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0 A Functorial Map from Knots in Thickened Surfaces to

Classical Knots and Generalisations of Parity

Vassily Olegovich Manturov∗

Abstract

We construct a functorial map from knots in thickened surfaces to classical knots. This method

uses a natural generalisation of the notion of parity: we localise the information about non-

triviality of knots in surfaces (virtual knots) at crossings which allows to construct a functorial.

In particular, this allows to lift all classical knot invariants to knots in thickened sufraces.

The aim of the present paper is to consturct a map (projection) from

the set of knots in thickened surfaces onto the set of classical knots. This

is obtained by using the universal parity which is a generalisation of

parity; and can be further generalised to the universal non-commutative

parity.

This map can be used in order to “lift” all invariants of classical knots

to the realm of knots in thickened surfaces. Partially, this can be done for

virtual knots, however, the map itself does not agree with stabilisation

for virtual knots.

Many invariants of classical knots do not admit any evident general-

isation for the case of virtual knots: in some cases, e.g. for Khovanov

homology, [7], one has to revisit completely the original definition in

the classical case, whence some other invariants rely on geometry and

topology of the 3-space. The presence of a “right” projection usually

allows not only to lift many invariants, but also to refine them in many

different ways [2, 1]. For further applications of parity in other prob-
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lems of topology, see [3, 4]. The parity idea goes as follows: all classical

crossings of a diagram can be naturally split into “even ones” and “odd

ones” so that this way of splitting is well-behaved under Reidemeister

moves. The parity can be used for construction of many new invariants,

refinements of old invariants and construction of functorial maps. Here

odd crossings are “responsible” for non-triviality. In the present paper,

we strengthen the notion of parity to get the universal parity and the

the universal non-commutative parity; they are valued in certain groups

(which has its own interest) rather than in the group Z2, in such a way

that in the case of a non-classical diagram at least one crossing turns out

to be odd. The latter allows to construct a projection. Note that the

proof of the main result of the present paper, the universal (commuta-

tive) parity suffices, however, the non-commutative parity construction

is of its own interest. Certainly, these refinements of parity can be used

for further improvements of virtual knot invariants.

The universal commutative parity group is nothing but the Z2-homology

group of the underlying surface. The non-commutative parity group is

related to the fundamental group of the underlying surface, however, the

explicit presentations of these groups given in the present paper, are re-

lated with the crossings: they localise the non-trivial information about

a knot in a crossing .

Note that in some previous works (see [2]) we have constructed a well-

defined mapping from virtual knots to “virtual knots with orientable

atoms” (see [2]).

Virtual knots were invented by Kauffman [5]; as a natural way of

stabilising knots in thickened surfaces studied by F.Jaeger, L.Kauffman,

and H.Saleur [JKS].

The reader is assumed to be familiar with the basics of virtual knots,
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see, e.g., [5, 6] and the parity theory (see., e.g., [2]).

Remark 1. In the sequel, all virtual diagrams are considered only

up to the detour move. We call a virtual diagram classical if it becomes

classical after an application of detour moves.

Remark 2. We shall construct a map from knots in surfaces (not

links) having orientable atoms, to classical knots. Later on, we assume

all atoms to be orientable, i.e. admitting a source-sink structure. Recall,

following [8], that a four-valent graph with a formal relation of half-

edges at vertices to be opposite, is said to admit a source-sink structure

if its edges can be oriented in such a way that in every vertex some

two opposite edges are incoming and the other two edges (which are

also opposite) are emanating. Note that for a connected graph with a

structure of opposite half-edges specified, if a source-sink structure exists

then it is unique up to the orientation reversal for all edges.

Let K be a virtual knot diagram given by its planar diagram D. Con-

sider the surface S(D) corresponding to D. This surface is constructed

in the following way. Starting with a virtual diagram D we construct

a surface with boundary as follows. At every classical crossing we put

a “cross” (upper Fig. 1), and at each virtual crossing we put a pair of

skew lines (lower Fig. 1). Connecting these crosses and bands by non-

intersecting and non-twisted bands going along arcs of the knot diagram,

we get an oriented 2-manifold with boundary to be denoted by S ′(D).

In a natural way the diagram D can be drawn in S ′(D) in such a

way that the arcs of the diagram (which are allowed to pass through

virtual crossings) are mapped to the middle lines of bands, and classical

(planar) crossings correspond to intersections of middle lines of crosses.

Thus we obtain a collection of curves δ ⊂ S ′(D). Pasting the boundary
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Figure 1: Local Structure of M ′

components of the manifold S ′(D) by discs, we obtain an oriented man-

ifold S = S(D) without boundary with a collection of immersed curves

δ. Note that every boundary component of S ′(D) corresponds to some

“rotating cycle” on the graph (projection of the knot), i.e. a cycle on a

four-valent graph (with opposite edge structure) where every two adja-

cent edges correspond to two non-opposite half-edges at their common

vertex. Note that vertices of the knot projection correspond to classical

crossings only, and the relation of half-edges to be opposite comes from

the surface S(D).

Note that the detour move does not change the surface S(D) at all;

neither it changes the curve inside it. The first classical Reidemeister

move does not change the surface S(D); neither does the third classical

Reidemeister move. As for the second classical Reidemeister move, there

are two cases: the local one which does not change the surface S(D), and

the (de)stabilising one where a new handle is attached in such a way that

the two newborn crossings appear inside the new handle.

This is exactly the place where virtual knot theory differs from theory

of knots in thickened surfaces. A band-pass presentation of a virtual knot
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given above can be treated as a presentation for a knot in a thickened

surface; the surface is minimal by construction, and the only Reidemeis-

ter move which can change the genus of the surface is the (de)stabilising

version of the second Reidemeister move.

So, we shall deal with two equivalences: the usual one (with (de)sta-

bilisation) and the equivalence without (de)stabilisation which preserves

the genus of the underlying surface.

Now, let us construct the unversal parity group G(D). We shall use

the additive notation for this group. For generators of G(D) we take

crossings of the diagram D, and the relations will be 2ai = 0 for every

crossing and there will also be relations correspond to pasted cycles.

Namely, a pasted cycle is just a rotated cycle on the 4-valent graph

(shadow of the knot): the sum of crossings corresponding to any pasting

cycle is zero.

Analogously, one defines the two non-commutative parity groups,

{NG1(D), NG2(D)}. So far we consider these pair of groups as un-

ordered.

The generators will coorespond to the crossings (as well as those of

G(D); we do not impose the relation that the square of every generator is

equal to the neutral element of the group and we shall write the relations

of the group multiplicatively.

The source-sink structure on the projection graph generates an ori-

entation for every rotating cycle. This yields a cyclic ordering on every

pasted cycle: a1, . . . , an. For every such cycle we write down the relation

a1 · · · an = 1.

Since we have two source-sink structure, we shall have two different

sets of relations which will lead us to presentations of the groups to be

denoted by NG1 and NG2.
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Figure 2: A knot in a surface of genus two

It is obvious that for a classical knot diagram D any of the groups

G(D), NG1(D), NG2(D) is trivial.

Denote the element of the group G corresponding to a crossing X of

the knot diagram, by g(X).

Example 1. Consider the curve in the surface of genus two given in Fig.

2. The surface is represented as a decagon with opposite edges identified.

The corresponding group of parity (say, {NG1}) has five generators

and the following relations

abcde = 1, abdebceacd = 1, acebd = 1.

The other group (say, {NG2}) has the same set of generators and the

following relations: edcba = 1, dcaecbedba = 1, dbeca = 1.

Remark 3. Every time when we prove the invariance under a certain

Reidemeister or the fact that some map is functorial, we shall consider

the “coordinated” source-sink structures (i.e., those coinciding outside

the domain of the Reidemeister move) for two diagrams related by a

Reidemeister move, and the corresponding groups.

The two groups NG1 and NG2 evidently have the same ablianisation
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Figure 3: The third Reidemeister move

which is isomorphic to G.

Theorem 1. For two non-stably equivalent virtual diagrams D,D′ the

groups G(D), G(D′) are isomorphic. Moreover, after an coordinated

choice of the source-sink structure we have NG1(D) = NG1(D
′), NG2(D) =

NG2(D
′).

Proof. We have to prove the invariance under classical Reidemeister

moves except the second (de)stabilising Reidemeister move; the presen-

tation itself does not change under the detour move. We shall fix the

source-sink orientation, and prove the claim of the the theorem for one

of the groups NG1 or NG2; the proof for the other group is the same;

the claim for the abelianisation follows.

When applying the first Reidemeister move, we add one crossing cor-

responding to a new generator aN ; we add the relation aN = 1. The old

relations either do not change (in the case if they correspond to pasted

cycles not passing through the edge, the new crossing belongs to), or the

letter aN is added to these relations. The third Reidemeister move looks

as follows, see Fig. 3.

The presentation corresponding to the left picture, has n+3 generators

a1, . . . , an, a, b, c, some relations r1, . . . , rk, and the relation abc = 1 (the

generators a1, . . . an correspond to vertices outside the domain of the
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Reidemeister move).

In the right picture we get a persentation with n + 3 generators

a1, . . . , an, d, e, f , relations r′1, . . . , r
′
k, and also fed = 1, where r′j are

obtained from ri by the following replacements: a → fe, b → df, c →

ed, ab → f, bc → d, ca → e.

It is easy to see that such presentations yield isomorphic groups where

the isomorphism is obtained from a 7→ fe, b 7→ df, c 7→ ed, aj 7→ aj, j =

1, . . . , n, and the inverse map is given by d 7→ bc, e 7→ ca, f 7→ ab.

The second Reidemeister move (which does not lead to a (de)stabilisation)

goes as follows, see Fig. 4. It takes place inside some polygon a1 . . . ak

and is applied to edges connecting aj, aj+1 and al, al+1 (we add 1 mod-

ulo k). Then in the presentation we add two generators aN and aN+1

and the relation aNaN+1 = 1. Besides that, for those edges the Reide-

meister moves are applied two, the relations are changed as follows: we

get a1 · · · ajaN · al+1 · · · an = 1 and aN+1aj+1 · · · al = 1; for all crossings

related to edges participating in the Reidemeister moves, the relations

acquire aNaN+1.

It is evident here that the presentation leads to the same group,

indeed, by conjugating the relations a1 · · · ajaN · al+1 · · · aN = 1 and

aN+1aj+1 · · · al = 1 and multiplying them, we get some relation a1 · · · an =

1, and the relation a1 · · · ajaN ·al+1 · · · an = 1 itself can be treated as the

defining relation for the generator aN to be excluded.

Note that some of the letters a1 . . . an may coincide.

So, the above theorem provides a powerful tool for studying curves

on 2-surfaces and knots in thickened surfaces. The groups NG1 and

NG2 are invariants of the pair (surface S of genus g, conjugacy class in
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Figure 4: The second Reidemeister move

π1(Sg)).

Theorem 2. Let h be a homomorphism from the group G(D) to the

group Z2. Then the map X → h(g(X)) generates a parity of crossings

for knots in a given thickened surface. Moreover, every parity for this

concrete surface factors through the group G(D).

The proof follows directly from the comparison of the relations in the

group and the parity axioms.

Let us consider now the map f from virtual diagrams to virtual dia-

grams that deletes (makes virtual) those crossingsX of the knot diagram

for which g(X) 6= 1 in G(K).

Theorem 3. For a virtual knot diagram D we have f(D) = D if and

only if K is classical.

Proof. Let D be a virtual knot diagram. By definition of the surface

S(D), the four-valent graph corresponding to the diagram D of K splits

this surface into cells that can be coloured in a checkerboard manner.

Let i ∈ H1(S(D),Z2) be the non-trivial homology class of the sur-

face S(D). Consider the parity pi for knots in S(D) corresponding to

this class. Namely, for every crossing v of the diagram D consider the

“halves” the diagram is split into in this crossing, Dv,1 and Dv,2, and set
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p(v) = i(Dv,1) = i(Dv,2).

Let γ be a cycle on S(D) such that i(γ) = 1. Consider the cycle γ ′

homologous to γ and lying on the frame of D.

Let a1, . . . , al be the set of crossings where the cycle γ ′ rotates. We

shall use the additive notation for the group Z2: the element 0 is neutral

in the group, and 1 is non-trivial. By definition of the homological

parity we have
∑l

i=1 p(ai) = 1(mod 2), which yields that the parity p is

nontrivial for at least one crossing aj amongst a1, . . . , al.

Consider the homomorphism G(K) → Z2 corresponding to the parity

p. It is clear that the element g(aj) is non-trivial in G(K).

Thus, the crossing aj is virtualised by the map f .

Denote the k-th iteration of the map f by f k. Let us now construct

the map pr from knots in thickened surfaces (with orientable atoms) to

classical knots. LetD be a virtual diagram. Since the number of classical

crossings of D is finite (say, is equal to n), we see that fn+1(D) = fn(D).

By definition, set pr = f (n). Obviously, pr(D) is classical.

This leads to the following

Theorem 4. The map pr is a well-defined map from knots in thickened

surfaces to classical knots.

Remark 1. Unfortunately, the map f is not well behaved under stabili-

sations, so, the map pr does not lead to a well defined map from virtual

knots to the classical knots.

Consider the following example. Let T be the simplest diagram of the

classical right trefoil knot.

By definition, f(T ) = T , since all crossings are trivial.

Now, represent T as the closure of the (2, 3)-braid in the cylinder.

Close this cylinder to get the torus. On this torus we get a diagram T ′
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which is obtained from T by a stabilisation (note that the source-sink

structure is satisfied).

Now, if we look at the group, we see that none of the generators

corresponding to vertices is trivial; so, f(T ) gives the unknot.

The author is grateful to D.P.Ilyutko, O.V.Manturov and L.H.Kauffman

for fruitful remarks.
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