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Induced p-wave superfluidity in strongly interacting imbalanced Fermi gases
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The induced interaction among the majority spin species, due to the presence of the minority
species, is computed for the case of a population-imbalanced resonantly-interacting Fermi gas. It
is shown that this interaction leads to an instability, at low temperatures, of the recently observed
polaron Fermi liquid phase of strongly imbalanced Fermi gases to a p-wave superfluid state. We find
that the associated transition temperature, while quite small in the weakly interacting BCS regime,
is experimentally accessible in the strongly interacting unitary regime.

PACS numbers: 05.30.Fk, 03.75.Ss, 67.85.-d, 32.30.Bv

The extraordinary controllability of cold atomic gases
has yielded a wide range of interesting phases of matter,
including a bosonic Mott insulator and a paired super-
fluid state of two spin species of atomic fermions ﬂ, E]
In the latter setting, experiments have demonstrated con-
trol of both the interspecies interactions and the relative
density of the two spin states B, @], with the latter ex-
perimental knob being deleterious to pairing and super-
fluidity, which favors an equal density of the two species.

Thus, experiments on such imbalanced Fermi gases can
probe the stability of superfluidity in a correlated system
and therefore may shed light on the tendency towards
pairing in related systems, such as electronic supercon-
ductors. The phase diagram of imbalanced Fermi gases is
quite rich ﬂﬂ, ], possessing regions of imbalanced super-
fluidity, phase separation, normal Fermi liquid, and (pos-
sibly, though not yet observed) a region of exotic Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) superfluidity [7].

Our present focus is on the strongly imbalanced region,
when the polarization P = ZI I_Zi (with n, the density of
fermion species o) is close to unity, with a small density
of spins-| immersed in a spin-1 Fermi sea. Experiments
in this regime [&, [d] have found results consistent with
the formation of spin polarons [10], in which a cloud of
spins-1T gather around each spin-|, leading to a polaron
Fermi liquid state [11-13].

The polaron theory of the strongly imbalanced Fermi
gas predicts that both the spins-1 and spins-J are Fermi
liquids, exhibiting sharp Fermi surfaces at low temper-
ature T. However, general arguments due to Kohn and
Luttinger (KL) @,E] predict that such Fermi surfaces
must be unstable to other ordered states as 7' — 0.
A natural question then emerges: What is this ordered
state for imbalanced Fermi gases? Since the imposed im-
balance (and concomitant Fermi-surface mismatch) pre-
cludes s-wave singlet interspecies pairing, one instead ex-
pects triplet (likely p-wave) intraspecies pairing
of the spin-1 and spin-J fermions.

In this Letter we develop a theoretical description
of the induced interactions among the majority spin-{
fermions in the presence of a small density of spins-J,
over a broad range of interaction and polarization values.

030

0.10

<000

-0 10

-0.20

-0.30

-0.40

2 g - -0.50
-2 0.0 0z 0.4 L6 08 L

—(kpas) !

FIG. 1: (Color online) The p-wave channel of the effective
interaction between majority spins, v*=! (kr+t, krt), multiplied
by the Fermi-energy density of states Nj(epy), as a function
of the density imbalance P and s-wave scattering length a,,
is shown. Here, kp = (kg + kp;)/2. At large P, above
the dashed line, it is attractive leading to a p-wave superfluid
at temperatures below T,. The solid white line labels the
location of a line of FFLO quantum critical points, coinciding
with the range where v*=* (kgy, krq) is large.

We find an attractive effective interaction at the spin-1
Fermi surface, shown in Fig. [l leading to an instabil-
ity towards p-wave superfluidity below a transition tem-
perature 7, computed below M] In the extreme weak
coupling Bardeen-Cooper-Schrieffer (BCS) limit, where
the s-wave scattering length a, — 07, the p-wave super-
fluid transition temperature has already been computed
M]; unfortunately, it is exceptionally small (in agree-
ment with KL [14]), with T, o exp[—c/(kpra,)?], where
kp4 is the spin-1 Fermi wave vector and c is a constant
of order unity. The pairing mechanism is quite simple in
this perturbative limit: density fluctuations of one species
leads to an attraction between particles of opposite spin.
For spins-71, this induced interaction is proportional to
the spin-| density-density correlation function (i.e., the
Lindhard function). Although a p-wave superfluid is
predicted in the BCS limit, most experiments occur in
the unitary region where the interspecies interactions are
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FIG. 2: The ladder (a) and maximally crossed (b) diagrams
contributing to the self-energy, which define the ladder ¢ and
crossed-ladder f. diagrams. The bottom row, (c), shows a
subleading class of diagrams with both ladder and crossed-
ladder insertions that lead to a pairing instability. The spin-1
lines are 2 x 2 Nambu Green’s functions G(K), spin-| lines
are normal scalar Green’s functions G (K), and the wavy
lines are Ao .

strong, |a,| — oo, invalidating simple perturbative re-
sults. Our analysis of induced interactions in the uni-
tary regime involves extending the ladder approximation
(known to describe the polaron Fermi liquid regime dis-
cussed above) to include subleading classes of Feynman
diagrams. As seen in Fig. [[l the predicted effective in-
teraction in the p-wave channel can be quite large near
the unitary regime (and slightly into the Bose-Einstein
condensate (BEC) side). We find a maximum transition
temperature of kg7, =~ 0.03€p;, which is low but not
unreasonable given recently reported temperature scales
(e.g., Ref. [18).

Our starting point is the standard one-channel model
for two species (o =T, ) of fermion (CI{U) interacting via
an s-wave Feshbach resonance [19]. The Hamiltonian is

A
H= ngac‘fkocka + v Z CTkJquCTk’fq\Lck/\LckTa (1)

where &, = ex — po, with dispersion ex = k?/2m
(h = 1) and chemical potential py; V is the system
volume (henceforth set to unity), and A is the coupling
strength of a short-ranged pseudo-potential, related to
the experimentally controllable (via a magnetic field-
tuned Feshbach resonance) scattering length a, via

where A is an ultraviolet cutoff; below we shall take the
limit A — oo while A — 07, such that a, remains fixed.

We are interested in the phases of Eq. () in the
strongly imbalanced limit P — 1 and proceed (in
the spirit of mean-field theory) by assuming the pres-
ence of a self-consistently determined pairing ampli-
tude Ay(k,w) among the spins-T, but not the spins-
4 ﬂﬁ] Under this assumption, the 2 x 2 spin-1
Nambu Green’s function, in Fourier-Matsubara space, is
QT(K) = (f{((?)) _gi(([f%{)), where the four-vector
K = (iwn, k). G(K) satisfies the Dyson equation [20]
gA{l(K) = gA{é(K) - f)T(K), with bare Green’s func-
. 51 _ [iwn = &t 0
tion Gy o(K) = ( 0 iwn + Ekr
X}(K) = (—EAT%@) __EATE(_I;D Using the equation of
motion ﬂﬂ], the self-energy can be expressed in terms of
the two-particle vertex f‘, by

) and self-energy

k,o k,k’,q
J
S(K) = Ao. Y G (Ky) [00 =) Gi(K2)G (K + Ky — Ko)T(Ky, K + K1 — K, K1, K) |, (3)
Kl K2

where g is the 2 x 2 identity matrix, o, is a Pauli matrix,
and G| (K) is the scalar spin-] Green’s function, which
satisfies a similar expression, but with a diagonal self-
energy (since we assumed the spins-| are unpaired). The
summation is short for >, = kgT D, > ).

Although Eq. @) is in principle exact, to make progress
we must make a physically motivated approximation for
I, correpsonding to certain classes of Feynman diagrams.
Previous work has analyzed the phases of imbalanced

Fermi gases within the t-matrix or ladder approxima-
tion |11, , ] The set of diagrams associated with
the ladder approximation also emerges in the large-N ap-
proximation ﬂﬂ], in which one generalizes the model to
consist of 2NV species of fermion. Within the present for-
malism in which Gy (K) has Nambu structure, these con-
tributions arise from including the ladder plus the maxi-
mally crossed self-energy diagrams, sketched in Figs.[2{(a)
and 2I(b), respectively. We first analyze Eq. (B]) including
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FIG. 3: Feynman diagram for Eq. (@), the effective interaction
among the majority spin-1 fermions mediated by the spin-]
fermions. The t-matrices are given by Eq. (B).

only these diagrams. Exchanging A for a using Eq. (),
and keeping only contributions that are finite in the limit
A — o0, we find a diagonal self-energy;
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indicating the absence, at this level, of pairing for the
spins-T. Here,

HE) = 1 3G - Q)GHQ) ~ Y g (5)
s Q q

)
2eq

is the usual scalar t-matrix.

Thus, the contributions from Figs. 2a) and 2(b) yield
an unpaired solution for the self-energy, i.e., a Fermi
liquid, as found by previous t-matrix or large-N theo-
ries m, , , 23]. Given that the KL arguments im-
ply the eventual instability of this state, we now turn
to subleading contributions to the self-energy, shown in
Fig. Xc), that possess ladder and crossed-ladder subdi-
agrams. Again replacing A for a, using Eq. (), we find
that these diagrams yield an off-diagonal contribution to
the self-energy, i.e., a pairing amplitude A4(K) given by

AH(E) = Y VIK, K P(K), (6)
Q

V(K,K')=) t(P—K)t(P+K')G (PG (K'+P - K)T7)
P

Here, V(K, K') is the effective induced interaction among
spins-T; the corresponding Feynman diagram is shown
in Fig. In principle, the integral equation (B) must
be solved self-consistently along with the diagonal self-
energy, Eq. ). However, we shall we use some physi-
cally motivated approximations to simplify our analysis,
focusing on the onset of pairing of the spins-1 at a tem-
perature T, (above which the system is a Fermi liquid).
We assume the presence of a static momentum-dependent
pairing order parameter, A, (K ) = ATE, and neglect
the frequency dependence of V (K, K') |15]. For the di-
agonal components of the self-energy, we simply assume
that the chemical potential is renormalized to the Fermi
energy via p, — pio — 2o (k%,0) = ep, (consistent with

3

the Luttinger theorem [24, [23]). Within these approxi-
mations and after analytic continuation the effective in-
teraction takes the form

V(k k)~ 2Re[ Y #(k+q,5q)t%(a - K, &) (8)
q

x G (k = K +q, €q)np (Sa))]

where r/a refers to the retarded or advanced quantities
and np(w) is the Fermi distribution function. Equation
(@) then simplifies to

M) B

2B T 9)

Ar(l) = = SV (kK)
k/

with Ex = /&8, +[Ar(k)[?, the solution of which re-

quires an understanding of the momentum structure of
the effective interaction V(k,k’) in the vicinity of the
spin-T Fermi surface. The transition temperature T, for
a given angular momentum is found by solving the lin-
earized, in A, (k), version of Eq. (@) and projecting onto
the relevant channel HE] Assuming p-wave pairing, one
needs the ¢ = 1 projection of the induced interaction,
0=k, k') = [ d6 sinfcos OV (k, k'), where 6 is the an-
gle between k and k’. Furthermore, we find via a direct
numerical integration of Eq. ), that v!(k, k') is only ap-
preciable for k and &’ within a range kg, of each other;
this defines an effective bandwidth, of the order of ep|,
over which the induced interaction is nonzero. The re-
maining momentum integrations are sharply peaked at
the Fermi surface, yielding the result

2e7
kpT. ~ —e€p) exp
T

1
[NT(GFT)Uézl(kFTkaT)}, (o)

with ~+ the Euler gamma constant. = We have also
found @] the same result for the transition tempera-
ture (and the same effective interaction, Eq. () via a
somewhat different approach by considering the Thou-
less criterion m] for T¢, determined by the point at which
the spin-T pair-pair fluctuations in the normal state be-
come unbounded. Within such an approach, Eq. (@) is
the irreducible vertex in the particle-particle channel of
the Bethe-Salpeter equation HE]

In general, (§) has to be determined numerically, but
analytic results can be found for certain limiting cases.
In the asymptotic BCS limit a, — 07, the t-matrix
t'/2(k,w) — 4ma,/m, and Eq. ) reduces to the result
of Ref. E] (where, as we have noted, T, is extremely
small). Analytic results can also be obtained in the
extremely imbalanced limit, i.e., kps/kpy > 1, where

/3 (kpy £, &qy) = (22 — ’Z’:;T)_l, and thus gives

2e7 3 =z ™ z\?
kT ~ 22 [———(———)], 11
Ble ¥ TERLOXD 2In(2) \2kp a, 2 (11)
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FIG. 4: The p-wave transition temperature of spin-1 fermions,
according to Eq. [IQ), with epy/ep; = [(1 + P)/(1 — P)]*/?,
via a numerical integration of Eq. (8]

with z = kpy/kpy. This formula correctly captures the
vanishing of T, for P — 1, but doesn’t adequately cap-
ture the peaks shown in Fig. @ which where found by a
direct numerical analysis of Eq. [8). These results indi-
cate the presence of pairing at an experimentally acces-
sible temperature in unitary imbalanced gases.

We can trace the location of the peak of T, as a func-
tion of P, to two factors: Firstly, the non-analyticity
of particle-hole excitations (density-density correlation
function) of spins-| at k = kpy = 2k, [14] implies strong
induced interactions at large imbalance. Secondly, the
magnitude of this peak is enhanced by the presence of
strong fluctuations toward the FFLO phase, as signaled
by a finite wave vector pole in the ¢-matrix. To illus-
trate this, in Fig. ] the white line shows the P at which
a quantum phase transition to the FFLO state occurs;
thus, below this line, the p-wave paired phase likely un-
dergoes a second phase transition to the FFLO.

The confirmation of our scenario will require detecting
the onset of p-wave pairing at 7T, and the properties of
the resulting p-wave superfluid below 7T.. This can be
done via standard probes of superfluidity, such as the
presence of vortices in a rotating cloud HE] Following
general arguments |, we expect a p, + ip, ground
state, i.e. Ap(k) = AgY7 1(k). The anisotropic gapping
of the spin-1 Fermi surface should yield a signature in
radio-frequency (RF) spectroscopy, which measures the
atom transfer rate of one spin species from the interact-
ing system to an unoccupied energy level @], probing the
spectral function. However, we find that the associated
peak position in the RF line-shape is at w o~ Ag(Ag/ery),
a very small energy scale given the smallness of T, com-
puted above. A more promising route, that we leave for
future research, is the question of how the onset of pairing
impacts the formation of the spin-| polarons (as reflected
in, e.g., the spin-| RF spectra B])

In summary, we have calculated the induced inter-
action between like atoms in the normal state of an
imbalanced two-component Fermi gas. In the absence
of any competing instabilities (which certainly occur at

smaller P, where the regimes of magnetic superfluid-
ity M], phase separation and, possibly FFLO phase oc-
cur), this interaction leads to the formation of p-wave
superfluid in the majority spin species, with a transition
temperature that peaks, for P close to unity, at a few
percent of the spin-1 Fermi energy.
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