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Abstract

We study mechanical problems with multiple solutions and introduce a thermodynamic frame-
work to formulate two different selection criteria in terms of macroscopic energy productions and
fluxes. Studying simple examples for lattice motion we then compare the implications for both
resting and moving inhomogeneities.
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1 Introduction

The wave equation on R? with a time-periodic source at the origin allows for a multitude of solutions.
One way to single out a unique solution was proposed by Sommerfeld. His classic work [Som62] selects
a unique solution based on boundary conditions and a so-called radiation condition. We discuss two
central ingredients of his argument, based on the macroscopic characterisation of the forcing as a source
and the macroscopic flow of energy, and investigate how these notions generalise to problems with
moving inhomogeneities. Sommerfeld has a third ingredient to his argument, a microscopic radiation
condition which is not investigated in detail here (one reason is that an extension to nonlinear systems
is not at all obvious). Since we only focus on the first two ingredients of his argument, the selection
criteria we formulate are necessary conditions for solutions that satisfy Sommerfeld’s stipulations on
production and energy flow as explained below; we show that they do not always single out a unique
solution.

We present our exposition along two guiding examples of Fermi-Pasta-Ulam (FPU) chains of atoms.
The governing equations are

Ej(t) = (241 (t) — 2;(1)) — (a5 (t) — 2j-1()) + C(£)dj0 (1)

for every j € Z; this describes the motion of a one-dimensional chain of atoms {g¢;};ecz on the real line
by the deformation z;: R — R, with j € Z numbering the atoms, where the evolution is governed by
Newton’s law and neighbouring atoms are linked by springs.

The two cases we consider are (7) a chain with harmonic potential ® and forcing ¢ at the origin and
(i4) a moving interface in a chain with bi-quadratic potential without forcing (¢ = 0). These cases of
a resting and a moving inhomogeneity behave quite differently. There is one commonly used approach
due to Slepyan [Sle01], which establishes uniqueness for such problems via a causality principle which
can be seen as a vanishing viscosity argument based on Sommerfeld’s radiation condition. Our focus
here is different, namely we aim to establish a framework for the analysis of energy flow and production
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terms that is applicable in a variety of situations, including the model examples discussed here. We
show that the two notions put forward by Sommerfeld, source-sink nature respectively energy flux, no
longer agree in the case of a moving inhomogeneity, unlike in the case considered by Sommerfeld.

Sommerfeld’s radiation condition Sommerfeld’s approach to radiation conditions is described
in his book [Som62, §28], see also [Som49] and we thus just describe the gist of some key arguments.
However, the discussion given in §3 for the case of a lattice model resembles the spatially continuous
case very much, and we refer the reader to that section for a more detailed mathematical treatment.

Sommerfeld considers the wave equation on R3 with a temporally periodic forcing at the origin.
A separation of variables ansatz leads to the Helmholtz equation with a source at the origin, thus
an inhomogeneous equation. The corresponding homogeneous equation has nontrivial bounded kernel
functions (in R?). Some kernel functions are excluded by boundary conditions, in Sommerfeld’s case
radially symmetric ones. This still does not single out a unique solution. In particular, there are two
singular and decaying solutions u® to the inhomogeneous Helmholtz equation, which are well-defined
outside the origin. Let 2% be the corresponding solutions of the forced wave equation. The choice of
the direction of time made in the separation of variables ansatz renders the corresponding solutions
T an outwardly radiating radial wave and ~ an inwardly radiating wave. In fact, % describes a
source solution to the forced wave equation, that means the forcing supplies energy to the system. On
the contrary, £~ corresponds to a sink solution as the forcing deprives the system of energy.

Sommerfeld now introduces a binary choice, allowing only waves which propagate outwards and
dismissing those which propagate inwards. This selection is necessary both for physical and mathe-
matical reasons: mathematically, the choice is an integral part of the arguments leading to a unique
fundamental solution of the forced wave equation, and physically the two solutions 2* are qualitatively
very different. In Sommerfeld’s words [Som62],

“Quellen sollen Quellen, nicht Senken der Energie sein.” [Sources have to be

sources, not sinks of the energy.| (SOM1)

We call this the first formulation of Sommerfeld’s radiation condition. He then gives what we call the
second formulation,

“Die von den Quellen ausgestrahlte Energie muf sich ins Unendliche zerstreuen,

Energie darf nicht aus dem Unendlichen in die vorgeschriebenen Singularitaten

des Feldes eingestrahlt werden” [The energy radiated from the sources has to (SOM2)
scatter to infinity, energy must not be radiating from infinity into the prescribed

singularities of the field.]

As we noted before, characterising the involved solutions as sources or sinks is only one step along
the path towards uniqueness for the forced oscillation problem. To ensure uniqueness one has finally
to impose microscopic selection criteria as for instance the asymptotic radiation condition (20). Such
conditions, however, are highly specific to the particular problem at hand, and will therefore not
be investigated further. Instead we focus on the two former formulations which can in principle be
generalised to more general problems.

Thermodynamic interpretation In §2 we establish a thermodynamic framework to analyse
(SOM1) and (SOM2). The starting point are the microscopic conservation laws for mass, momen-
tum, and energy. These laws can be derived from (1) even if ® is nonlinear and converge to their
macroscopic counterparts under the hyperbolic scaling of space and time. In the second step we
then identify the macroscopic quantities that allow for a thermodynamic interpretation of Sommer-
feld’s radiation condition. In particular, we introduce the concept of oscillatory energy, identify the
corresponding flux and production terms, and derive explicit expressions for these quantities in the
aforementioned two special cases.

In §3 we apply the thermodynamic framework to the analogue of Sommerfeld’s problem in harmonic
chains and find that (SOM1) and (SOM2) are equivalent. Afterwards we study phase transition waves



in §4 and show that both conditions provide different selection criteria for moving inhomogeneities.
While (SOM1) turns out to be equivalent to the usual entropy inequality, the implications of (SOM2)
are very restrictive and depend strongly on the speed of the phase transition wave.

2 Macroscopic field equations in the presence of microscopic
oscillations

Our approach to Sommerfeld’s radiation condition in §3 and §4 is based on macroscopic balance laws
that govern the effective dynamics of averaged quantities on large spatial and temporal scales. In this
section we derive and discuss these balance laws and provide the atomistic expressions for all densities,
fluxes and production terms. Our exposition is formal but we emphasise that all arguments can be
made rigorous with Young measures, see [DH08, DHRO06] and appendix A. For the sake of clarity we
start with the conservation laws for the unforced FPU chain, (1) with ¢ = 0.

Microscopic conservation laws We can rewrite (1) with ¢ = 0 in terms of the atomic distances
(discrete strain) r; := xj11 — x;, and velocity v; := &; as first order equations

7= vjp1 — g, O = P'(ry) — @' (rj-1), (2)

which can be viewed as the discrete counterparts of the local conservation laws for mass and momentum
in Lagrangian coordinates, see (6). Since the FPU chain is an autonomous Hamiltonian system with
shift symmetry, we can also derive a local conservation law for the energy, namely

F (07 +@(rj1)) = ;9 (rj) — v 1P (rj-1). (3)

To characterize the thermodynamic properties of FPU chains we now derive a macroscopic description
by applying the hyperbolic scaling of space and time. For a given scaling parameter 0 < ¢ < 1, we
define the macroscopic time T and the macroscopic particle index £ by

T=¢t, {=¢j (4)

but we do not scale distances and velocities. We then regard the atomic data that correspond to a
solution of (2) as functions that depend continuously on 7 and are piecewise constant in &, that means
we identify r;(t) = r-(et,ej) and v;(t) = v.(et,ej).

Of course, the functions r. and v. will, in general, be highly oscillatory with wave length of order
and do not converge as ¢ — 0 in a pointwise sense. However, as long as the solution to (2) is bounded
we can assume, thanks to weak compactness, that for any atomic observable 1) = 1(r,v) the functions
¥(re,ve) converge weakly as ¢ — 0, see Appendix A. The limit function (7)) is then non-oscillatory
and can be regarded as the thermodynamic field of v, that means (V) (7, &) gives the local mean value
of ¢ in the macroscopic point (7,§).

Macroscopic conservation laws In the thermodynamic limit € — 0 the discrete conservation
laws (2) and (3) transform into

0-(r) = 0c(v), 0r(v) = 85<@/(T)>, 8T<%v2 + <I>(7’)> = (9£<’U(I)I(T)>. (5)

These PDEs describe the local conservation laws for mass, momentum, and energy on the macroscopic
scale and are well known within the thermodynamic theory of elastic bodies. In fact, they can be
written as

O;R—0:V =0, 0,V+08:P=0, 0.FE+08F=0, (6)



with macroscopic strain R = (r), macroscopic velocity V- = (v), pressure P = —<<I)'(7’)>, energy density
E = <%02 + <I)(T)>, and energy fluz F = 7<v<I)'(r)>. Moreover, splitting off the Galilean invariant part
from both the energy density and the energy flux, we find

E=Y?4+U, F=VP+Q,

2
with internal energy density U and heat flux (). It turns out that radiation in the sense of Sommerfeld
precisely means energy transport via @, see § 3, and therefore we call @ the radiation flux.

We emphasise that, in general, the conservation laws (6) do not constitute a closed system but must
be accompanied by closure relations. Unfortunately, very little is known about the thermodynamic
limit for most initial data and general interaction potentials. In some cases, however, it is possible to
solve the closure problem. Below we show that all thermodynamic fields can be computed explicitly
for (7) Sommerfeld’s fundamental solution in forced harmonic chains, and (i¢) phase transition waves
in chains with bi-quadratic potential.

Oscillatory energy For our purposes it is convenient to introduce a split of the energy density E
that accounts for the fact that the computations of local mean values and nonlinearities do not commute
in the presence of oscillations. To obtain a precise measure for the strength of the oscillations we write

K= Enon + Eosc; Enon = %VQ + (I)(R),
which means

Baon = 3@0)2 4 0((1),  Fowe = 3((v = (0))) + (2(r) — B((r))). (7)

We refer to Eys. and Eo, as oscillatory and non-oscillatory energy density, respectively, and
emphasise that F,s. measures precisely the amount of macroscopic energy that is locally stored within
the oscillations. From (5) and (7) we conclude that the partial energies are balanced by

Or Eose + an =, Or Enon + 3§(PV) =-Z (8)

where the production

== (P +@(R)IY = ((2(r) — @' ((r)) ) 2 (),

describes how much non-oscillatory energy is transferred into oscillatory energy.

Thermodynamic fields for harmonic oscillations As a preparation for the discussion in §3
and §4 we now compute the thermodynamic fields for travelling waves in harmonic FPU chains. A
travelling wave for FPU is an exact solution to (1) with ¢ = 0 that satisfies

ri(t) = R(j = cpnt),  vj(t) = V(i = cput) (9)

for some phase speed cp, and profile functions R and V that depend on the phase variable ¢ = j—cpnt.
Travelling waves in FPU are determined by advance-delay-differential equations, see [FV99, DHMO0G6,
Her10], and describe fundamental oscillatory patterns. The thermodynamic fields for periodic or almost
periodic travelling wave are independent of (7,¢) and can be computed by

W)= 57 [ RV de. (10)

For a harmonic chain with interaction potential ®(r) = %037’2 + dyr + dy, we immediately verify
by Fourier transform that for prescribed cp, with 0 < |epn| < ¢o travelling waves are given by

M M
R(gﬁ):R+2Aicos(nigp+m/2+m), V(@):V:FCOZAicos(ningrm), (11)

i=1 i=1



with “=" and “4” for left and right moving waves, respectively, that means for ¢y, < 0 and cpn > 0,
respectively. Here the wave numbers x;, ¢ = 1...M, denote the positive solutions to cith = Q(k)2,
where Q(k) = 2¢sin (k/2) is the dispersion relation of the harmonic FPU chain. In particular, near
sonic waves with cp, ~ cg have M = 1 and depend, up to phase shifts, on the four independent
parameters R, V, A = A;, and k = K.

The thermodynamic fields for harmonic travelling waves can easily be computed by (10) and (11).
In fact, thanks to (r) = R and (v) = V we find

P = *C%R*dl; Enon = %V2+%63R2+d1R+d0’ (12)
as well as
Moy
Eose = %cﬁAQ, Q= i(co Zl j cos (Hi/Q))EOSC (13)

with A% = Zﬁl A?. For periodic waves with M = 1 we therefore have Q = cg Fosc, where cgr =
+ Q' (k)| is the group speed.

We emphasize that the thermodynamic computations presented above can be extended to super-
positions of finitely many harmonic travelling waves, with obvious modifications. Since our aim is to
analyse travelling waves, we do not spell out this extension. We also mention that a complete char-
acterization of the energy transport in harmonic lattices can be derived in terms of Wigner-Husimi
measures, see [Mie06].

Macroscopic description of forcing In order to generalise the formalism from above to forced
FPU chains we assume, for simplicity, that the forcing acts only in the particle j = 0, see (1), and
that ( is periodic with

Ct) = C(t + tpe). /O e di=o0. (14)

These conditions guarantee that the forcing does not contribute to the macroscopic conservation laws
for mass (2); and momentum (2)2. The forcing, however, in general supplies some energy to the
system, and hence the conservation law (2)5 must be replaced by

0rE + 0¢F = 0(1)80(dE). (15)

The macroscopic energy production at & = 0 can be computed either as the jump of the macroscopic
energy flux at £ = 0 or by averaging the microscopic energy production. This reads

o to)/e

0(r) = F(r,0+) — F(7,0-) = lim lim 5= ) vo(£)C(t) dt. (16)

3 The forced harmonic chain

Here we present the analogue to Sommerfeld’s classical problem in harmonic FPU chains, that is the
localised forced excitation problem

(0F — cgAr)z;(t) = ¢(1)d], (17)

where A; denotes the discrete Laplacian Ayx; := 41 + x;—1 — 22;. For simplicity we normalise the
speed of sound to ¢g = 1 and assume that the chain is periodically forced at one of its eigenfrequencies
o with 0 < o < 2.



Explicit solutions via Helmholtz equation The separation of variables ansatz z;(t) =
Re(uje™ %) transforms (17) into the discrete Helmholtz equation

0‘2Uj + Aluj = dp, (18)
which can be solved by Fourier transform. There exist two special solutions u+ and u~ defined by

.y
ut = P (k)

J i2Q(k)Y (k)
where k = k(o) denotes the unique solution to
o> =Q(k)?, Q) =2sin(k/2), O0<k<m.

Of course, the special solutions v~ and u' can be affinely combined and also superimposed by
plane waves with wave number +x, which are the kernel functions of the discrete Helmholtz operator.
The general solution to (18) can therefore be parameterised by «, 8 € C as

u; = us{a, B) = b + aexp (—inj) + Bexp (+inj). (19)
Note that in particular u;r =u;(0,0) and u; =u;(a™,B7) with a™ =3~ = 7(129(’{)9,(“))—1
Sommerfeld’s approach to the radiation condition can be viewed as the endeavour to remove the
non-uniqueness and to single out a unique choice for a and . To this end he introduces a microscopic
selection criterion, whose analogue in FPU chains reads

du; du;
lim (—J —mu») —0, Tim (—J mu») —0, 20
j—too \ dj / j=—oo \ dj o (20)
and implies that « = 3 = 0 in (19). In particular, the microscopic radiation condition selects out u™
but rules out u™.

Macroscopic aspects of Sommerfeld’s radiation condition We now show that the binary choice
between u~ and u™ can be understood in terms of purely macroscopic conditions on the production
of oscillatory energy and the direction of the radiation fluxes. As remarked in §2, the thermodynamic
framework can be extended to superpositions of harmonic waves. It is thus in principle possible to
characterise all bounded solutions to (17), in particular kernel functions and their superpositions. The
result of such an analysis is that the thermodynamic interpretation of (SOM1) and (SOM2) rejects
superpositions of waves as long as their influx contribution exceeds the outward contribution. Thus, a
half space of all bounded solutions is rejected, and a half-space accepted. We show this analysis here
in detail for the two extreme cases corresponding to u— and uy. The analysis for the other solutions
is, mutatis mutandis, analogous yet more complicated terms arise.
At first we notice that v and u~ correspond to the real-valued displacements

acj-[(t) _ isin(:l:n l7] — ot)

2Q(r)Y (k)
Each of these solutions to (17) consists of two counter-propagating travelling waves that are glued
together at j = 0, where the travelling waves propagate towards and away the inhomogeneity at j = 0
for 7 and z7, respectively. We also notice that 7 and x~ transform into each other under time
reversal, and that they define the atomic distances and velocities

cos (£kj + Kk/2 —at) for j >0,

21
cos (Frj F k/2 —ot) for j <0, 21)

vi(t) = FAcos(£k|j| —ot),  ri(t) = A{

where the amplitude A > 0 is given by 1/A = 20 (k) = 2 cos (k/2).
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Figure 1: Sommerfeld’s source solution for the FPU chain: The energy pumped in by the periodic
forcing is radiated towards both 400 and —co. If time is reversed the source becomes a sink and the
radiation fluxes on both sides change their sign.

The key observation towards the thermodynamic limit € — 0 is that both = and x_ converge to
Young measures that are (7) independent of the macroscopic time 7 = et, (i) constant for £ < 0 and
& > 0, where £ = ¢j is the macroscopic particle index, and (zi7) generated by periodic travelling waves.
These assertions follow directly from (21) and the definition of Young measure convergence, see §2
and appendix A. They also imply that the macroscopic conservation laws (6) are trivially satisfied for
£#0.

Using (12) and (13) we now conclude that almost all thermodynamic fields are globally constant
with

lAQ’

R=0, V=0, P=0, F=0Q, Ewn=0, E==FEs, Fs= 3

but that the radiation flux @ is piecewise constant via Q(7,§) = £sign () (k) Eosc =: Qsgn (¢)oo- The
two values for @) are given by

Q-0 = $i14a Q-l—oo = i%A,
and computing the macroscopic energy production by averaging, see (16), we find

27 /o 27 /o
A
7 vo(t) cos (ot) dt = :I:;— / cos (ot)* dt = +14.
™
0

on
0

0 —

Sommerfeld’s first condition (SOM1) is naturally related to the sign of . For 2 we have 6 > 0, so the
forcing pumps in energy at j = 0 and the solution describes a source of the energy. The solution 27,
however, corresponds to a sink as 6 < 0 implies that energy flows out constantly at j = 0. Moreover,
for the solutions at hand the balance of total energy reduces to

0= Q—i—oo - Q—oo = 2Q-l—oo = _QQ—OOa

and implies that Sommerfeld’s first and second formulation of the radiation condition are equivalent.
Namely, (SOM2) stipulates that energy that is pumped in at j = 0 must be radiated away, and hence
the radiation fluxes must point towards +o0o, see Fig. 1. Conversely, energy that is deprived from the
system at £ = 0 must be radiated in from +oo, and we conclude that both (SOM1) and (SOM2)
select out the solution z+ but reject z~.

4 Phase transition waves for a bi-quadratic FPU chain

We now counsider travelling waves with a moving inhomogeneity and apply the selection criteria (SOM1)
and (SOM2) to these waves. One motivation for studying this problem is that a constructive method
to describe solution candidates has been worked out in great detail by [TV05]. We mention, however,
two important caveats of our analysis: firstly, we assume the existence of subsonic travelling waves
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Figure 2: Phase transition waves with |cpn| > ¢2 have periodic tails and come in two different types.
Type-I waves have either 0 < ¢gr < cpn 01 0 > cgr > cpn, Whereas Type-IT waves correspond to either
Cor < 0 < cpp Or cgr > 0> cpp.

with a single inhomogeneity (interface). Guidance for the existence can be taken from [TVO05]; yet
existence is a subtle issue, and only for a small regime of subsonic velocities a rigorous existence
proof exists [SZ09, SZ]; in particular it is worth to mention that there is a velocity regime where no
travelling wave with a single interface can exist [SSZ]. Secondly, the selection criteria that result from
the thermodynamic interpretation of (SOM1) and (SOM2) are necessary but not sufficient.

We study heteroclinic solutions to the travelling wave equation (9). To calculate the thermodynamic
fluxes explicitly, we restrict our considerations to the piecewise quadratic potential

o(r) = %min{(r—l)Q, (7’+1)2}, (22)

but mention that the arguments can, at least in principle, be generalised to genuinely nonlinear
potentials as well. (The double-well nature of ® describes the co-existence of different stable states
and thus the possibility of interfaces between those states.)

The potential (22) is normalised to have unit sound speed, ¢y = 1. As illustrated in Fig. 2, there is
a critical velocity ¢o > 0 such that for all with ¢, with co < |cpn| < 1 there is a unique solution x > 0
to

ok = Q%(k), Q(k) = 2sin (k/2). (23)

From now on we solely consider waves with |cph| > co because then the tails are periodic with unique
wave number x as chosen above. We therefore have

(R, V)() £52 (Revoe, Vi) (9), (24)
where both (Rico, Vioo) and (R_s, V—_oo) are periodic travelling waves with phase speed cp, and
group speed cg;. To compute the thermodynamic fields explicitly, it is necessary that the asymptotic
microscopic strains are confined to the harmonic wells. We thus require that both R_. and R4
have a definite sign. By symmetry we can assume that Ry (@) 2 0, and by shift invariance we can
also assume that R(0) = 0. Thus, the interface moves along j = cpnt and € = ¢pp7 in the microscopic
and macroscopic space-time coordinates, respectively. Notice, however, that we have not fixed the
sign of cpp, so the wave travels from negative strain to positive strain for cpn > 0, and the other way
around for cpn < 0.

Macroscopic constraints for phase transition waves Under the assumption that travelling
waves with a single interface as described above exist and are asymptotically periodic in each well
(possibly constant), all thermodynamic fields are constant on the left and on the right of the interface
and are completely determined by the periodic tail oscillations in (24). The macroscopic conservation
laws therefore reduce to jump conditions via 0, ~» —cpu[] and J¢ ~ [], where the asymptotic jump
and mean value of any thermodynamic field X are given by

[X] = Xioo — Xooo, {X}= %(X_H,o +X )y Xioo= lim X(7,8).

E—+oo



In particular, the PDEs (6) transform into
eon[R] = —[V],  en[VI =[P, cpulBnon + Eosc] = [PV + Q] (25)

We now express the values of all thermodynamic fields X in terms of Riso, Vi, A+, and the
speeds cpn and cgy. In this way, we recover well-known jump conditions and kinetic relations for phase
transition waves [Tru82, Tru93]. The idea to compute thermodynamic quantities as averages of atomic
observables is well established and can, for instance, be found in [TV05, SCC05]. The novel ingredient
in our presentation is the reformulation in terms of oscillatory energy and radiation flux.

Due to the sign choice for Ry, we have Py = —Ry +1 and hence [P] = 2 —[R], so the jump
conditions for mass (25); and momentum (25), provide

QCph

2
R = —— V]=- 26
=g V=7 (26)
and therefore
A ARY — eon {V con {RY — 2 {V
g 2B ) e (B
—Con — oy
Using this and the formulae for Eos. and @ from (13), we then find
*Cph[[Enon]] + [[PV]] - 2Cph {R} 5 *Cph[[Eosc]] + IIQ]] - (Cgr - Cph)[[Eosc]]; (27)

which is the analogue to (8). Consequently, the jump condition for the total energy (25)s enforces
that the productions for oscillatory and non-oscillatory energy cancel via

E = —2cpn {R} = (cgr — cpn)[Fosc]- (28)

This formula is important as it reveals that for phase transition waves there is no production of total
energy but instead a steady transfer between the oscillatory and the non-oscillatory contributions of
the energy. This transfer has power —2 { R} and drives the wave. More precisely, the configurational
force Y satisfies

Y =-Z  T:=[R)] - (¥ (R)}E].

This is the kinetic relation and follows from (26) and (27) thanks to [Euon] = [V]{V} + [®(R)],
[PV] =A{P}[V] + [P]{V}, and P = —®'(R). The production of oscillatory energy = is the process
commonly called dissipation.

We finally notice that time reversal changes the sign of cpn, Cor, Z, Vioo, @400, but does not
affect Rioo, Atoo; Fosc, 400, Enon, +oos Ptoo, OF T. We also observe that all thermodynamic fields are
completely determined by

Cph, A-oo;  Atoo, {V} : (29)

In fact, from (29) we compute r and cg by (23) and set [Eosc] = 1[A%]. Afterwards we solve (26);
and (28) for R_, and R_.,, which then allow us to compute V_., and Vo from (26)s.

These jump conditions constitute macroscopic constraints which are necessary for the existence
of a phase transition wave with speed |cpn| € (c2, 1). However, it was proven in [SZ], that these
conditions are also sufficient, at least for near sonic speeds with 0 < 1 — |epn| < 1. In conclusion,
there exists a four-parameter family of phase transition waves, and it is natural to ask which of them
are physically reasonable. Here selection criteria come naturally into the play.
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Figure 3: Phase transition waves are driven by a constant transfer between the oscillatory and the
non-oscillatory energy and the radiation fluxes on both sides of the interface are proportional to the
oscillatory energy and have the same sign. The cartoons illustrate the source solutions for so called
type-1 and type-II waves, which represent different order relation for the group velocity cg; and the
phase velocity cpn. If time is reversed, the interface becomes a sink of oscillatory energy and the
radiation fluxes on both sides change their sign.

The macroscopic aspects of Sommerfeld’s radiation conditions We first consider (SOM1).
It is reasonable to require that the interface is a source rather than a sink of oscillatory energy, i.e.,
the production = has to be non-negative

(1]

= (Cgr - Cph)lIEosc]] > 0. (30)
This inequality is equivalent to
CphT >0, (31)

which is the usual entropy condition for phase transition waves (see for example [TV05]). For all
waves considered here, Condition (30) implies Eosc, 400 < Eosc, —00 fOr waves moving to the right and
Eose, 400 > Eose, —oo for left-moving waves. In both cases we have = > 0 if and only if the oscillations
have smaller amplitude in front of the interface than behind the interface. (SOM1) select these solutions
but rejects waves that travel from regions of low oscillations into regions of high oscillations. Note,
however, that oscillations in front of the interface are not ruled out since it is only required that the
wave propagates in direction of decreasing oscillations. This implies that there is still a four-parameter
family of phase transition waves which satisfy (SOM1).

Sommerfeld’s second formulation (SOM2), which stipulates that “energy is carried away from the
interface”, translates directly into a condition on the radiation flux. It requires, on both sides of the
interface, that @) points away from the interface. This condition is very restrictive for phase transition
waves with periodic tails because both @)_. and Q4. have the same sign as the group velocity,
see (13). Thus (SOM2) can only be satisfied if there are no oscillations on one side of the interface.
The precise implication depend on the sign of cg;, and therefore we distinguish between two types,
see Figures 2 and 3. Type-I waves have ¢; < |cpn| < 1, where ¢; = 2Q(7/2)/7, and this implies
|car| < |epn]. Type-II waves correspond to ca < |cpn| < ¢1, which means sgn cg # sgn cph.

For type-I waves, the radiation fluxes behind and in front the interface point towards and away
from the interface, respectively. This is illustrated in Fig. 3, and holds regardless whether (30) is
satisfied or not. Energy is therefore always radiated towards the interface, and the second formulation

10



Type-1 wave with no oscillations in front of the interface

Q- >0 J’
—

Figure 4: The causality principle only allows for phase transition waves that propagate into a region
without oscillations.

of the radiation condition can only be satisfied if there are no oscillations behind the interface. Those
waves, however, are usually regarded as unphysical as they violate (31). The only solution candidates
that would accepted by both formulations have no oscillation, neither in front nor behind the interface;
however, such waves do not exist for the potential (22).

The discussion is different for type-II waves. There is still radiation into the interface but now
the radiation flux impinges from ahead. Therefore, both (SOM1) and (SOM2) are simultaneously
fulfilled by solutions satisfying (31), namely II-waves that propagate into a region without oscillations,
that means Eosc, 400 = 0 for right-moving Eqsc, —oo = 0 for left-moving waves. From this we conclude
that (SOM2) forbids type-I waves completely but allows for a two-parameter family of type-II waves.

Microscopic selection criteria Besides of macroscopic criteria as described above, there also exist
microscopic selection rules for phase transition waves. These are far more restrictive and select out a
two-parameter family of phase transition waves. For the sake of comparison we now summarise the
main arguments about microscopic selection criteria for phase transition waves in bi-quadratic chains
and refer to [TV05, CCS05] for more details. The key idea is that under the condition sgn R(¢) = sgn ¢
each phase transition waves is determined by the affine advance-delay-differential equation

C?)haiR = AR — Asgn.

This equation can be regarded as the analogue to the inhomogeneous Helmholtz equation (18), and
solutions can be represented by R(¢) = Re(S(y)) with

i Q(k)etike
S =+ [ wopp—ar s b (32)
™ J kQ2(k) — c2 k3
where I' is an appropriately chosen contour in the complex plane. The microscopic selection criterion is
based on the causality principle which chooses I' to be the dented real axis that passes the origin k = 0
from below but the other real-valued poles k = +x of the integrand in (32) from above. Complex-
valued calculus then provides the following expressions for the thermodynamic fields for a right moving
wave

c c 2c
R:too = :l:l ph2 + ph y A,OO = ph y AJroo = 0,
~ S%n Cgr — Cph Cgr — Cph
with [V] as in (26), and therefore
2c2 2c2
[Bose] = ———2 <0, =Z=—20 5
(Cgr — Cpn) Cph — Cgr

In particular, there exists a two-dimensional family of phase transition waves that is parameterised by
the speed cpn and the trivial parameter {V'}. All these waves have no oscillations ahead the interface,
see Figure 4, and (SOM1) is always satisfied. The validity of (SOM2) depends on the value of ¢, i.€.,
on whether the wave is of type-I or type-II.
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Discussion This section shows that the case of a moving interface is different from that of a standing
source as discussed in § 3: in the latter case, (SOM1) and (SOM2) are equivalent, but this is not true
for the former case. For the moving interfaces considered in this section, the condition formulated
in terms of sources and sinks, (SOM1), is equivalent to the entropy condition (31). The second
formulation (SOM2) in terms of fluxes selects for type-I waves a solution that is constant behind the
interface; this solution, however, is rejected by the entropy condition (31). Thus for moving interfaces,
one has to distinguish between arguments that rely on the energy transport, as (SOM2), and arguments
based on energy production, as (SOM1). Both conditions are only necessary. We stress again that
this section is based on the assumption that there are single interface phase transition waves for the
given potential ® which are asymptotically periodic (possibly constant). This is proven only for a
small parameter range of type-I waves [SZ09, SZ], and there is a nonexistence proof for single interface
phase transition wave for a regime of lower velocities [SSZ].

A Appendix: Macroscopic conservation laws for FPU chains

Here we establish the thermodynamic limit for the forced FPU chain (1) provided that the forcing ¢
satisfies (14). Our main goal is to show that the macroscopic balance laws for mass, momentum, and
energy (see (5) and (15)) can be derived rigorously as follows:

1. The hyperbolic scaling transforms each bounded FPU solution into a family of oscillatory func-
tions which depend on the macroscopic time 7 and macroscopic Lagrangian space coordinate

.

2. This family of functions is compact in the sense of Young measures, and hence we can extract con-
vergent subsequences. Along such a subsequence, the limit measure encodes the local distribution
functions of the oscillatory data and hence the local mean values of atomic observables. These
local mean values provide the thermodynamic fields and are, by construction, non-oscillatory
functions in 7 and &.

3. The FPU dynamics implies that the thermodynamic fields of each Young measure limit satisfy
the macroscopic conservation laws of mass, momentum, and energy in a weak sense.

We now collect the mathematical tools for each of these step. We start with some basic facts about
Young measures and refer the reader to [Bal89, Rou97, Val94, Tay97] for more details.

Let © be a domain in R* and K be some convex and closed set in R™. A Young measure jy €
Y(Q; K) is a Q-family of probability measures on K, that means a measurable map p: y € Q —
w(y,dQ) € Prob(K). Notice that each function @: Q@ — K defines a trivial Young measure with
1y, dQ) = dg(y) (dQ), where dg(,)(dQ) abbreviates the delta distribution in Q(y).

Theorem 1 (Fundamental Theorem on Young Measures). Fach family

(Qs)o<g§1 C L™ K)

is compact in the space of Young-measures Y M(Q; K). This means there exists a sequence €, — 0
along with a limit measure pp € Y M(Q; K) such that

(Qe,) == () weaklyx in L(9), (33)

for all observables ¢ € C(K), where

gives the local mean value of Y in y € €.
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Proof. See, for instance, [Tay97], Proposition 11.3 in Section 13.11. O

The convergence (33) is equivalent to

[ w@ewar= tm [ 0., 0)ew
Q

Q

for all test functions p € C2°(2). Moreover, the subsequence converges strongly to some limit function
Qo in L*>(; K) if and only if the limit measure is trivial, u(y,dQ) = dg,(y)(dQ).

We now suppose that we are given a bounded solution to (1). As in §2, we regard the atomic
distances r; = u;+1 — u; and velocities v; = u; as the basic variables, i.e., we consider

Qit) = (ry (), v (0), JEL, t>0. (34)

For a given scaling parameter 0 < ¢ < 1 we introduce 7 and £ by (4), so the macroscopic Lagrangian
space-time coordinate is given by

Q={(1,&) : 7>0, £€R}.
Moreover, we identify (34) with piecewise constant functions on § as follows
Qulet i+ ) = Q;(t) forevery t >0, j €7, [n] < 1. (35)

By assumption, we have (Q:)g..«; C L*(€; K) for some ball K C R?, and Theorem 1 provides
at least one subsequence that converges to some limit measure u € Y M (Q; K). Moreover, for each
atomistic observable ¥ we can compute the corresponding thermodynamic field via

(W)€ = [ (o€, drav).

We are now able to state and prove the main result on the thermodynamic limit of forced FPU
chains. It is a direct consequence of the discrete conservation laws derived from FPU, the notion of
Young-measure convergence, and the properties of distributional derivatives.

Theorem 2 (Macroscopic conservation laws for FPU). The thermodynamic fields of each Young
measure limit p of (1) satisfies the conservation laws (5) within the following domains in the sense of
distributions: The laws for mass (5)1 and momentum (5)2 hold for Q. The conservation of energy (5)s3

holds for Q if ¢ =0, and otherwise at least for Q = Q \ {¢ =0}.

Proof. Within this proof we write Q- (7, &) = (re(7,£),v-(7,€)). The equation of motion (1) combined
with the scaling rules (4) and (35), implies the following discrete conservation laws

0;re — Vicv. =0, (36)
0rve = V_c®'(r2) = ((1/2)x: (), (37)
8.,-(%1)? + (I)(Ta) - EV_E‘I)(TE)) —V_e (an)l(ra)) = g(T/E)UO(T/E)Xa(g) (38)

for all 7 > 0 and almost all £ € R, where the discrete differential operators Ve and the scaled cut off
function . are given by
£f(r,§£e) F f(7.9)

(V:tsf)(Ta 5) = - , Xs(&) — M

We now multiply (36) with a test function p € C2°(§2) and integrate with respect to both 7 and &.
Using integration by parts and expansions with respect to ¢ we then find

/ redrpt — vedepdrd€ = O(c),
Q
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and the limit € — 0 provides (5); in the sense of distributions. Similarly, and using that (14) implies

/Q (/) xe ()i, €) drdé = ¢ / T C@plet, 0)dt + O(e) = O(e),

we derive (5)2 from (37). Finally, the assertions about the energy conservation follow from (38), where
for ¢ # 0 we assume that all test functions p are compactly supported in €. O

Since the energy is conserved in € we can balance the energy in the whole domain Q via (15).

Acknowledgements

MH was supported by the EPSRC Science and Innovation award to the Oxford Centre for Nonlinear
PDE (EP/E035027/1). JZ gratefully acknowledges funding from the Royal Society (TG100352) and
EPSRC (EP/H05023X/1, EP/F03685X/1).

References

[Balg9] J. M. Ball, A version of the fundamental theorem for Young measures, PDEs and contin-
uum models of phase transitions (Nice, 1988) (M. Rascle, D. Serre, and M. Slemrod, eds.),
Springer, Berlin, 1989, pp. 207-215. MR 91¢:49021

[CCS05] Andrej Cherkaev, Elena Cherkaev, and Leonid Slepyan, Transition waves in bistable struc-
tures. 1. Delocalization of damage, J. Mech. Phys. Solids 53 (2005), no. 2, 383-405. MR
MR2111250 (2005i:74046)

[DHO8] W. Dreyer and M. Herrmann, Numerical experiments on the modulation theory for the
nonlinear atomic chain, Physica D 237 (2008), no. 2, 255-282.

[DHMO06] W. Dreyer, M. Herrmann, and A. Mielke, Micro-macro transition in the atomic chain
via Whitham’s modulation equation, Nonlinearity 19 (2006), no. 2, 471-500. MR 2199399
(2006k:37202)

[DHRO6] W. Dreyer, M. Herrmann, and J. Rademacher, Pulses, traveling waves and modulational
theory in oscillator chains, Analysis, Modeling and Simulation of Multiscale Problems
(A. Mielke, ed.), Springer, 2006.

[FV99]  Anne-Marie Filip and Stephanos Venakides, Ezistence and modulation of traveling waves
in particle chains, Comm. Pure Appl. Math. 52 (1999), no. 6, 693-735. MR 1676765
(2000e:70033)

[Her10] M. Herrmann, Unimodal wave trains and solitons in convex FPU chains, to appear in Proc.

R. Soc. Edinb. Sect. A-Math., 2010.

[Mie06]  Alexander Mielke, Macroscopic behavior of microscopic oscillations in harmonic lattices via
Wigner-Husimi transforms, Arch. Ration. Mech. Anal. 181 (2006), no. 3, 401-448. MR
MR2231780 (20071:37132)

[Rou97] Tomds Roubicek, Relazation in optimization theory and variational calculus, de Gruyter
Series in Nonlinear Analysis and Applications, vol. 4, Walter de Gruyter & Co., Berlin,
1997. MR MR1458067 (98e:49002)

[SCCO05] Leonid Slepyan, Andrej Cherkaev, and Elena Cherkaev, Transition waves in bistable struc-
tures. II. Analytical solution: wave speed and energy dissipation, J. Mech. Phys. Solids 53
(2005), no. 2, 407-436. MR MR2111251 (2005i:74047)

14



[Sle01]

[Som49]

[Som62]

[SZ09]

[Tay97]

[Tru82)

[Tru93]

[TVO05]

[Valo4]

L. I. Slepyan, Feeding and dissipative waves in fracture and phase transition. I. Some 1D
structures and a square-cell lattice, J. Mech. Phys. Solids 49 (2001), no. 3, 469-511. MR
MR1866438 (2002h:74045)

Arnold Sommerfeld, Partial Differential Equations in Physics, Academic Press Inc., New
York, N. Y., 1949, Translated by Ernst G. Straus. MR MR0029463 (10,608b)

, Vorlesungen tiber theoretische Physik. Band VI: Partielle Differentialgleichungen
der Physik, Fiinfte Auflage. Bearbeitet und ergénzt von Fritz Sauter, Akademische Verlags-
gesellschaft Geest & Portig K.-G., Leipzig, 1962. MR MRO0168153 (29 #5417)

Hartmut Schwetlick, Daniel C. Sutton, and Johannes Zimmer, Nonezistence of slow hetero-
clinic travelling waves for a bistable Hamiltonian lattice model, Submitted.

Hartmut Schwetlick and Johannes Zimmer, Kinetic relations for a lattice model of phase
transitions, Submitted.
http://www.maths.bath.ac.uk/ zimmer/schwetlickzimmerkin.pdf.

, Existence of dynamic phase transitions in a one-dimensional lattice model with
piecewise quadratic interaction potential, STAM J. Math Anal. 41 (2009), no. 3, 1231-1271.

Michael E. Taylor, Partial differential equations. III, Applied Mathematical Sciences, vol.
117, Springer-Verlag, New York, 1997, Nonlinear equations, Corrected reprint of the 1996
original. MR 1477408 (98k:35001)

L. M. Truskinovskii, Equilibrium interface boundaries, Dokl. Akad. Nauk SSSR 265 (1982),
306-310.

L. Truskinovsky, Kinks versus shocks, Shock induced transitions and phase structures in
general media, Springer, New York, 1993, pp. 185-229. MR 94j:35103

Lev Truskinovsky and Anna Vainchtein, Kinetics of martensitic phase transitions: lat-
tice model, STAM J. Appl. Math. 66 (2005), no. 2, 533-553 (electronic). MR MR2203868
(2007b:74103)

M. Valadier, A course on Young measures, Workshop on Measure Theory and Real Analysis
(Grado, 1993), Rend. Istit. Mat. Univ. Trieste, vol. 26, 1994, pp. 349-394.

15



