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Induced p-wave superfluidity in strongly interacting imbalanced Fermi gases
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The induced interaction among the majority spin species, due to the presence of the minority
species, is computed for the case of a population-imbalanced resonantly-interacting Fermi gas. It
is shown that this interaction leads to an instability, at low temperatures, of the recently observed
polaron Fermi liquid phase of strongly imbalanced Fermi gases to a p-wave superfluid state. We find
that the associated transition temperature, while quite small in the weakly interacting BCS regime,
is experimentally accessible in the strongly interacting unitary regime.
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The extraordinary controllability of cold atomic gases
has yielded a wide range of interesting phases of matter,
including a bosonic Mott insulator and a paired super-
fluid state of two spin species of atomic fermions [1, 2].
In the latter setting, experiments have demonstrated con-
trol of both the interspecies interactions and the relative
density of the two spin states [3, 4], with the latter ex-
perimental knob being deleterious to pairing and super-
fluidity, which favors an equal density of the two species.

Thus, experiments on such imbalanced Fermi gases can
probe the stability of superfluidity in a correlated system
and therefore may shed light on the tendency towards
pairing in related systems, such as electronic supercon-
ductors. The phase diagram of imbalanced Fermi gases is
quite rich [5, 6], possessing regions of imbalanced super-
fluidity, phase separation, normal Fermi liquid, and (pos-
sibly, though not yet observed) a region of exotic Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) superfluidity [7].

Our present focus is on the strongly imbalanced region,
when the polarization P =

n↑−n↓

n↑+n↓
(with nσ the density of

fermion species σ) is close to unity, with a small density
of spins-↓ immersed in a spin-↑ Fermi sea. Experiments
in this regime [8, 9] have found results consistent with
the formation of spin polarons [10], in which a cloud of
spins-↑ gather around each spin-↓, leading to a polaron
Fermi liquid state [11–13].

The polaron theory of the strongly imbalanced Fermi
gas predicts that both the spins-↑ and spins-↓ are Fermi
liquids, exhibiting sharp Fermi surfaces at low temper-
ature T . However, general arguments due to Kohn and
Luttinger (KL) [14, 15] predict that such Fermi surfaces
must be unstable to other ordered states as T → 0.
A natural question then emerges: What is this ordered
state for imbalanced Fermi gases? Since the imposed im-
balance (and concomitant Fermi-surface mismatch) pre-
cludes s-wave singlet interspecies pairing, one instead ex-
pects triplet (likely p-wave) intraspecies pairing [14–16]
of the spin-↑ and spin-↓ fermions.

In this Letter we develop a theoretical description
of the induced interactions among the majority spin-↑
fermions in the presence of a small density of spins-↓,
over a broad range of interaction and polarization values.

FIG. 1: (Color online) The p-wave channel of the effective
interaction between majority spins, vℓ=1(kF↑, kF↑), multiplied
by the Fermi-energy density of states N↑(ǫF↑), as a function
of the density imbalance P and s-wave scattering length as,
is shown. Here, kF = (kF↑ + kF↓)/2. At large P , above
the dashed line, it is attractive leading to a p-wave superfluid
at temperatures below Tc. The solid white line labels the
location of a line of FFLO quantum critical points, coinciding
with the range where vℓ=1(kF↑, kF↑) is large.

We find an attractive effective interaction at the spin-↑
Fermi surface, shown in Fig. 1, leading to an instabil-
ity towards p-wave superfluidity below a transition tem-
perature Tc, computed below [17]. In the extreme weak
coupling Bardeen-Cooper-Schrieffer (BCS) limit, where
the s-wave scattering length as → 0−, the p-wave super-
fluid transition temperature has already been computed
[16]; unfortunately, it is exceptionally small (in agree-
ment with KL [14]), with Tc ∝ exp[−c/(kF↑as)

2], where
kF↑ is the spin-↑ Fermi wave vector and c is a constant
of order unity. The pairing mechanism is quite simple in
this perturbative limit: density fluctuations of one species
leads to an attraction between particles of opposite spin.
For spins-↑, this induced interaction is proportional to
the spin-↓ density-density correlation function (i.e., the
Lindhard function). Although a p-wave superfluid is
predicted in the BCS limit, most experiments occur in
the unitary region where the interspecies interactions are
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FIG. 2: The ladder (a) and maximally crossed (b) diagrams
contributing to the self-energy, which define the ladder t̂ and
crossed-ladder t̂c diagrams. The bottom row, (c), shows a
subleading class of diagrams with both ladder and crossed-
ladder insertions that lead to a pairing instability. The spin-↑
lines are 2 × 2 Nambu Green’s functions Ĝ↑(K), spin-↓ lines
are normal scalar Green’s functions G↓(K), and the wavy
lines are λσz.

strong, |as| → ∞, invalidating simple perturbative re-
sults. Our analysis of induced interactions in the uni-
tary regime involves extending the ladder approximation
(known to describe the polaron Fermi liquid regime dis-
cussed above) to include subleading classes of Feynman
diagrams. As seen in Fig. 1, the predicted effective in-
teraction in the p-wave channel can be quite large near
the unitary regime (and slightly into the Bose-Einstein
condensate (BEC) side). We find a maximum transition
temperature of kBTc ≃ 0.03ǫF↑, which is low but not
unreasonable given recently reported temperature scales
(e.g., Ref. 18).
Our starting point is the standard one-channel model

for two species (σ =↑, ↓) of fermion (c†kσ) interacting via
an s-wave Feshbach resonance [19]. The Hamiltonian is

H =
∑

k,σ

ξkσc
†
kσckσ +

λ

V

∑

k,k′,q

c†
k+q↑c

†
k′−q↓ck′↓ck↑, (1)

where ξkσ = ǫk − µσ, with dispersion ǫk = k2/2m
(~ = 1) and chemical potential µσ; V is the system
volume (henceforth set to unity), and λ is the coupling
strength of a short-ranged pseudo-potential, related to
the experimentally controllable (via a magnetic field-
tuned Feshbach resonance) scattering length as via

m

4πas
= λ−1 +

Λ
∑

k

1

2ǫk
, (2)

where Λ is an ultraviolet cutoff; below we shall take the
limit Λ → ∞ while λ → 0−, such that as remains fixed.

We are interested in the phases of Eq. (1) in the
strongly imbalanced limit P → 1 and proceed (in
the spirit of mean-field theory) by assuming the pres-
ence of a self-consistently determined pairing ampli-
tude ∆↑(k, ω) among the spins-↑, but not the spins-
↓ [17]. Under this assumption, the 2 × 2 spin-↑
Nambu Green’s function, in Fourier-Matsubara space, is

Ĝ↑(K) =

(

G↑(K) F↑(K)
F↑(K) −G↑(−K)

)

, where the four-vector

K = (iωn,k). Ĝ↑(K) satisfies the Dyson equation [20]

Ĝ−1

↑ (K) = Ĝ−1

↑,0(K) − Σ̂↑(K), with bare Green’s func-

tion Ĝ−1

↑,0(K) =

(

iωn − ξk↑ 0
0 iωn + ξk↑

)

and self-energy

Σ̂↑(K) =

(

Σ↑(K) −∆↑(K)
−∆∗

↑(K) −Σ↑(−K)

)

. Using the equation of

motion [21], the self-energy can be expressed in terms of
the two-particle vertex Γ̂, by

Σ̂↑(K) = λσz

∑

K1

G↓(K1)
[

σ0 −
∑

K2

Ĝ↑(K2)G↓(K +K1 −K2)Γ̂(K2,K +K1 −K2,K1,K)
]

, (3)

where σ0 is the 2×2 identity matrix, σz is a Pauli matrix,
and G↓(K) is the scalar spin-↓ Green’s function, which
satisfies a similar expression, but with a diagonal self-
energy (since we assumed the spins-↓ are unpaired). The
summation is short for

∑

K ≡ kBT
∑

iωn

∑

k.

Although Eq. (3) is in principle exact, to make progress
we must make a physically motivated approximation for
Γ̂, correpsonding to certain classes of Feynman diagrams.
Previous work has analyzed the phases of imbalanced

Fermi gases within the t-matrix or ladder approxima-
tion [11, 22, 23]. The set of diagrams associated with
the ladder approximation also emerges in the large-N ap-
proximation [12], in which one generalizes the model to
consist of 2N species of fermion. Within the present for-
malism in which Ĝ↑(K) has Nambu structure, these con-
tributions arise from including the ladder plus the maxi-
mally crossed self-energy diagrams, sketched in Figs. 2(a)
and 2(b), respectively. We first analyze Eq. (3) including
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FIG. 3: Feynman diagram for Eq. (7), the effective interaction
among the majority spin-↑ fermions mediated by the spin-↓
fermions. The t-matrices are given by Eq. (5).

only these diagrams. Exchanging λ for as using Eq. (2),
and keeping only contributions that are finite in the limit
Λ → ∞, we find a diagonal self-energy;

Σ̂↑(K) =
∑

Q

G↓(Q)

(

t(Q+K) 0
0 −t(Q−K)

)

, (4)

indicating the absence, at this level, of pairing for the
spins-↑. Here,

t(K)−1 =
m

4πas
+
∑

Q

G↓(K −Q)G↑(Q)−
∑

q

1

2ǫq
, (5)

is the usual scalar t-matrix.
Thus, the contributions from Figs. 2(a) and 2(b) yield

an unpaired solution for the self-energy, i.e., a Fermi
liquid, as found by previous t-matrix or large-N theo-
ries [11, 12, 22, 23]. Given that the KL arguments im-
ply the eventual instability of this state, we now turn
to subleading contributions to the self-energy, shown in
Fig. 2(c), that possess ladder and crossed-ladder subdi-
agrams. Again replacing λ for as using Eq. (2), we find
that these diagrams yield an off-diagonal contribution to
the self-energy, i.e., a pairing amplitude ∆↑(K) given by

∆↑(K) =
∑

Q

V (K,K ′)F↑(K
′), (6)

V(K,K ′)=
∑

P

t(P−K)t(P+K ′)G↓(P)G↓(K
′+P −K).(7)

Here, V (K,K ′) is the effective induced interaction among
spins-↑; the corresponding Feynman diagram is shown
in Fig. 3. In principle, the integral equation (6) must
be solved self-consistently along with the diagonal self-
energy, Eq. (4). However, we shall we use some physi-
cally motivated approximations to simplify our analysis,
focusing on the onset of pairing of the spins-↑ at a tem-
perature Tc (above which the system is a Fermi liquid).
We assume the presence of a static momentum-dependent
pairing order parameter, ∆↑(K) = ∆↑(k), and neglect
the frequency dependence of V (K,K ′) [15]. For the di-
agonal components of the self-energy, we simply assume
that the chemical potential is renormalized to the Fermi
energy via µσ → µσ − Σσ(k

σ
F, 0) = ǫFσ (consistent with

the Luttinger theorem [24, 25]). Within these approxi-
mations and after analytic continuation the effective in-
teraction takes the form

V (k,k′) ≈ 2Re
[

∑

q

tr(k+ q, ξq↓)t
a(q− k′, ξq↓) (8)

×Gr
↓(k− k′ + q, ξq↓)nF(ξq↓)

]

,

where r/a refers to the retarded or advanced quantities
and nF(ω) is the Fermi distribution function. Equation
(6) then simplifies to

∆↑(k) = −
∑

k′

V (k,k′)
∆↑(k

′)

2Ek′

tanh
Ek′

2T
, (9)

with Ek =
√

ξ2k↑ + |∆↑(k)|2, the solution of which re-

quires an understanding of the momentum structure of
the effective interaction V (k,k′) in the vicinity of the
spin-↑ Fermi surface. The transition temperature Tc for
a given angular momentum is found by solving the lin-
earized, in ∆↑(k), version of Eq. (9) and projecting onto
the relevant channel [19]. Assuming p-wave pairing, one
needs the ℓ = 1 projection of the induced interaction,
vℓ=1(k, k′) =

∫ π

0
dθ sin θ cos θV (k,k′), where θ is the an-

gle between k and k′. Furthermore, we find via a direct
numerical integration of Eq. (8), that v1(k, k′) is only ap-
preciable for k and k′ within a range kF↓ of each other;
this defines an effective bandwidth, of the order of ǫF↓,
over which the induced interaction is nonzero. The re-
maining momentum integrations are sharply peaked at
the Fermi surface, yielding the result

kBTc ≈
2eγ

π
ǫF↓ exp

[ 1

N↑(ǫF↑)vℓ=1(kF↑, kF↑)

]

, (10)

with γ the Euler gamma constant. We have also
found [26] the same result for the transition tempera-
ture (and the same effective interaction, Eq. (7)) via a
somewhat different approach by considering the Thou-
less criterion [27] for Tc, determined by the point at which
the spin-↑ pair-pair fluctuations in the normal state be-
come unbounded. Within such an approach, Eq. (7) is
the irreducible vertex in the particle-particle channel of
the Bethe-Salpeter equation [28].

In general, (8) has to be determined numerically, but
analytic results can be found for certain limiting cases.
In the asymptotic BCS limit as → 0−, the t-matrix
tr/a(k, ω) → 4πas/m, and Eq. (8) reduces to the result
of Ref. [16] (where, as we have noted, Tc is extremely
small). Analytic results can also be obtained in the
extremely imbalanced limit, i.e., kF↑/kF↓ ≫ 1, where

tr/a(kF↑ ± q, ξq↓) →
(

m
4πa

s

−
mkF↑

4π2

)−1
, and thus gives

kBTc ≈
2eγ

π
ǫF↓ exp

[

−
3

2

z

ln(z)

( π

2k
F↓as

−
z

2

)2]

, (11)
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FIG. 4: The p-wave transition temperature of spin-↑ fermions,
according to Eq. (10), with ǫF↑/ǫF↓ = [(1 + P )/(1 − P )]2/3,
via a numerical integration of Eq. (8) .

with z = kF↑/kF↓. This formula correctly captures the
vanishing of Tc for P → 1, but doesn’t adequately cap-
ture the peaks shown in Fig. 4, which where found by a
direct numerical analysis of Eq. (8). These results indi-
cate the presence of pairing at an experimentally acces-
sible temperature in unitary imbalanced gases.

We can trace the location of the peak of Tc, as a func-
tion of P , to two factors: Firstly, the non-analyticity
of particle-hole excitations (density-density correlation
function) of spins-↓ at k = kF↑ = 2kF↓ [14] implies strong
induced interactions at large imbalance. Secondly, the
magnitude of this peak is enhanced by the presence of
strong fluctuations toward the FFLO phase, as signaled
by a finite wave vector pole in the t-matrix. To illus-
trate this, in Fig. 1 the white line shows the P at which
a quantum phase transition to the FFLO state occurs;
thus, below this line, the p-wave paired phase likely un-
dergoes a second phase transition to the FFLO.

The confirmation of our scenario will require detecting
the onset of p-wave pairing at Tc and the properties of
the resulting p-wave superfluid below Tc. This can be
done via standard probes of superfluidity, such as the
presence of vortices in a rotating cloud [29]. Following
general arguments [30–32], we expect a px + ipy ground

state, i.e. ∆↑(k) = ∆0Y1,1(k̂). The anisotropic gapping
of the spin-↑ Fermi surface should yield a signature in
radio-frequency (RF) spectroscopy, which measures the
atom transfer rate of one spin species from the interact-
ing system to an unoccupied energy level [33], probing the
spectral function. However, we find that the associated
peak position in the RF line-shape is at ω ≃ ∆0(∆0/ǫF↑),
a very small energy scale given the smallness of Tc com-
puted above. A more promising route, that we leave for
future research, is the question of how the onset of pairing
impacts the formation of the spin-↓ polarons (as reflected
in, e.g., the spin-↓ RF spectra [8]).

In summary, we have calculated the induced inter-
action between like atoms in the normal state of an
imbalanced two-component Fermi gas. In the absence
of any competing instabilities (which certainly occur at

smaller P , where the regimes of magnetic superfluid-
ity [34], phase separation and, possibly FFLO phase oc-
cur), this interaction leads to the formation of p-wave
superfluid in the majority spin species, with a transition
temperature that peaks, for P close to unity, at a few
percent of the spin-↑ Fermi energy.
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