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Abstract

We describe a new variation of a mathematical card trick, whose analysis leads
to new lower bounds for data compression and estimating the entropy of Markov
sources.
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Several years ago, an article in the popular press [1] described the following
mathematical card trick: the magician gives a deck of cards to an audience
member, who cuts the deck, draws six cards and lists their colours; the magician
then says which cards were drawn. The key to the trick is that the magician
prearranges the deck so that the sequence of the cards’ colours is a substring of a
binary De Bruijn cycle of order six, i.e., so that every sextuple of colours occurs
at most once. Although the trick calls only for the magician to name the cards
drawn, he or she could also name the next card, for example, with absolute
certainty. At the time we ran across the article, we were studying empirical
entropy, and one way to define the kth-order empirical entropy of a string s is
as our expected uncertainty about the character in a randomly chosen position
when given the preceding k characters [2]. After reading the trick’s description,
it occurred to us that the kth-order empirical entropy of any De Bruijn cycle
of order at most k is 0. Using this and other properties of De Bruijn cycles,
we were able to prove several lower bounds for data compression [3, 4]. For
example, since σ-ary De Bruijn cycles of order k have length σk, there are

(σ!)σ
k−1

/σk such sequences [5] and log
2

(

(σ!)σ
k−1

/σk
)

= Θ(σk log σ), a simple

counting argument proves the following theorem.

Theorem 1 (Gagie, 2006 [6]). If k ≥ logσ n then, in the worst case, we cannot
store a σ-ary string s of length n in λnHk(s)+ o(n logσ) bits for any coefficient
λ.

In this paper we consider a variation of the trick described above, that has
led us to some new bounds. This time, suppose the magician does not bother to
prearrange the deck, but shuffles it instead and has the audience member draw
seven cards; after the audience member lists the cards’ colours, the magician
has him or her replace the cards, cut the deck again and return it; the magician
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examines the deck and says which cards were drawn. It is not hard to show that
the probability of two septuples of cards having the same colours in the same
order is at most 1/128 (even if the septuples overlap), so the probability only
one sextuple has the colours listed is at least 1 − 51/128 > 0.6; thus, simply
examining the deck gives the magician a better than even chance of guessing the
cards drawn. Our analysis is slightly pessimistic because the probability of two
septuples’ colours matching would be exactly 1/128 only if they were drawn
with replacement; drawn without replacement, the probability of two cards’
colours matching, for example, is 25/51 < 1/2. Also, even if several sextuples
have the colours listed, the magician still has some chance of guessing correctly
from amongst them.

Now suppose we draw the n characters of a string s randomly from an
alphabet of size σ. By the same reasoning as above, the probability two k-tuples
match is 1/σk; by linearity of expectation, the expected number of matches is
(

n
2

)

/σk. The 0th-order empirical entropy of s

H0(s) = (1/n)
∑

a

occ(a, s) log
2
(n/occ(a, s)) ≤ log

2
σ ,

where occ(a, s) is the number of occurrences of character a in s; the kth-order
empirical entropy of s

Hk(s) = (1/n)
∑

|α|

|sα|H0(sα) ,

where sα is the concatenation of characters immediately following occurrences
in s of the k-tuple α. Therefore, calculation shows

E[Hk(s)] ≤ (1/n)

(

n

2

)

log
2
σ < (n/σk) log

2
σ ,

which implies the following theorem.

Theorem 2. If k ≥ (1 + ǫ) logσ n then, in the expected case, we cannot store
a σ-ary string s of length n in λnHk(s) + o(n log σ) bits for any coefficient
λ = o(nǫ).

Proof. If k ≥ (1 + ǫ) logσ n and λ = o(nǫ), then

E
[

λnHk(s) + o(n log σ)
]

= o(n log σ) ,

but the expected number of bits needed to store s is Θ(n logσ).

Similarly, by the union bound, the probability there are any matching k-tuples
at all in s is at most

(

n
2

)

/σk, so the probability that Hk(s) = 0 is at least

1−
(

n
2

)

/σk, implying the following theorem.

Theorem 3. If k ≥ (2 + ǫ) logσ n for some positive constant ǫ then, with high
probability, we cannot store a σ-ary string s of length n in λnHk(s)+ o(n log σ)
bits for any coefficient λ.

2



Proof. If k ≥ (2 + ǫ) logσ n for some positive constant ǫ, then

λnHk(s) + o(n log σ) = o(n log σ)

with probability at least 1−1/nǫ = 1−o(1); however, the number of bits needed
to store s is Θ(n log σ) with probability 1− o(1).

The upper bound above on the probability there are any matching k-tuples
also quickly yields an exponential lower bound on the sample complexity of
estimating the entropy of Markov sources. This stands in contrast to, e.g., the
Shannon-McMillan-Breiman Theorem (see, e.g., [7]) and bounds for estimating
the entropy of a probability distribution [8, 9, 10]. Although many papers have
been written about estimating the entropy of a Markov source (see, e.g., [11]
and references therein), we know of no previous lower bounds comparable to
the one below.

Theorem 4. Suppose a σ-ary string s is generated either by a deterministic
kth-order Markov source (which has entropy 0) or by an unbiased memoryless
source (which has entropy log

2
σ). No algorithm can guess the type of source

with probability at least 2/3 without reading Ω(σk/2) characters.

Proof. Suppose there is an algorithm that guesses correctly with probability
at least 2/3 after reading o(σk/2) characters, when they are generated by an
unbiased memoryless source. By the upper bound above, with high probability
the string generated will not contain any matching k-tuples. It follows that we
can find a particular string s of length o(σk/2) containing no matching k-tuples
and such that, with probability nearly 2/3, the algorithm classes s as having
come from an unbiased memoryless source. Since s contains no matching k-
tuples, we can build a deterministic kth-order Markov source that generates s
with probability 1; on this source, the algorithm errs with probability nearly
2/3.
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