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We consider the dimensional crossover in the topological matter, which involves the transformation of dif-

ferent types of topologically protected zeroes in the fermionic spectrum. In the considered case, the multiple

Dirac (Fermi) point in quasi 2-dimensional system evolves into the flat band on the surface of the 3-dimensional

system when the number of atomic layers increases. This is accompanied by formation of the spiral nodal lines

in the bulk. We also discuss the topological quantum phase transition at which the surface flat band shrinks

and changes its chirality, while the nodal spiral changes its helicity.

PACS:

1. INTRODUCTION

When the fermion zero modes localized on the sur-

face or on the topological defects are studied in topolog-

ical media, the investigation is mainly concentrated on

the fully gapped topological media, such as topological

insulators and superfluids/superconductors of the 3He-

B type [1, 2, 3]. However, the gapless topological me-

dia may also have fermion zero modes with interesting

properties, in particular they may have the dispersion-

less branch of spectrum with zero energy – the flat band

[4, 5].

The dispersionless bands, where the energy vanishes

in a finite region of the momentum space, have been dis-

cussed in different systems. Originally the flat band has

been discussed in the fermionic condensate – the Khodel

state [6, 7, 8, 9], and for fermion zero modes localized

in the core of vortices in superfluid 3He-A [10, 11, 12].

The flat band has also been discussed on the surface of

the multi-layered graphene (see [13, 14] and references

therein). In particle physics, the Fermi band (called the

Fermi ball) appears in a 2+1 dimensional nonrelativis-

tic quantum field theory which is dual to a gravitational

theory in the anti-de Sitter background with a charged

black hole [15].

Recently it was realized that the flat band can be

topologically protected in gapless topological matter. It

appears in the 3D systems which contain the nodal lines

in the form of closed loops [4] or in the form of spirals

[5]. In these systems the surface flat band emerges on

the surface of topological matter. The boundary of the

surface flat band is bounded by the projection of the
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nodal loop or nodal spiral onto the corresponding sur-

face. Here we extend this bulk-surface correspondence

to the bulk-vortex correspondence, which relates the flat

band of fermion zero modes in the vortex core to the

topology of the point nodes (Dirac or Fermi points) in

the bulk 3D topological superfluids.

2. VORTEX-DISGYRATION

As generic example we consider topological defect

in 3D spinless chiral superfluid/superconductor of the
3He-A type, which contains two Fermi points (Dirac

points). Fermions in this chiral superfluid are described

by Hamiltonian

H = τ3ǫ(p) + c (τ1p · e1 + τ2p · e2) , ǫ(p) =
p2 − p2F
2m

,

(1)

where τ1,2,3 are Pauli matrices in the Bogoliubov-

Nambu space, and in bulk liquid the vectors e1 and e2

are unit orthogonal vectors. There is only one topolog-

ically stable defect in such superfluid/superconductor,

since the homotopy group π1(G/H) = π1(SO3) = Z2.

We choose the following order parameter in the topo-

logically non-trivial configuration (in cylindrical coordi-

nates r = (ρ, φ, z)):

e1(r) = f1(ρ)φ̂ , e2(r) = ẑ sinλ− f2(ρ)ρ̂ cosλ , (2)

with f1,2(0) = 0, f1,2(∞) = 1. The unit vector l̂, which

shows the direction of the Dirac points in momentum

space, p± = ±pF l̂, is

l̂(r) =
e1 × e2

|e1 × e2|
=

f2(ρ)ẑ cosλ+ ρ̂ sinλ
√

f2
2 (ρ) cos

2 λ+ sin2 λ
. (3)
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Asymptotically at large distance from the vortex

core one has

e1(ρ = ∞) = φ̂ , e2(ρ = ∞) = ẑ sinλ− ρ̂ cosλ ,

l̂(ρ = ∞) = ẑ cosλ+ ρ̂ sinλ ,
(4)

which means that changing the parameter λ one makes

the continuous deformation of the pure phase vortex at

λ = 0 to the disgyration in the l̂ vector without vorticity

at λ = π/2, and then to the pure vortex with opposite

circulation at λ = π (circulation of the superfluid veloc-

ity around the vortex core is
∮

ds · vs = κ cosλ, where

κ = π~/m). We consider how the flat band in the core

of the defect evolves when this parameter λ changes. In

bulk, i.e. far from the vortex core, the Dirac points are

at

p± = ±pF l̂(ρ = ∞) = ±pF (ẑ cosλ+ ρ̂ sinλ) . (5)

Due to the bulk-vortex correspondence, which we shall

discuss in the next section, the projection of these two

points on the vortex axis gives the boundary of the flat

band in the core of the topological defect:

E(pz) = 0 , p2z < p2F cos2 λ . (6)

This is the central result of the paper: in general the

boundaries of the flat band in the core of the linear

topological defect (a vortex) are determined by the pro-

jections on the vortex axis of the topologically protected

point nodes in bulk. In the next section we consider

the topological origin of the flat band and geometrical

derivation of its boundaries. In Sec. 4., the boundaries

of the flat band (6) are obtained analytically.

3. BULK-VORTEX CORRESPONDENCE

Let us first give the topological arguments, which

support the existence of the flat band inside the vortex-

disgyration line. Let us consider the Hamiltonian (1)

in bulk (i.e. far from the vortex core) treating the pro-

jection pz as parameter of the 2D system. At each pz
except for two values pz = ±pF cosλ corresponding to

two Fermi points (see Fig. 1), the Hamiltonian has fully

gapped spectrum and thus describes the effective 2D in-

sulator. One can check that this 2D insulator is topo-

logical for |pz| < pF | cosλ| and is topologically trivial

for |pz| > pF | cosλ|. For that one considers the follow-

ing invariant describing the 2D topological insulators or

fully gapped 2D supefluids [16]:

Ñ3(pz)

=
1

4π2
tr

[
∫

dpxdpydω G∂px
G−1G∂py

G−1G∂ωG
−1

]

,

(7)

where G is the Green’s function matrix, which for non-

interacting case has the form G−1 = ıω − H . This

invariant, which is applicable both to interacting and

non-interacting systems, gives

Ñ3(pz) = 1 , |pz| < pF | cosλ| , (8)

Ñ3(pz) = 0 , |pz| > pF | cosλ| . (9)

flat
band

Fermi
point

Fermi
point

pz

− pF cos λ

 pF cos λ

N3(pz) = 0 
∼

N3(pz) = 1 ∼

N3(pz) = 0 ∼

Fig. 1. Projections of Dirac (Fermi) points on

the direction of the vortex axis (the z-axis) determine

the boundaries of the flat band in the vortex core.

Fermi point in 3D systems represents the hedgehog

(monopole) in momentum space [16]. For each plane

pz = const one has the effective 2D system with the

fully gapped energy spectrum Epz (px, py), except for

the planes with pz± = ±pF cosλ, where the energy

Epz (px, py) has a node due to the presence of the hedge-

hogs in these planes. Topological invariant Ñ3(pz) in (7)

is non-zero for |pz| < pF | cosλ|, which means that for

any value of the parameter pz in this interval the sys-

tem behaves as a 2D topological insulator or 2D fully

gapped topological superfluid. Point vortex in such 2D

superfluids has fermionic state with exactly zero en-

ergy. For the vortex line in the original 3D system

with Fermi points this corresponds to the dispersionless

spectrum of fermion zero modes in the whole interval

|pz| < pF | cos λ| (thick line).

At pz = ±pF | cosλ|, there is the topological quan-

tum phase transition between the topological 2D “in-

sulator” and the non-topological one. The difference of

2D topological charges on two sides of the transition,

Ñ3(pz = pF cosλ + 0) − Ñ3(pz = pF cosλ − 0) = N3,

represents the topological charge of the Dirac point in

the 3D system – hedgehog in momentum space [16].

As we know, the topological quantum phase transitions
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are accompanied by reconstruction of the spectrum of

fermions bound to the topological defect: fermion zero

modes appear or disappear after topological transition

in bulk [2, 17, 18, 19]. For the pure vortex, i.e. at λ = 0

or λ = π, we know from [10] that the vortex contains

the fermionic level with exactly zero energy for any pz
in the region |pz| < pF , i.e. in the region of parame-

ters where the 2D medium has non-trivial topological

charge, Ñ3 = 1. On the other hand no such levels are

present after the topological transition to the state of

matter with Ñ3 = 0.

The similar reconstruction of the spectrum at the

topological quantum phase transition takes place for

any parameter λ 6= π/2 of the considered defect. This

can be understood using the topology in the mixed real

and momentum space [20, 21]. To study fermions with

zero energy (Majorana fermions) in the core of a point

vortex in a 2D topological superconductor, the Pon-

tryagin invariant for mixed space has been exploited in

Ref. [1]. The Pontryagin invariant describes classes

of mappings S2 × S1 → S2. Here the mixed space

S2×S1 is the space (px, py, φ), where φ is the coordinate

around the vortex-disgyration far from the vortex core.

This space is mapped to the sphere S2 of unit vector

ĝ(px, py, φ) = g(px, py, φ)/|g(px, py, φ)| describing the

2D Hamiltonian. In our case it is the Hamiltonian (1)

outside the vortex core:

Hpz,λ(px, py, φ) = τig
i(px, py, φ; pz, λ) , (10)

g3 =
p2x + p2y
2m

− µ(pz) , µ(pz) =
p2F − p2z
2m

,

g1 = c(py cosφ− px sinφ) ,

g2 = c(pz sinλ− cosλ(px cosφ+ py sinφ)) , (11)

with pz and λ being the parameters of this effective

2D Hamiltonian. The Pontryagin Z2 invariant is non-

trivial and thus the zero energy state exists in the core

of the defect the effective 2D superconductor, if the pa-

rameters pz and λ of the 2D Hamiltonian (10) satisfy

condition |pz| < pF | cosλ|.

For the considered linear topological defect (vortex-

disgyration) in the 3D system this implies that the core

of this defect contains the dispersionless band in the in-

terval of momentum |pz | < pF | cosλ|, i.e. one obtains

equation (6).

4. FLAT BAND FROM QUASI-CLASSICAL

APPROACH

Let us now support the above topological arguments

by explicit calculation of the fermionic flat band in the

vortex-disgyration, which is described by the order pa-

rameter (2). The Bogoliubov-de Gennes Hamiltonian

for fermions localized on the defect line is obtained from

(1) by substitution of the classical transverse momen-

tum by the quantum-mechanical operator,

p⊥ → (−i∇x,−i∇y) , (12)

while pz remains the good quantum umber which serves

as parameter of the effective 2D system. The zero en-

ergy states in this 2D system can be studied using the

quasiclassical approximation, see details in Chapter 23

of the book [16]. For our purposes it is sufficient to con-

sider the Hamiltonian on the trajectory s which crosses

the center of the vortex. The modification of quasiclas-

sical Hamiltonian in Eq.(23.16) in [16] for the considered

vortex-disgyration is

Hqcl(pz) = −i
q

m
τ3∂s + U(s)τ2 ,

U(s) = cpz sinλ− cqf2(|s|)sign(s) cosλ ,

q =
√

p2F − p2z .

(13)

The Hamiltonian Hqcl(pz) is super-symmetric if the

asymptotes of the potential U(s) have different sign for

s = −∞ and s = +∞. The latter takes place if

|pz | sinλ < q| cosλ| . (14)

The super-symmetric Hamiltonian Hqcl(pz) has the

state with zero energy, Eqcl(pz) = 0, for any pz in

the interval (14). For vortices in chiral superfluids it is

known [16] that the zero energy state of the quasiclassi-

cal Hamiltonian, Eqcl = 0, automatically results in the

true zero energy state, E = 0, obtained in the exact

quantum-mechanical problem using the Bogoliubov-de

Gennes Hamiltonian. This proves the existence of the

flat band in the range of momentum (14), which coin-

cides with equation (6) and is in agreement with the

topological analysis in previous section.

5. DISCUSSION

We discussed the 3D matter with topologically pro-

tected Fermi points. Topological defects (vortices and

vortex disgyrations) in such matter contain the disper-

sionless fermionic band with zero energy – the flat band.

The boundaries of the flat band are determined by pro-

jections of the Fermi points on the axis of the topological

defect. This bulk-vortex correspondence for flat band is

similar to the bulk-surface correspondence discussed in

the media with topologically protected lines of zeroes

[5, 4]. In the latter case the flat band is formed on the
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surface of the system, and its boundary is determined

by projection of the nodal line (closed loop [4] or spiral

[5]) on the corresponding surface.
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