively compact subset.

Let ∆D be the Laplacian with Dirichlet conditions on Ω.

Then the Riesz transforms d(∆D + V )−1/2 and d∆
−1/2
D are bounded on Lp for 1 < p < ∞.

We also recall the next Lemma and its proof from [10] :

Lemma 5.2 Let (M, g) be a complete Riemannian manifold with Ricci curvature bounded from below,
and V ∈ C∞

0 be a non-negative potential.
Then for all 1 < p < ∞, there is a constant C such that

||df ||p ≤ C(||∆f ||p + ||f ||p), ∀f ∈ C∞
0 (M),

and

||df ||p ≤ C(||(∆ + V )f ||p + ||f ||p), ∀f ∈ C∞
0 (M).

Proof of Lemma (5.2):
By Theorem 4.1 in [5], the local Riesz transform is bounded on the Lp for 1 < p < ∞, i.e. we have the
following inequality for a ≥ 0 sufficently large:

||df ||p ≤ C(||∆1/2f ||p + a||f ||p), ∀f ∈ C∞
0 (M).

We then use the fact that for all 1 < p < ∞, there exists a constant C such that:

||∆1/2f ||p ≤ C
√

||∆f ||p||f ||p ≤ C

2
(||∆f ||p + ||f ||p).

A proof of this inequality can be found in [17].
For the case with a potential, we have ||(∆+V )f ||p + a||f ||p ≥ ||∆f ||p − ||V ||∞||f ||p + a||f ||p. Taking
a > ||V ||∞, we get the result.

�

Proof of Theorem (5.2):
Let p ∈ ( n

n−1 , n).
We follow the proof of Carron in [10]. We define L0 := ∆+ V , L1 := ∆; we take K1 smooth, compact
containing the support of V , and K2, K3 smooth, compact such that K1 ⊂⊂ K2 ⊂⊂ K3. We also
denote Ω := M \K1. Let (ρ0, ρ1) a partition of unity such that suppρ0 ⊂ Ω and suppρ1 ⊂ K2. We
also take φ0 and φ1 to be C∞ non-negative functions such that suppφ0 ⊂ Ω, suppφ1 ⊂ K3 and such
that φiρi = ρi. Moreover, we assume that φ1|K2 = 1.
We define H0 := ∆ + V with Dirichlet boundary conditions on K3, and H1 := ∆ with Dirichlet
boundary conditions on K3. Then, following Carron, we construct parametrices for e−t

√
L1 and e−t

√
L0 :

the one for e−t
√
L1 is defined by

E1
t (u) := φ1e

−t
√
H1(ρ1u) + φ0e

−t
√
L1(ρ0u),

and the one for e−t
√
L0 is defined by

E0
t (u) := φ1e

−t
√
H0(ρ1u) + φ0e

−t
√
L1(ρ0u).

Let us note that for e−t
√
L0 , we approximate by e−t

√
L1 outside the compact K3, and not by e−t

√
L0 .

Let us also remark that E1
0 (u) = E0

0 (u) = u, as it should. We then have:

e−t
√
Li(u) = Ei

t(u)−Gi

[

(− ∂2

∂t2
+ Li)E

i
t(u)

]

,
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where Gi is the Green operator on R+×M with Dirichlet boundary condition, associated to − ∂2

∂t2 +Li.

Next we have to show that the error term can be well-controled. We compute:

(− ∂2

∂t2
+ L1)E

1
t (u) = [L1, φ0]e

−t
√
L1(ρ0u) + [L1, φ1]e

−t
√
H1(ρ1u),

and

(− ∂2

∂t2
+ L0)E

0
t (u) = [L0, φ1]e

−t
√
H0(ρ1u) + [L1, φ0]e

−t
√
L1(ρ0u) + (L0 − L1)φ0e

−t
√
L1(ρ0u).

But L0 − L1 = V is supported in K1, therefore (L0 − L1)φ0e
−t

√
L1(ρ0u) = 0. Moreover, we have

[∆+V, φi] = [∆, φi], therefore [L0, φi]e
−t

√
H0(ρiu) = (∆φi)(e

−t
√
H0(ρiu))−2〈dφi,∇e−tH0(ρiu)〉. Define

Si
t(u) := (− ∂2

∂t2 + Li)E
i
t(u). We get:

S1
t (u) = [∆, φ0]e

−t
√
L1(ρ0u) + [∆, φ1]e

−t
√
H1(ρ1u),

and

S0
t (u) = [∆, φ0]e

−t
√
L1(ρ0u) + [∆, φ1]e

−t
√
H0(ρ1u).

Lemma 2.4 in [10] implies:

||[∆, φ0]e
−t

√
∆(ρ0u)||1 + ||[∆, φ0]e

−t
√
∆(ρ0u)||p ≤ C

(1 + t)n/p
.

Furthermore, if f1(u) := [∆, φ1]e
−t

√
H1(ρ1u) = (∆φ1)e

−t
√
H1(ρ1u)− 2〈dφ1,∇e−tH1(ρ1u)〉,

and f0(u) := [∆, φ1]e
−t

√
H0(ρ1u) = (∆φ1)e

−t
√
H0(ρ1u)− 2〈dφ1,∇e−tH0(ρ1u)〉, we have as in [10]:

||fi(u)||1 + ||fi(u)||p ≤ C

(1 + t)n/p
||u||p, ∀t > 0.

Indeed, if we denote pDi (t, x, y) the heat kernel of Hi, then for F1, F2 disjoint compact subsets,

lim
t→0

pDi (t, ., .)|F1×F2 = 0 in C1

(cf [22] Lemma 3.2 and [32], Proposition 5.3). But by our hypotheses, the supports of ρ1 and of
∆φ1 are compact and disjoints, as are the ones of ρ1 and dφ1. Therefore the kernels of the operators
Si(t) := [∆, φ1]e

−t
√
Hiρ1 are uniformly bounded as t → 0. So we get:

||Si(t)||p,∞ ≤ C, ∀t ∈ [0, 1].

Now, the operators Hi have a spectral gap, so ||e−t
√
Hi ||2,2 ≤ e−ct, where c > 0. If v ∈ W 1,2(K3)

is a non-negative solution of ∂v
∂t + (∆ + V )v = 0, then ∂v

∂t + ∆v ≤ 0, and therefore by the parabolic

maximum principle, v attains its maximum on {t = 0} ∪ ∂K3. If we take v := e−t(∆D+V )1, which is
zero on ∂K3 for t > 0, we get:

∫

K3

pi(t, x, y)dy ≤ 1, ∀x ∈ K3,

and therefore ||e−tHi ||∞,∞ ≤ 1. By duality, it is true also on L1, and by the subordination identity we
have:

||e−t
√
Hi ||1,1 + ||e−t

√
Hi ||∞,∞ ≤ C.

Interpolating this with the L2 bound, we get that
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||e−t
√
Hi ||p,p ≤ Ce−ct,

for 1 < p < ∞, where the constants C and c depend on p. Then we write for t ≥ 1:

||Si(t)u||∞ ≤ ||[∆, φ1]e
− 1

2

√
Hi ||Lp→L∞ ||e−(t−1/2)

√
Hiρ1u||Lp ≤ Ce−ct||u||p.

Here we have used that the heat kernels pDi (12 , ., .) are C∞. Thus we have proven:

Lemma 5.3

||Si
t(u)||1 + ||Si

t(u)||p ≤ C

(1 + t)n/p
||u||p, ∀t > 0.

The error term, when we approximate e−t
√
Li by the above parametrix is Gi(S

i
t(u)). We cannot control

it directly, but the main argument of [10] shows that when we integrate the error term, we can control
it well: more precisely, given the result of Lemma (5.3), we have the following Lemma that sums up
Carron’s result:

Lemma 5.4 Assume n > 3.
Let (gi(u))(x) :=

∫∞
0

(Gi(S
i
t(u)))(t, x)dt.

Then for any n
n−1 < p < n, there is a constant C such that for all u ∈ Lp,

||Li(gi(u))||p + ||gi(u)||p ≤ C||u||p.

Applying Lemma (5.4), we deduce that

||d(gi(u))||p ≤ C||u||p.
We can now finish the proof of Theorem (5.2). We use the formula

L
−1/2
i = c

∫ ∞

0

e−t
√
Lidt,

to get:

L
−1/2
i u = φ1H

−1/2
i ρ1u+ φ0L

−1/2
1 ρ0u− cgi(u).

Therefore:

dL
−1/2
1 u− dL

−1/2
0 u =

(

d(φ1H
−1/2
1 ρ1u)− d(φ1H

−1/2
0 ρ1u)

)

+ c
(

dg0(u)− dg1(u)
)

.

(here is where we use the fact that we have taken for parametrices e−t
√
L1 for both operators outside

a compact set). Write d(φ1H
−1/2
i ρ1u) = (dφ1)H

−1/2
i ρ1u+φ1dH

−1/2
i ρ1u. (dφ1)H

−1/2
i ρ1 has a smooth

kernel with compact support, therefore is bounded on Lp. Applying Proposition (5.1), we get that

φ1dH
−1/2
i ρ1 is bounded on Lp, hence we have the result.

�

5.2 Boundedness of d(∆ + V )−1/2

We now show:

Theorem 5.3 Assume n > 3.
Let (Mm, g) be an m-dimensional complete Riemannian manifold which satisfies the n-Sobolev inequal-
ity, and whose negative part of the Ricci tensor is in L

n
2 ±ǫ for an ǫ > 0. We also assume that the

Ricci curvature is bounded from below, and that the volume growth of M is compatible with the Sobolev
dimension. Let V ∈ C∞

0 be non-negative, such that ~∆+ V is strongly positive.
Then the Riesz transform d(∆ + V )−1/2 is bounded on Lp for every 1 < p < n.
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Remark 5.2 This is an analog of the result on local Riesz transforms (Theorem (4.3)).

We first show a preliminary result:

Lemma 5.5 (~∆+ V )−1/2d is bounded on Lp for every 2 ≤ p < ∞.

Proof of Lemma (5.5):

Since ~∆+ V is strongly positive, we have a Gaussian upper estimate on e−t(~∆+V ) by Corollary (3.5).

Thus we are in position to apply Theorem 5 in [38], to get that d∗(~∆+ V )−1/2 is bounded on Lq for

all 1 < q ≤ 2. By taking duals, (~∆+ V )−1/2d is bounded on Lp for any 2 ≤ p < ∞.

�

Proof of Theorem (5.3):
First, let us note that we can restrict ourselves to the case n

n−1 < p < n. Indeed, for 1 < p < 2,
since the hypotheses that we have made imply the Faber-Krahn inequality, and given the domination
e−t(∆+V ) ≤ e−t∆, we have a Gaussian upper bound for e−t(∆+V ). Thus the result of [14] shows that
d(∆ + V )−1/2 is bounded on Lp for every 1 < p ≤ 2. So let p ∈ ( n

n−1 , n).

The problem to get from Lemma (5.5) the boundedness of the Riesz transform d(∆ + V )−1/2 is that

it is not true that d(∆+ V )−1/2 = (~∆+ V )−1/2d anymore. To circumvent this difficutly, we use again
the method of [10]. We will use the following:

Lemma 5.6 For 1 ≤ r ≤ s ≤ ∞, we have the existence of a constant C such that:

||e−t(~∆+V )||Lr→Ls ≤ C

t
n
2 ( 1

r− 1
s )
.

We postpone the proof of Lemma (5.6) until the end of this section.
Let E be the vector bundle of basis M × R+, whose fiber in (t, p) is Λ1T ∗

pM . Let G be the operator
(the “Green operator”) acting on sections of E, whose kernel is given by

G(σ, s, x, y) =

∫ ∞

0

[

e−
(σ−s)2

4t − e−
(σ+s)2

4t

√
4πt

]

~pt
V (x, y)dt,

where ~pt
V is the kernel of e−t(~∆+V ). We can see that G satisfies:

(

− ∂2

∂σ2
+ (~∆x + V )

)

G = I,

and that G(σ, s, x, y) is finite if x 6= y and σ 6= s (here we use the estimate |pVt (x, y)| ≤ C
tn/2 , given

by Theorem (3.2) and Corollary (3.3)). We want to write, as in the proof of Theorem (5.2), for
u ∈ C∞

0 (M):

e−t
√

~∆+V du = de−t
√
∆+V u−G

((

− ∂2

∂t2
+ (~∆+ V )

)

de−t
√
∆+V u

)

. (2)

Now, we justify formula (2) and in passing we show some estimates that will be used later. We
compute:

(

− ∂2

∂t2 + (~∆+ V )
)

de−t
√
∆+V u = −d(∆ + V )e−t

√
∆+V u+ (~∆+ V )de−t

√
∆+V u

= −
(

e−t
√
∆+V u

)

(dV ).

We have:

||e−t
√
∆+V ||Lp→L∞ ≤ C

tn/2p
, ∀t > 0,

and

27



||e−t
√
∆+V ||Lp→Lp ≤ 1, ∀t > 0.

(this comes from the domination e−t(∆+V ) ≤ e−t∆).

Thus if we denote f :=
(

− ∂2

∂t2 + (~∆+ V )
)

de−t
√
∆+V u, we have:

Lemma 5.7

||f(t, .)||1 + ||f(t, .)||p ≤ C

(1 + t)n/p
||u||p.

Now we show:

Lemma 5.8 ||G(f)(t, .)||2 is bounded uniformly with respect to t > 0, and

lim
t→0

||G(f)(t, .)||2 = 0.

Proof of Lemma (5.8):

Denote Ks(t, σ) :=
e−

(σ−t)2

4s −e−
(σ+t)2

4s√
4πs

, and Ht(x, y) the kernel of e−tL.

G(f)(t, x) =
∫

G(σ, t, x, y)f(σ, y)dσdy
=

∫

M

∫∞
0

∫∞
0

Ks(t, σ)Hs(x, y)f(σ, y) dsdσdy
=

∫∞
0

∫∞
0 Ks(t, σ)

(∫

M Hs(x, y)f(σ, y) dy
)

dsdσ

=
∫∞
0

∫∞
0 Ks(t, σ) e

−s
√
L(x) dsdσ

Consequently,

||G(f)(t, .)||2 ≤
∫ ∞

0

∫ ∞

0

Ks(t, σ) ||e−s
√
Lf(σ, .)||2 dsdσ.

But we have

||e−s
√
Lf(σ, .)||2 ≤ min

(

1
sn/4 ||f(σ, .)||1, ||f(σ, .)||2

)

≤ C||u||2 min
(

1
sn/4

1
(1+σ)n/2 ,

1
(1+σ)n/2

)

Therefore,

||G(f)(t, .)||2 ≤ C||u||2
∫ ∞

0

1

(1 + σ)n/2

(

∫ 1

0

e−
(σ−t)2

4s − e−
(σ+t)2

4s

√
s

ds+

∫ ∞

1

e−
(σ−t)2

4s − e−
(σ+t)2

4s

s
n
4 + 1

2

ds

)

dσ

Since n ≥ 3, the three integrals
∫∞
0

dσ
(1+σ)n/2 ,

∫ 1

0
ds√
s

and
∫∞
1

ds

s
n
4

+ 1
2

converge, and this yields immediately

the fact that ||G(f)(t, .)||2 is bounded uniformly with respect to t > 0. Furthermore, we can apply the
Dominated Convergence Theorem to conclude that limt→0 ||G(f)(t, .)||2 = 0.

�

Therefore, letting

φ(t, .) := e−t
√

~∆+V du− de−t
√
∆+V u+G

((

− ∂2

∂t2
+ (~∆+ V )

)

de−t
√
∆+V u

)

,

φ(t, .) satisfies:

(

− ∂2

∂t2
+ (~∆+ V )

)

φ = 0,

and
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L2 − lim
t→0

φ(t, .) = 0.

This last assertion uses that L2 − limt→0 e
−t
√

~∆+V du = L2 − limt→0 de
−t

√
∆+V u = du. To justify

L2−limt→0 de
−t

√
∆+V u = du, we can say that by the Spectral Theorem ((c) in Theorem VIII.5 in [33]),√

∆+ V e−t
√
∆+V u converges in L2 for u ∈ C∞

0 (M); since V ≥ 0, the Riesz transform d(∆ + V )−1/2

is bounded on L2, we deduce that de−t
√
∆+V u converges in L2, and the limit is necessarily du.

Together with the fact that φ(t, .) is bounded in L2 uniformly with respect to t > 0, we deduce that
φ ≡ 0. This proves the formula (2).

Letting (g(u))(x) :=
∫∞
0 (G(f))(t, x)dt, we have by integration of formula (2):

(~∆+ V )−1/2du = d(∆ + V )−1/2u− cg.

By Lemma (5.7) and Lemma (5.6), we have as in [10]:

||g||p ≤ C||u||p.
Applying Lemma (5.5), we conclude that d(∆ + V )−1/2 is bounded on Lp.

�

Proof of Lemma (5.6):

Let us denote L := ~∆ + V . If we can prove that ||e−tL||∞,∞ ≤ C, ||e−tL||1,1 ≤ C and ||e−tL||1,∞ ≤
C

tn/2 , then by standard interpolation arguments we are done. The fact that ||e−tL||∞,∞ ≤ C comes

from the Gaussian estimate we have on e−tL (we have this by Corollary (3.5)), plus the fact that
1

V (x,
√
t)

∫

M
e−c d2(x,y)

t dy is bounded uniformly in x ∈ M and t > 0. Then by duality ||e−tL||1,1 ≤ C.

Moreover, by Theorem (3.2) we also have the estimate:

|e−tL||2,∞ ≤ C

tn/4
, ∀t > 0.

By duality, we deduce

|e−tL||1,2 ≤ C

tn/4
, ∀t > 0,

and by composition

|e−tL||1,∞ ≤ ||e−tL||1,2||e−tL||2,∞ ≤ C2

tn/2
, ∀t > 0.

�
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